291 lines
12 KiB
Python
Executable File
291 lines
12 KiB
Python
Executable File
#!/usr/bin/env python3
|
|
|
|
# Copyright 2021 Memgraph Ltd.
|
|
#
|
|
# Use of this software is governed by the Business Source License
|
|
# included in the file licenses/BSL.txt; by using this file, you agree to be bound by the terms of the Business Source
|
|
# License, and you may not use this file except in compliance with the Business Source License.
|
|
#
|
|
# As of the Change Date specified in that file, in accordance with
|
|
# the Business Source License, use of this software will be governed
|
|
# by the Apache License, Version 2.0, included in the file
|
|
# licenses/APL.txt.
|
|
|
|
import argparse
|
|
import collections
|
|
import copy
|
|
import fnmatch
|
|
import inspect
|
|
import json
|
|
import multiprocessing
|
|
import random
|
|
import sys
|
|
|
|
import datasets
|
|
import log
|
|
import helpers
|
|
import runners
|
|
|
|
|
|
def get_queries(gen, count):
|
|
# Make the generator deterministic.
|
|
random.seed(gen.__name__)
|
|
# Generate queries.
|
|
ret = []
|
|
for i in range(count):
|
|
ret.append(gen())
|
|
return ret
|
|
|
|
|
|
def match_patterns(dataset, variant, group, test, is_default_variant,
|
|
patterns):
|
|
for pattern in patterns:
|
|
verdict = [fnmatch.fnmatchcase(dataset, pattern[0])]
|
|
if pattern[1] != "":
|
|
verdict.append(fnmatch.fnmatchcase(variant, pattern[1]))
|
|
else:
|
|
verdict.append(is_default_variant)
|
|
verdict.append(fnmatch.fnmatchcase(group, pattern[2]))
|
|
verdict.append(fnmatch.fnmatchcase(test, pattern[3]))
|
|
if all(verdict):
|
|
return True
|
|
return False
|
|
|
|
|
|
def filter_benchmarks(generators, patterns):
|
|
patterns = copy.deepcopy(patterns)
|
|
for i in range(len(patterns)):
|
|
pattern = patterns[i].split("/")
|
|
if len(pattern) > 4 or len(pattern) == 0:
|
|
raise Exception("Invalid benchmark description '" + pattern + "'!")
|
|
pattern.extend(["", "*", "*"][len(pattern) - 1:])
|
|
patterns[i] = pattern
|
|
filtered = []
|
|
for dataset in sorted(generators.keys()):
|
|
generator, tests = generators[dataset]
|
|
for variant in generator.VARIANTS:
|
|
is_default_variant = variant == generator.DEFAULT_VARIANT
|
|
current = collections.defaultdict(list)
|
|
for group in tests:
|
|
for test_name, test_func in tests[group]:
|
|
if match_patterns(dataset, variant, group, test_name,
|
|
is_default_variant, patterns):
|
|
current[group].append((test_name, test_func))
|
|
if len(current) > 0:
|
|
filtered.append((generator(variant), dict(current)))
|
|
return filtered
|
|
|
|
|
|
# Parse options.
|
|
parser = argparse.ArgumentParser(
|
|
description="Memgraph benchmark executor.",
|
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
|
|
parser.add_argument("benchmarks", nargs="*", default="",
|
|
help="descriptions of benchmarks that should be run; "
|
|
"multiple descriptions can be specified to run multiple "
|
|
"benchmarks; the description is specified as "
|
|
"dataset/variant/group/test; Unix shell-style wildcards "
|
|
"can be used in the descriptions; variant, group and test "
|
|
"are optional and they can be left out; the default "
|
|
"variant is '' which selects the default dataset variant; "
|
|
"the default group is '*' which selects all groups; the "
|
|
"default test is '*' which selects all tests")
|
|
parser.add_argument("--memgraph-binary",
|
|
default=helpers.get_binary_path("memgraph"),
|
|
help="Memgraph binary used for benchmarking")
|
|
parser.add_argument("--client-binary",
|
|
default=helpers.get_binary_path("tests/mgbench/client"),
|
|
help="client binary used for benchmarking")
|
|
parser.add_argument("--num-workers-for-import", type=int,
|
|
default=multiprocessing.cpu_count() // 2,
|
|
help="number of workers used to import the dataset")
|
|
parser.add_argument("--num-workers-for-benchmark", type=int,
|
|
default=1,
|
|
help="number of workers used to execute the benchmark")
|
|
parser.add_argument("--single-threaded-runtime-sec", type=int,
|
|
default=10,
|
|
help="single threaded duration of each test")
|
|
parser.add_argument("--no-load-query-counts", action="store_true",
|
|
help="disable loading of cached query counts")
|
|
parser.add_argument("--no-save-query-counts", action="store_true",
|
|
help="disable storing of cached query counts")
|
|
parser.add_argument("--export-results", default="",
|
|
help="file path into which results should be exported")
|
|
parser.add_argument("--temporary-directory", default="/tmp",
|
|
help="directory path where temporary data should "
|
|
"be stored")
|
|
parser.add_argument("--no-properties-on-edges", action="store_true",
|
|
help="disable properties on edges")
|
|
args = parser.parse_args()
|
|
|
|
# Detect available datasets.
|
|
generators = {}
|
|
for key in dir(datasets):
|
|
if key.startswith("_"):
|
|
continue
|
|
dataset = getattr(datasets, key)
|
|
if not inspect.isclass(dataset) or dataset == datasets.Dataset or \
|
|
not issubclass(dataset, datasets.Dataset):
|
|
continue
|
|
tests = collections.defaultdict(list)
|
|
for funcname in dir(dataset):
|
|
if not funcname.startswith("benchmark__"):
|
|
continue
|
|
group, test = funcname.split("__")[1:]
|
|
tests[group].append((test, funcname))
|
|
generators[dataset.NAME] = (dataset, dict(tests))
|
|
if dataset.PROPERTIES_ON_EDGES and args.no_properties_on_edges:
|
|
raise Exception("The \"{}\" dataset requires properties on edges, "
|
|
"but you have disabled them!".format(dataset.NAME))
|
|
|
|
# List datasets if there is no specified dataset.
|
|
if len(args.benchmarks) == 0:
|
|
log.init("Available tests")
|
|
for name in sorted(generators.keys()):
|
|
print("Dataset:", name)
|
|
dataset, tests = generators[name]
|
|
print(" Variants:", ", ".join(dataset.VARIANTS),
|
|
"(default: " + dataset.DEFAULT_VARIANT + ")")
|
|
for group in sorted(tests.keys()):
|
|
print(" Group:", group)
|
|
for test_name, test_func in tests[group]:
|
|
print(" Test:", test_name)
|
|
sys.exit(0)
|
|
|
|
# Create cache, config and results objects.
|
|
cache = helpers.Cache()
|
|
if not args.no_load_query_counts:
|
|
config = cache.load_config()
|
|
else:
|
|
config = helpers.RecursiveDict()
|
|
results = helpers.RecursiveDict()
|
|
|
|
# Filter out the generators.
|
|
benchmarks = filter_benchmarks(generators, args.benchmarks)
|
|
|
|
# Run all specified benchmarks.
|
|
for dataset, tests in benchmarks:
|
|
log.init("Preparing", dataset.NAME + "/" + dataset.get_variant(),
|
|
"dataset")
|
|
dataset.prepare(cache.cache_directory("datasets", dataset.NAME,
|
|
dataset.get_variant()))
|
|
|
|
# Prepare runners and import the dataset.
|
|
memgraph = runners.Memgraph(args.memgraph_binary, args.temporary_directory,
|
|
not args.no_properties_on_edges)
|
|
client = runners.Client(args.client_binary, args.temporary_directory)
|
|
memgraph.start_preparation()
|
|
ret = client.execute(file_path=dataset.get_file(),
|
|
num_workers=args.num_workers_for_import)
|
|
usage = memgraph.stop()
|
|
|
|
# Display import statistics.
|
|
print()
|
|
for row in ret:
|
|
print("Executed", row["count"], "queries in", row["duration"],
|
|
"seconds using", row["num_workers"],
|
|
"workers with a total throughput of", row["throughput"],
|
|
"queries/second.")
|
|
print()
|
|
print("The database used", usage["cpu"],
|
|
"seconds of CPU time and peaked at",
|
|
usage["memory"] / 1024 / 1024, "MiB of RAM.")
|
|
|
|
# Save import results.
|
|
import_key = [dataset.NAME, dataset.get_variant(), "__import__"]
|
|
results.set_value(*import_key, value={"client": ret, "database": usage})
|
|
|
|
# TODO: cache import data
|
|
|
|
# Run all benchmarks in all available groups.
|
|
for group in sorted(tests.keys()):
|
|
for test, funcname in tests[group]:
|
|
log.info("Running test:", "{}/{}".format(group, test))
|
|
func = getattr(dataset, funcname)
|
|
|
|
# Get number of queries to execute.
|
|
# TODO: implement minimum number of queries, `max(10, num_workers)`
|
|
config_key = [dataset.NAME, dataset.get_variant(), group, test]
|
|
cached_count = config.get_value(*config_key)
|
|
if cached_count is None:
|
|
print("Determining the number of queries necessary for",
|
|
args.single_threaded_runtime_sec,
|
|
"seconds of single-threaded runtime...")
|
|
# First run to prime the query caches.
|
|
memgraph.start_benchmark()
|
|
client.execute(queries=get_queries(func, 1), num_workers=1)
|
|
# Get a sense of the runtime.
|
|
count = 1
|
|
while True:
|
|
ret = client.execute(queries=get_queries(func, count),
|
|
num_workers=1)
|
|
duration = ret[0]["duration"]
|
|
should_execute = int(args.single_threaded_runtime_sec /
|
|
(duration / count))
|
|
print("executed_queries={}, total_duration={}, "
|
|
"query_duration={}, estimated_count={}".format(
|
|
count, duration, duration / count,
|
|
should_execute))
|
|
# We don't have to execute the next iteration when
|
|
# `should_execute` becomes the same order of magnitude as
|
|
# `count * 10`.
|
|
if should_execute / (count * 10) < 10:
|
|
count = should_execute
|
|
break
|
|
else:
|
|
count = count * 10
|
|
memgraph.stop()
|
|
config.set_value(*config_key, value={
|
|
"count": count,
|
|
"duration": args.single_threaded_runtime_sec})
|
|
else:
|
|
print("Using cached query count of", cached_count["count"],
|
|
"queries for", cached_count["duration"],
|
|
"seconds of single-threaded runtime.")
|
|
count = int(cached_count["count"] *
|
|
args.single_threaded_runtime_sec /
|
|
cached_count["duration"])
|
|
|
|
# Benchmark run.
|
|
print("Sample query:", get_queries(func, 1)[0][0])
|
|
print("Executing benchmark with", count, "queries that should "
|
|
"yield a single-threaded runtime of",
|
|
args.single_threaded_runtime_sec, "seconds.")
|
|
print("Queries are executed using", args.num_workers_for_benchmark,
|
|
"concurrent clients.")
|
|
memgraph.start_benchmark()
|
|
ret = client.execute(queries=get_queries(func, count),
|
|
num_workers=args.num_workers_for_benchmark)[0]
|
|
usage = memgraph.stop()
|
|
ret["database"] = usage
|
|
|
|
# Output summary.
|
|
print()
|
|
print("Executed", ret["count"], "queries in",
|
|
ret["duration"], "seconds.")
|
|
print("Queries have been retried", ret["retries"], "times.")
|
|
print("Database used {:.3f} seconds of CPU time.".format(
|
|
usage["cpu"]))
|
|
print("Database peaked at {:.3f} MiB of memory.".format(
|
|
usage["memory"] / 1024.0 / 1024.0))
|
|
print("{:<31} {:>20} {:>20} {:>20}".format("Metadata:", "min",
|
|
"avg", "max"))
|
|
metadata = ret["metadata"]
|
|
for key in sorted(metadata.keys()):
|
|
print("{name:>30}: {minimum:>20.06f} {average:>20.06f} "
|
|
"{maximum:>20.06f}".format(name=key, **metadata[key]))
|
|
log.success("Throughput: {:02f} QPS".format(ret["throughput"]))
|
|
|
|
# Save results.
|
|
results_key = [dataset.NAME, dataset.get_variant(), group, test]
|
|
results.set_value(*results_key, value=ret)
|
|
|
|
# Save configuration.
|
|
if not args.no_save_query_counts:
|
|
cache.save_config(config)
|
|
|
|
# Export results.
|
|
if args.export_results:
|
|
with open(args.export_results, "w") as f:
|
|
json.dump(results.get_data(), f)
|