memgraph/tests/unit/storage_v3_indices.cpp
Jure Bajic e9f0360fb3
Enable indices for storage v3 (#528)
- Enable indices in storage v3
- Add new test cases
- Change `CreateVertexAndValidate` to call `SetProperty` and `AddLabel`
2022-09-06 22:48:25 +02:00

990 lines
43 KiB
C++

// Copyright 2022 Memgraph Ltd.
//
// Use of this software is governed by the Business Source License
// included in the file licenses/BSL.txt; by using this file, you agree to be bound by the terms of the Business Source
// License, and you may not use this file except in compliance with the Business Source License.
//
// As of the Change Date specified in that file, in accordance with
// the Business Source License, use of this software will be governed
// by the Apache License, Version 2.0, included in the file
// licenses/APL.txt.
#include <gmock/gmock-matchers.h>
#include <gmock/gmock.h>
#include <gtest/gtest.h>
#include <cstdint>
#include "storage/v3/id_types.hpp"
#include "storage/v3/name_id_mapper.hpp"
#include "storage/v3/property_value.hpp"
#include "storage/v3/storage.hpp"
#include "storage/v3/temporal.hpp"
// NOLINTNEXTLINE(google-build-using-namespace)
using testing::IsEmpty;
using testing::Pair;
using testing::UnorderedElementsAre;
// NOLINTNEXTLINE(cppcoreguidelines-macro-usage)
#define ASSERT_NO_ERROR(result) ASSERT_FALSE((result).HasError())
namespace memgraph::storage::v3::tests {
class IndexTest : public testing::Test {
protected:
void SetUp() override {
ASSERT_TRUE(
storage.CreateSchema(primary_label, {storage::v3::SchemaProperty{primary_property, common::SchemaType::INT}}));
}
NameIdMapper id_mapper;
const std::vector<PropertyValue> pk{PropertyValue{0}};
const LabelId primary_label{NameToLabelId("label")};
Shard storage{primary_label, pk, std::nullopt};
const PropertyId primary_property{NameToPropertyId("property")};
const PropertyId prop_id{NameToPropertyId("id")};
const PropertyId prop_val{NameToPropertyId("val")};
const LabelId label1{NameToLabelId("label1")};
const LabelId label2{NameToLabelId("label2")};
int primary_key_id{0};
int vertex_id{0};
LabelId NameToLabelId(std::string_view label_name) { return LabelId::FromUint(id_mapper.NameToId(label_name)); }
PropertyId NameToPropertyId(std::string_view property_name) {
return PropertyId::FromUint(id_mapper.NameToId(property_name));
}
VertexAccessor CreateVertex(Shard::Accessor *accessor) {
auto vertex = *accessor->CreateVertexAndValidate(
primary_label, {},
{{primary_property, PropertyValue(primary_key_id++)}, {prop_id, PropertyValue(vertex_id++)}});
return vertex;
}
template <class TIterable>
std::vector<int64_t> GetIds(TIterable iterable, View view = View::OLD) {
std::vector<int64_t> ret;
for (auto vertex : iterable) {
ret.push_back(vertex.GetProperty(prop_id, view)->ValueInt());
}
return ret;
}
template <class TIterable>
std::vector<int64_t> GetPrimaryKeyIds(TIterable iterable, View view = View::OLD) {
std::vector<int64_t> ret;
for (auto vertex : iterable) {
EXPECT_TRUE(vertex.PrimaryKey(view).HasValue());
const auto pk = vertex.PrimaryKey(view).GetValue();
EXPECT_EQ(pk.size(), 1);
ret.push_back(pk[0].ValueInt());
}
return ret;
}
};
// NOLINTNEXTLINE(hicpp-special-member-functions)
TEST_F(IndexTest, LabelIndexCreate) {
{
auto acc = storage.Access();
EXPECT_FALSE(acc.LabelIndexExists(label1));
}
EXPECT_EQ(storage.ListAllIndices().label.size(), 0);
{
auto acc = storage.Access();
for (int i = 0; i < 10; ++i) {
auto vertex = CreateVertex(&acc);
ASSERT_NO_ERROR(vertex.AddLabelAndValidate(i % 2 ? label1 : label2));
}
ASSERT_NO_ERROR(acc.Commit());
}
EXPECT_TRUE(storage.CreateIndex(label1));
{
auto acc = storage.Access();
EXPECT_THAT(GetIds(acc.Vertices(label1, View::OLD), View::OLD), UnorderedElementsAre(1, 3, 5, 7, 9));
EXPECT_THAT(GetIds(acc.Vertices(label1, View::NEW), View::NEW), UnorderedElementsAre(1, 3, 5, 7, 9));
}
{
auto acc = storage.Access();
for (int i = 10; i < 20; ++i) {
auto vertex = CreateVertex(&acc);
ASSERT_NO_ERROR(vertex.AddLabelAndValidate(i % 2 ? label1 : label2));
}
EXPECT_THAT(GetIds(acc.Vertices(label1, View::OLD), View::OLD), UnorderedElementsAre(1, 3, 5, 7, 9));
EXPECT_THAT(GetIds(acc.Vertices(label1, View::NEW), View::NEW),
UnorderedElementsAre(1, 3, 5, 7, 9, 11, 13, 15, 17, 19));
acc.AdvanceCommand();
EXPECT_THAT(GetIds(acc.Vertices(label1, View::OLD), View::NEW),
UnorderedElementsAre(1, 3, 5, 7, 9, 11, 13, 15, 17, 19));
EXPECT_THAT(GetIds(acc.Vertices(label1, View::NEW), View::NEW),
UnorderedElementsAre(1, 3, 5, 7, 9, 11, 13, 15, 17, 19));
acc.Abort();
}
{
auto acc = storage.Access();
for (int i = 10; i < 20; ++i) {
auto vertex = CreateVertex(&acc);
ASSERT_NO_ERROR(vertex.AddLabelAndValidate(i % 2 ? label1 : label2));
}
EXPECT_THAT(GetIds(acc.Vertices(label1, View::OLD), View::OLD), UnorderedElementsAre(1, 3, 5, 7, 9));
EXPECT_THAT(GetIds(acc.Vertices(label1, View::NEW), View::NEW),
UnorderedElementsAre(1, 3, 5, 7, 9, 21, 23, 25, 27, 29));
acc.AdvanceCommand();
EXPECT_THAT(GetIds(acc.Vertices(label1, View::OLD), View::NEW),
UnorderedElementsAre(1, 3, 5, 7, 9, 21, 23, 25, 27, 29));
EXPECT_THAT(GetIds(acc.Vertices(label1, View::NEW), View::NEW),
UnorderedElementsAre(1, 3, 5, 7, 9, 21, 23, 25, 27, 29));
ASSERT_NO_ERROR(acc.Commit());
}
{
auto acc = storage.Access();
EXPECT_THAT(GetIds(acc.Vertices(label1, View::OLD), View::OLD),
UnorderedElementsAre(1, 3, 5, 7, 9, 21, 23, 25, 27, 29));
EXPECT_THAT(GetIds(acc.Vertices(label1, View::NEW), View::NEW),
UnorderedElementsAre(1, 3, 5, 7, 9, 21, 23, 25, 27, 29));
acc.AdvanceCommand();
EXPECT_THAT(GetIds(acc.Vertices(label1, View::OLD), View::NEW),
UnorderedElementsAre(1, 3, 5, 7, 9, 21, 23, 25, 27, 29));
EXPECT_THAT(GetIds(acc.Vertices(label1, View::NEW), View::NEW),
UnorderedElementsAre(1, 3, 5, 7, 9, 21, 23, 25, 27, 29));
ASSERT_NO_ERROR(acc.Commit());
}
}
// NOLINTNEXTLINE(hicpp-special-member-functions)
TEST_F(IndexTest, LabelIndexDrop) {
{
auto acc = storage.Access();
EXPECT_FALSE(acc.LabelIndexExists(label1));
}
EXPECT_EQ(storage.ListAllIndices().label.size(), 0);
{
auto acc = storage.Access();
for (int i = 0; i < 10; ++i) {
auto vertex = CreateVertex(&acc);
ASSERT_NO_ERROR(vertex.AddLabelAndValidate(i % 2 ? label1 : label2));
}
ASSERT_NO_ERROR(acc.Commit());
}
EXPECT_TRUE(storage.CreateIndex(label1));
{
auto acc = storage.Access();
EXPECT_THAT(GetIds(acc.Vertices(label1, View::OLD), View::OLD), UnorderedElementsAre(1, 3, 5, 7, 9));
EXPECT_THAT(GetIds(acc.Vertices(label1, View::NEW), View::NEW), UnorderedElementsAre(1, 3, 5, 7, 9));
}
EXPECT_TRUE(storage.DropIndex(label1));
{
auto acc = storage.Access();
EXPECT_FALSE(acc.LabelIndexExists(label1));
}
EXPECT_EQ(storage.ListAllIndices().label.size(), 0);
EXPECT_FALSE(storage.DropIndex(label1));
{
auto acc = storage.Access();
EXPECT_FALSE(acc.LabelIndexExists(label1));
}
EXPECT_EQ(storage.ListAllIndices().label.size(), 0);
{
auto acc = storage.Access();
for (int i = 10; i < 20; ++i) {
auto vertex = CreateVertex(&acc);
ASSERT_NO_ERROR(vertex.AddLabelAndValidate(i % 2 ? label1 : label2));
}
ASSERT_NO_ERROR(acc.Commit());
}
EXPECT_TRUE(storage.CreateIndex(label1));
{
auto acc = storage.Access();
EXPECT_TRUE(acc.LabelIndexExists(label1));
}
EXPECT_THAT(storage.ListAllIndices().label, UnorderedElementsAre(label1));
{
auto acc = storage.Access();
EXPECT_THAT(GetIds(acc.Vertices(label1, View::OLD), View::OLD),
UnorderedElementsAre(1, 3, 5, 7, 9, 11, 13, 15, 17, 19));
EXPECT_THAT(GetIds(acc.Vertices(label1, View::NEW), View::NEW),
UnorderedElementsAre(1, 3, 5, 7, 9, 11, 13, 15, 17, 19));
acc.AdvanceCommand();
EXPECT_THAT(GetIds(acc.Vertices(label1, View::OLD), View::NEW),
UnorderedElementsAre(1, 3, 5, 7, 9, 11, 13, 15, 17, 19));
EXPECT_THAT(GetIds(acc.Vertices(label1, View::NEW), View::NEW),
UnorderedElementsAre(1, 3, 5, 7, 9, 11, 13, 15, 17, 19));
}
}
// NOLINTNEXTLINE(hicpp-special-member-functions)
TEST_F(IndexTest, LabelIndexBasic) {
// The following steps are performed and index correctness is validated after
// each step:
// 1. Create 10 vertices numbered from 0 to 9.
// 2. Add Label1 to odd numbered, and Label2 to even numbered vertices.
// 3. Remove Label1 from odd numbered vertices, and add it to even numbered
// vertices.
// 4. Delete even numbered vertices.
EXPECT_TRUE(storage.CreateIndex(label1));
EXPECT_TRUE(storage.CreateIndex(label2));
auto acc = storage.Access();
EXPECT_THAT(storage.ListAllIndices().label, UnorderedElementsAre(label1, label2));
EXPECT_THAT(GetIds(acc.Vertices(label1, View::OLD), View::OLD), IsEmpty());
EXPECT_THAT(GetIds(acc.Vertices(label2, View::OLD), View::OLD), IsEmpty());
EXPECT_THAT(GetIds(acc.Vertices(label1, View::NEW), View::NEW), IsEmpty());
EXPECT_THAT(GetIds(acc.Vertices(label2, View::NEW), View::NEW), IsEmpty());
for (int i = 0; i < 10; ++i) {
auto vertex = CreateVertex(&acc);
ASSERT_NO_ERROR(vertex.AddLabelAndValidate(i % 2 ? label1 : label2));
}
EXPECT_THAT(GetIds(acc.Vertices(label1, View::OLD), View::OLD), IsEmpty());
EXPECT_THAT(GetIds(acc.Vertices(label2, View::OLD), View::OLD), IsEmpty());
EXPECT_THAT(GetIds(acc.Vertices(label1, View::NEW), View::NEW), UnorderedElementsAre(1, 3, 5, 7, 9));
EXPECT_THAT(GetIds(acc.Vertices(label2, View::NEW), View::NEW), UnorderedElementsAre(0, 2, 4, 6, 8));
acc.AdvanceCommand();
EXPECT_THAT(GetIds(acc.Vertices(label1, View::OLD), View::OLD), UnorderedElementsAre(1, 3, 5, 7, 9));
EXPECT_THAT(GetIds(acc.Vertices(label2, View::OLD), View::OLD), UnorderedElementsAre(0, 2, 4, 6, 8));
EXPECT_THAT(GetIds(acc.Vertices(label1, View::NEW), View::NEW), UnorderedElementsAre(1, 3, 5, 7, 9));
EXPECT_THAT(GetIds(acc.Vertices(label2, View::NEW), View::NEW), UnorderedElementsAre(0, 2, 4, 6, 8));
for (auto vertex : acc.Vertices(View::OLD)) {
int64_t id = vertex.GetProperty(prop_id, View::OLD)->ValueInt();
if (id % 2) {
ASSERT_NO_ERROR(vertex.RemoveLabelAndValidate(label1));
} else {
ASSERT_NO_ERROR(vertex.AddLabelAndValidate(label1));
}
}
EXPECT_THAT(GetIds(acc.Vertices(label1, View::OLD), View::OLD), UnorderedElementsAre(1, 3, 5, 7, 9));
EXPECT_THAT(GetIds(acc.Vertices(label2, View::OLD), View::OLD), UnorderedElementsAre(0, 2, 4, 6, 8));
EXPECT_THAT(GetIds(acc.Vertices(label1, View::NEW), View::NEW), UnorderedElementsAre(0, 2, 4, 6, 8));
EXPECT_THAT(GetIds(acc.Vertices(label2, View::NEW), View::NEW), UnorderedElementsAre(0, 2, 4, 6, 8));
for (auto vertex : acc.Vertices(View::OLD)) {
int64_t id = vertex.GetProperty(prop_id, View::OLD)->ValueInt();
if (id % 2 == 0) {
ASSERT_NO_ERROR(acc.DeleteVertex(&vertex));
}
}
EXPECT_THAT(GetIds(acc.Vertices(label1, View::OLD), View::OLD), UnorderedElementsAre(1, 3, 5, 7, 9));
EXPECT_THAT(GetIds(acc.Vertices(label2, View::OLD), View::OLD), UnorderedElementsAre(0, 2, 4, 6, 8));
EXPECT_THAT(GetIds(acc.Vertices(label1, View::NEW), View::NEW), IsEmpty());
EXPECT_THAT(GetIds(acc.Vertices(label2, View::NEW), View::NEW), IsEmpty());
acc.AdvanceCommand();
EXPECT_THAT(GetIds(acc.Vertices(label1, View::OLD), View::OLD), IsEmpty());
EXPECT_THAT(GetIds(acc.Vertices(label2, View::OLD), View::OLD), IsEmpty());
EXPECT_THAT(GetIds(acc.Vertices(label1, View::NEW), View::NEW), IsEmpty());
EXPECT_THAT(GetIds(acc.Vertices(label2, View::NEW), View::NEW), IsEmpty());
}
// NOLINTNEXTLINE(hicpp-special-member-functions)
TEST_F(IndexTest, LabelIndexDuplicateVersions) {
// By removing labels and adding them again we create duplicate entries for
// the same vertex in the index (they only differ by the timestamp). This test
// checks that duplicates are properly filtered out.
EXPECT_TRUE(storage.CreateIndex(label1));
EXPECT_TRUE(storage.CreateIndex(label2));
{
auto acc = storage.Access();
for (int i = 0; i < 5; ++i) {
auto vertex = CreateVertex(&acc);
ASSERT_NO_ERROR(vertex.AddLabelAndValidate(label1));
}
EXPECT_THAT(GetIds(acc.Vertices(label1, View::NEW), View::NEW), UnorderedElementsAre(0, 1, 2, 3, 4));
ASSERT_NO_ERROR(acc.Commit());
}
{
auto acc = storage.Access();
EXPECT_THAT(GetIds(acc.Vertices(label1, View::OLD), View::OLD), UnorderedElementsAre(0, 1, 2, 3, 4));
for (auto vertex : acc.Vertices(View::OLD)) {
ASSERT_NO_ERROR(vertex.RemoveLabelAndValidate(label1));
}
EXPECT_THAT(GetIds(acc.Vertices(label1, View::OLD), View::OLD), UnorderedElementsAre(0, 1, 2, 3, 4));
EXPECT_THAT(GetIds(acc.Vertices(label1, View::NEW), View::NEW), IsEmpty());
for (auto vertex : acc.Vertices(View::OLD)) {
ASSERT_NO_ERROR(vertex.AddLabelAndValidate(label1));
}
EXPECT_THAT(GetIds(acc.Vertices(label1, View::OLD), View::OLD), UnorderedElementsAre(0, 1, 2, 3, 4));
EXPECT_THAT(GetIds(acc.Vertices(label1, View::NEW), View::NEW), UnorderedElementsAre(0, 1, 2, 3, 4));
}
}
// NOLINTNEXTLINE(hicpp-special-member-functions)
TEST_F(IndexTest, LabelIndexTransactionalIsolation) {
// Check that transactions only see entries they are supposed to see.
EXPECT_TRUE(storage.CreateIndex(label1));
EXPECT_TRUE(storage.CreateIndex(label2));
auto acc_before = storage.Access();
auto acc = storage.Access();
auto acc_after = storage.Access();
for (int i = 0; i < 5; ++i) {
auto vertex = CreateVertex(&acc);
ASSERT_NO_ERROR(vertex.AddLabelAndValidate(label1));
}
EXPECT_THAT(GetIds(acc.Vertices(label1, View::NEW), View::NEW), UnorderedElementsAre(0, 1, 2, 3, 4));
EXPECT_THAT(GetIds(acc_before.Vertices(label1, View::NEW), View::NEW), IsEmpty());
EXPECT_THAT(GetIds(acc_after.Vertices(label1, View::NEW), View::NEW), IsEmpty());
ASSERT_NO_ERROR(acc.Commit());
auto acc_after_commit = storage.Access();
EXPECT_THAT(GetIds(acc_before.Vertices(label1, View::NEW), View::NEW), IsEmpty());
EXPECT_THAT(GetIds(acc_after.Vertices(label1, View::NEW), View::NEW), IsEmpty());
EXPECT_THAT(GetIds(acc_after_commit.Vertices(label1, View::NEW), View::NEW), UnorderedElementsAre(0, 1, 2, 3, 4));
}
// NOLINTNEXTLINE(hicpp-special-member-functions)
TEST_F(IndexTest, LabelIndexCountEstimate) {
EXPECT_TRUE(storage.CreateIndex(label1));
EXPECT_TRUE(storage.CreateIndex(label2));
auto acc = storage.Access();
for (int i = 0; i < 20; ++i) {
auto vertex = CreateVertex(&acc);
ASSERT_NO_ERROR(vertex.AddLabelAndValidate(i % 3 ? label1 : label2));
}
EXPECT_EQ(acc.ApproximateVertexCount(label1), 13);
EXPECT_EQ(acc.ApproximateVertexCount(label2), 7);
}
// NOLINTNEXTLINE(hicpp-special-member-functions)
TEST_F(IndexTest, LabelPropertyIndexCreateAndDrop) {
EXPECT_EQ(storage.ListAllIndices().label_property.size(), 0);
EXPECT_TRUE(storage.CreateIndex(label1, prop_id));
{
auto acc = storage.Access();
EXPECT_TRUE(acc.LabelPropertyIndexExists(label1, prop_id));
}
EXPECT_THAT(storage.ListAllIndices().label_property, UnorderedElementsAre(std::make_pair(label1, prop_id)));
{
auto acc = storage.Access();
EXPECT_FALSE(acc.LabelPropertyIndexExists(label2, prop_id));
}
EXPECT_FALSE(storage.CreateIndex(label1, prop_id));
EXPECT_THAT(storage.ListAllIndices().label_property, UnorderedElementsAre(std::make_pair(label1, prop_id)));
EXPECT_TRUE(storage.CreateIndex(label2, prop_id));
{
auto acc = storage.Access();
EXPECT_TRUE(acc.LabelPropertyIndexExists(label2, prop_id));
}
EXPECT_THAT(storage.ListAllIndices().label_property,
UnorderedElementsAre(std::make_pair(label1, prop_id), std::make_pair(label2, prop_id)));
EXPECT_TRUE(storage.DropIndex(label1, prop_id));
{
auto acc = storage.Access();
EXPECT_FALSE(acc.LabelPropertyIndexExists(label1, prop_id));
}
EXPECT_THAT(storage.ListAllIndices().label_property, UnorderedElementsAre(std::make_pair(label2, prop_id)));
EXPECT_FALSE(storage.DropIndex(label1, prop_id));
EXPECT_TRUE(storage.DropIndex(label2, prop_id));
{
auto acc = storage.Access();
EXPECT_FALSE(acc.LabelPropertyIndexExists(label2, prop_id));
}
EXPECT_EQ(storage.ListAllIndices().label_property.size(), 0);
}
// The following three tests are almost an exact copy-paste of the corresponding
// label index tests. We request all vertices with given label and property from
// the index, without range filtering. Range filtering is tested in a separate
// test.
// NOLINTNEXTLINE(hicpp-special-member-functions)
TEST_F(IndexTest, LabelPropertyIndexBasic) {
storage.CreateIndex(label1, prop_val);
storage.CreateIndex(label2, prop_val);
auto acc = storage.Access();
EXPECT_THAT(GetIds(acc.Vertices(label1, prop_val, View::OLD), View::OLD), IsEmpty());
for (int i = 0; i < 10; ++i) {
auto vertex = CreateVertex(&acc);
ASSERT_NO_ERROR(vertex.AddLabelAndValidate(i % 2 ? label1 : label2));
ASSERT_NO_ERROR(vertex.SetPropertyAndValidate(prop_val, PropertyValue(i)));
}
EXPECT_THAT(GetIds(acc.Vertices(label1, prop_val, View::OLD), View::OLD), IsEmpty());
EXPECT_THAT(GetIds(acc.Vertices(label2, prop_val, View::OLD), View::OLD), IsEmpty());
EXPECT_THAT(GetIds(acc.Vertices(label1, prop_val, View::NEW), View::NEW), UnorderedElementsAre(1, 3, 5, 7, 9));
EXPECT_THAT(GetIds(acc.Vertices(label2, prop_val, View::NEW), View::NEW), UnorderedElementsAre(0, 2, 4, 6, 8));
acc.AdvanceCommand();
EXPECT_THAT(GetIds(acc.Vertices(label1, prop_val, View::OLD), View::OLD), UnorderedElementsAre(1, 3, 5, 7, 9));
EXPECT_THAT(GetIds(acc.Vertices(label2, prop_val, View::OLD), View::OLD), UnorderedElementsAre(0, 2, 4, 6, 8));
EXPECT_THAT(GetIds(acc.Vertices(label1, prop_val, View::NEW), View::NEW), UnorderedElementsAre(1, 3, 5, 7, 9));
EXPECT_THAT(GetIds(acc.Vertices(label2, prop_val, View::NEW), View::NEW), UnorderedElementsAre(0, 2, 4, 6, 8));
for (auto vertex : acc.Vertices(View::OLD)) {
int64_t id = vertex.GetProperty(prop_id, View::OLD)->ValueInt();
if (id % 2) {
ASSERT_NO_ERROR(vertex.SetPropertyAndValidate(prop_val, PropertyValue()));
} else {
ASSERT_NO_ERROR(vertex.AddLabelAndValidate(label1));
}
}
EXPECT_THAT(GetIds(acc.Vertices(label1, prop_val, View::OLD), View::OLD), UnorderedElementsAre(1, 3, 5, 7, 9));
EXPECT_THAT(GetIds(acc.Vertices(label2, prop_val, View::OLD), View::OLD), UnorderedElementsAre(0, 2, 4, 6, 8));
EXPECT_THAT(GetIds(acc.Vertices(label1, prop_val, View::NEW), View::NEW), UnorderedElementsAre(0, 2, 4, 6, 8));
EXPECT_THAT(GetIds(acc.Vertices(label2, prop_val, View::NEW), View::NEW), UnorderedElementsAre(0, 2, 4, 6, 8));
for (auto vertex : acc.Vertices(View::OLD)) {
int64_t id = vertex.GetProperty(prop_id, View::OLD)->ValueInt();
if (id % 2 == 0) {
ASSERT_NO_ERROR(acc.DeleteVertex(&vertex));
}
}
EXPECT_THAT(GetIds(acc.Vertices(label1, prop_val, View::OLD), View::OLD), UnorderedElementsAre(1, 3, 5, 7, 9));
EXPECT_THAT(GetIds(acc.Vertices(label2, prop_val, View::OLD), View::OLD), UnorderedElementsAre(0, 2, 4, 6, 8));
EXPECT_THAT(GetIds(acc.Vertices(label1, prop_val, View::NEW), View::NEW), IsEmpty());
EXPECT_THAT(GetIds(acc.Vertices(label2, prop_val, View::NEW), View::NEW), IsEmpty());
acc.AdvanceCommand();
EXPECT_THAT(GetIds(acc.Vertices(label1, prop_val, View::OLD), View::OLD), IsEmpty());
EXPECT_THAT(GetIds(acc.Vertices(label2, prop_val, View::OLD), View::OLD), IsEmpty());
EXPECT_THAT(GetIds(acc.Vertices(label1, prop_val, View::NEW), View::NEW), IsEmpty());
EXPECT_THAT(GetIds(acc.Vertices(label2, prop_val, View::NEW), View::NEW), IsEmpty());
}
// NOLINTNEXTLINE(hicpp-special-member-functions)
TEST_F(IndexTest, LabelPropertyIndexDuplicateVersions) {
storage.CreateIndex(label1, prop_val);
{
auto acc = storage.Access();
for (int i = 0; i < 5; ++i) {
auto vertex = CreateVertex(&acc);
ASSERT_NO_ERROR(vertex.AddLabelAndValidate(label1));
ASSERT_NO_ERROR(vertex.SetPropertyAndValidate(prop_val, PropertyValue(i)));
}
EXPECT_THAT(GetIds(acc.Vertices(label1, prop_val, View::NEW), View::NEW), UnorderedElementsAre(0, 1, 2, 3, 4));
ASSERT_NO_ERROR(acc.Commit());
}
{
auto acc = storage.Access();
EXPECT_THAT(GetIds(acc.Vertices(label1, prop_val, View::OLD), View::OLD), UnorderedElementsAre(0, 1, 2, 3, 4));
for (auto vertex : acc.Vertices(View::OLD)) {
ASSERT_NO_ERROR(vertex.SetPropertyAndValidate(prop_val, PropertyValue()));
}
EXPECT_THAT(GetIds(acc.Vertices(label1, prop_val, View::OLD), View::OLD), UnorderedElementsAre(0, 1, 2, 3, 4));
EXPECT_THAT(GetIds(acc.Vertices(label1, prop_val, View::NEW), View::NEW), IsEmpty());
for (auto vertex : acc.Vertices(View::OLD)) {
ASSERT_NO_ERROR(vertex.SetPropertyAndValidate(prop_val, PropertyValue(42)));
}
EXPECT_THAT(GetIds(acc.Vertices(label1, prop_val, View::OLD), View::OLD), UnorderedElementsAre(0, 1, 2, 3, 4));
EXPECT_THAT(GetIds(acc.Vertices(label1, prop_val, View::NEW), View::NEW), UnorderedElementsAre(0, 1, 2, 3, 4));
}
}
// NOLINTNEXTLINE(hicpp-special-member-functions)
TEST_F(IndexTest, LabelPropertyIndexTransactionalIsolation) {
storage.CreateIndex(label1, prop_val);
auto acc_before = storage.Access();
auto acc = storage.Access();
auto acc_after = storage.Access();
for (int i = 0; i < 5; ++i) {
auto vertex = CreateVertex(&acc);
ASSERT_NO_ERROR(vertex.AddLabelAndValidate(label1));
ASSERT_NO_ERROR(vertex.SetPropertyAndValidate(prop_val, PropertyValue(i)));
}
EXPECT_THAT(GetIds(acc.Vertices(label1, prop_val, View::NEW), View::NEW), UnorderedElementsAre(0, 1, 2, 3, 4));
EXPECT_THAT(GetIds(acc_before.Vertices(label1, prop_val, View::NEW), View::NEW), IsEmpty());
EXPECT_THAT(GetIds(acc_after.Vertices(label1, prop_val, View::NEW), View::NEW), IsEmpty());
ASSERT_NO_ERROR(acc.Commit());
auto acc_after_commit = storage.Access();
EXPECT_THAT(GetIds(acc_before.Vertices(label1, prop_val, View::NEW), View::NEW), IsEmpty());
EXPECT_THAT(GetIds(acc_after.Vertices(label1, prop_val, View::NEW), View::NEW), IsEmpty());
EXPECT_THAT(GetIds(acc_after_commit.Vertices(label1, prop_val, View::NEW), View::NEW),
UnorderedElementsAre(0, 1, 2, 3, 4));
}
// NOLINTNEXTLINE(hicpp-special-member-functions)
TEST_F(IndexTest, LabelPropertyIndexFiltering) {
// We insert vertices with values:
// 0 0.0 1 1.0 2 2.0 3 3.0 4 4.0
// Then we check all combinations of inclusive and exclusive bounds.
// We also have a mix of doubles and integers to verify that they are sorted
// properly.
storage.CreateIndex(label1, prop_val);
{
auto acc = storage.Access();
for (int i = 0; i < 10; ++i) {
auto vertex = CreateVertex(&acc);
ASSERT_NO_ERROR(vertex.AddLabelAndValidate(label1));
ASSERT_NO_ERROR(vertex.SetPropertyAndValidate(prop_val, i % 2 ? PropertyValue(i / 2) : PropertyValue(i / 2.0)));
}
ASSERT_NO_ERROR(acc.Commit());
}
{
auto acc = storage.Access();
for (int i = 0; i < 5; ++i) {
EXPECT_THAT(GetIds(acc.Vertices(label1, prop_val, PropertyValue(i), View::OLD)),
UnorderedElementsAre(2 * i, 2 * i + 1));
}
// [1, +inf>
EXPECT_THAT(GetIds(acc.Vertices(label1, prop_val, memgraph::utils::MakeBoundInclusive(PropertyValue(1)),
std::nullopt, View::OLD)),
UnorderedElementsAre(2, 3, 4, 5, 6, 7, 8, 9));
// <1, +inf>
EXPECT_THAT(GetIds(acc.Vertices(label1, prop_val, memgraph::utils::MakeBoundExclusive(PropertyValue(1)),
std::nullopt, View::OLD)),
UnorderedElementsAre(4, 5, 6, 7, 8, 9));
// <-inf, 3]
EXPECT_THAT(GetIds(acc.Vertices(label1, prop_val, std::nullopt,
memgraph::utils::MakeBoundInclusive(PropertyValue(3)), View::OLD)),
UnorderedElementsAre(0, 1, 2, 3, 4, 5, 6, 7));
// <-inf, 3>
EXPECT_THAT(GetIds(acc.Vertices(label1, prop_val, std::nullopt,
memgraph::utils::MakeBoundExclusive(PropertyValue(3)), View::OLD)),
UnorderedElementsAre(0, 1, 2, 3, 4, 5));
// [1, 3]
EXPECT_THAT(GetIds(acc.Vertices(label1, prop_val, memgraph::utils::MakeBoundInclusive(PropertyValue(1)),
memgraph::utils::MakeBoundInclusive(PropertyValue(3)), View::OLD)),
UnorderedElementsAre(2, 3, 4, 5, 6, 7));
// <1, 3]
EXPECT_THAT(GetIds(acc.Vertices(label1, prop_val, memgraph::utils::MakeBoundExclusive(PropertyValue(1)),
memgraph::utils::MakeBoundInclusive(PropertyValue(3)), View::OLD)),
UnorderedElementsAre(4, 5, 6, 7));
// [1, 3>
EXPECT_THAT(GetIds(acc.Vertices(label1, prop_val, memgraph::utils::MakeBoundInclusive(PropertyValue(1)),
memgraph::utils::MakeBoundExclusive(PropertyValue(3)), View::OLD)),
UnorderedElementsAre(2, 3, 4, 5));
// <1, 3>
EXPECT_THAT(GetIds(acc.Vertices(label1, prop_val, memgraph::utils::MakeBoundExclusive(PropertyValue(1)),
memgraph::utils::MakeBoundExclusive(PropertyValue(3)), View::OLD)),
UnorderedElementsAre(4, 5));
}
}
// NOLINTNEXTLINE(hicpp-special-member-functions)
TEST_F(IndexTest, LabelPropertyIndexCountEstimate) {
storage.CreateIndex(label1, prop_val);
auto acc = storage.Access();
for (int i = 1; i <= 10; ++i) {
for (int j = 0; j < i; ++j) {
auto vertex = CreateVertex(&acc);
ASSERT_NO_ERROR(vertex.AddLabelAndValidate(label1));
ASSERT_NO_ERROR(vertex.SetPropertyAndValidate(prop_val, PropertyValue(i)));
}
}
EXPECT_EQ(acc.ApproximateVertexCount(label1, prop_val), 55);
for (int i = 1; i <= 10; ++i) {
EXPECT_EQ(acc.ApproximateVertexCount(label1, prop_val, PropertyValue(i)), i);
}
EXPECT_EQ(acc.ApproximateVertexCount(label1, prop_val, memgraph::utils::MakeBoundInclusive(PropertyValue(2)),
memgraph::utils::MakeBoundInclusive(PropertyValue(6))),
2 + 3 + 4 + 5 + 6);
}
TEST_F(IndexTest, LabelPropertyIndexMixedIteration) {
storage.CreateIndex(label1, prop_val);
const std::array temporals{TemporalData{TemporalType::Date, 23}, TemporalData{TemporalType::Date, 28},
TemporalData{TemporalType::LocalDateTime, 20}};
std::vector<PropertyValue> values = {
PropertyValue(false),
PropertyValue(true),
PropertyValue(-std::numeric_limits<double>::infinity()),
PropertyValue(std::numeric_limits<int64_t>::min()),
PropertyValue(-1),
PropertyValue(-0.5),
PropertyValue(0),
PropertyValue(0.5),
PropertyValue(1),
PropertyValue(1.5),
PropertyValue(2),
PropertyValue(std::numeric_limits<int64_t>::max()),
PropertyValue(std::numeric_limits<double>::infinity()),
PropertyValue(""),
PropertyValue("a"),
PropertyValue("b"),
PropertyValue("c"),
PropertyValue(std::vector<PropertyValue>()),
PropertyValue(std::vector<PropertyValue>{PropertyValue(0.8)}),
PropertyValue(std::vector<PropertyValue>{PropertyValue(2)}),
PropertyValue(std::map<std::string, PropertyValue>()),
PropertyValue(std::map<std::string, PropertyValue>{{"id", PropertyValue(5)}}),
PropertyValue(std::map<std::string, PropertyValue>{{"id", PropertyValue(10)}}),
PropertyValue(temporals[0]),
PropertyValue(temporals[1]),
PropertyValue(temporals[2]),
};
// Create vertices, each with one of the values above.
{
auto acc = storage.Access();
for (const auto &value : values) {
auto v = acc.CreateVertexAndValidate(primary_label, {}, {{primary_property, PropertyValue(primary_key_id++)}});
ASSERT_TRUE(v->AddLabelAndValidate(label1).HasValue());
ASSERT_TRUE(v->SetPropertyAndValidate(prop_val, value).HasValue());
}
ASSERT_FALSE(acc.Commit().HasError());
}
// Verify that all nodes are in the index.
{
auto acc = storage.Access();
auto iterable = acc.Vertices(label1, prop_val, View::OLD);
auto it = iterable.begin();
for (const auto &value : values) {
ASSERT_NE(it, iterable.end());
auto vertex = *it;
auto maybe_value = vertex.GetProperty(prop_val, View::OLD);
ASSERT_TRUE(maybe_value.HasValue());
ASSERT_EQ(value, *maybe_value);
++it;
}
ASSERT_EQ(it, iterable.end());
}
auto verify = [&](const std::optional<memgraph::utils::Bound<PropertyValue>> &from,
const std::optional<memgraph::utils::Bound<PropertyValue>> &to,
const std::vector<PropertyValue> &expected) {
auto acc = storage.Access();
auto iterable = acc.Vertices(label1, prop_val, from, to, View::OLD);
size_t i = 0;
for (auto it = iterable.begin(); it != iterable.end(); ++it, ++i) {
auto vertex = *it;
auto maybe_value = vertex.GetProperty(prop_val, View::OLD);
ASSERT_TRUE(maybe_value.HasValue());
ASSERT_EQ(*maybe_value, expected[i]);
}
ASSERT_EQ(i, expected.size());
};
// Range iteration with two specified bounds that have the same type should
// yield the naturally expected items.
verify(memgraph::utils::MakeBoundExclusive(PropertyValue(false)),
memgraph::utils::MakeBoundExclusive(PropertyValue(true)), {});
verify(memgraph::utils::MakeBoundExclusive(PropertyValue(false)),
memgraph::utils::MakeBoundInclusive(PropertyValue(true)), {PropertyValue(true)});
verify(memgraph::utils::MakeBoundInclusive(PropertyValue(false)),
memgraph::utils::MakeBoundExclusive(PropertyValue(true)), {PropertyValue(false)});
verify(memgraph::utils::MakeBoundInclusive(PropertyValue(false)),
memgraph::utils::MakeBoundInclusive(PropertyValue(true)), {PropertyValue(false), PropertyValue(true)});
verify(memgraph::utils::MakeBoundExclusive(PropertyValue(0)), memgraph::utils::MakeBoundExclusive(PropertyValue(1.8)),
{PropertyValue(0.5), PropertyValue(1), PropertyValue(1.5)});
verify(memgraph::utils::MakeBoundExclusive(PropertyValue(0)), memgraph::utils::MakeBoundInclusive(PropertyValue(1.8)),
{PropertyValue(0.5), PropertyValue(1), PropertyValue(1.5)});
verify(memgraph::utils::MakeBoundInclusive(PropertyValue(0)), memgraph::utils::MakeBoundExclusive(PropertyValue(1.8)),
{PropertyValue(0), PropertyValue(0.5), PropertyValue(1), PropertyValue(1.5)});
verify(memgraph::utils::MakeBoundInclusive(PropertyValue(0)), memgraph::utils::MakeBoundInclusive(PropertyValue(1.8)),
{PropertyValue(0), PropertyValue(0.5), PropertyValue(1), PropertyValue(1.5)});
verify(memgraph::utils::MakeBoundExclusive(PropertyValue("b")),
memgraph::utils::MakeBoundExclusive(PropertyValue("memgraph")), {PropertyValue("c")});
verify(memgraph::utils::MakeBoundExclusive(PropertyValue("b")),
memgraph::utils::MakeBoundInclusive(PropertyValue("memgraph")), {PropertyValue("c")});
verify(memgraph::utils::MakeBoundInclusive(PropertyValue("b")),
memgraph::utils::MakeBoundExclusive(PropertyValue("memgraph")), {PropertyValue("b"), PropertyValue("c")});
verify(memgraph::utils::MakeBoundInclusive(PropertyValue("b")),
memgraph::utils::MakeBoundInclusive(PropertyValue("memgraph")), {PropertyValue("b"), PropertyValue("c")});
verify(memgraph::utils::MakeBoundExclusive(PropertyValue(std::vector<PropertyValue>{PropertyValue(0.8)})),
memgraph::utils::MakeBoundExclusive(PropertyValue(std::vector<PropertyValue>{PropertyValue("b")})),
{PropertyValue(std::vector<PropertyValue>{PropertyValue(2)})});
verify(memgraph::utils::MakeBoundExclusive(PropertyValue(std::vector<PropertyValue>{PropertyValue(0.8)})),
memgraph::utils::MakeBoundInclusive(PropertyValue(std::vector<PropertyValue>{PropertyValue("b")})),
{PropertyValue(std::vector<PropertyValue>{PropertyValue(2)})});
verify(memgraph::utils::MakeBoundInclusive(PropertyValue(std::vector<PropertyValue>{PropertyValue(0.8)})),
memgraph::utils::MakeBoundExclusive(PropertyValue(std::vector<PropertyValue>{PropertyValue("b")})),
{PropertyValue(std::vector<PropertyValue>{PropertyValue(0.8)}),
PropertyValue(std::vector<PropertyValue>{PropertyValue(2)})});
verify(memgraph::utils::MakeBoundInclusive(PropertyValue(std::vector<PropertyValue>{PropertyValue(0.8)})),
memgraph::utils::MakeBoundInclusive(PropertyValue(std::vector<PropertyValue>{PropertyValue("b")})),
{PropertyValue(std::vector<PropertyValue>{PropertyValue(0.8)}),
PropertyValue(std::vector<PropertyValue>{PropertyValue(2)})});
verify(memgraph::utils::MakeBoundExclusive(
PropertyValue(std::map<std::string, PropertyValue>{{"id", PropertyValue(5.0)}})),
memgraph::utils::MakeBoundExclusive(
PropertyValue(std::map<std::string, PropertyValue>{{"id", PropertyValue("b")}})),
{PropertyValue(std::map<std::string, PropertyValue>{{"id", PropertyValue(10)}})});
verify(memgraph::utils::MakeBoundExclusive(
PropertyValue(std::map<std::string, PropertyValue>{{"id", PropertyValue(5.0)}})),
memgraph::utils::MakeBoundInclusive(
PropertyValue(std::map<std::string, PropertyValue>{{"id", PropertyValue("b")}})),
{PropertyValue(std::map<std::string, PropertyValue>{{"id", PropertyValue(10)}})});
verify(memgraph::utils::MakeBoundInclusive(
PropertyValue(std::map<std::string, PropertyValue>{{"id", PropertyValue(5.0)}})),
memgraph::utils::MakeBoundExclusive(
PropertyValue(std::map<std::string, PropertyValue>{{"id", PropertyValue("b")}})),
{PropertyValue(std::map<std::string, PropertyValue>{{"id", PropertyValue(5)}}),
PropertyValue(std::map<std::string, PropertyValue>{{"id", PropertyValue(10)}})});
verify(memgraph::utils::MakeBoundInclusive(
PropertyValue(std::map<std::string, PropertyValue>{{"id", PropertyValue(5.0)}})),
memgraph::utils::MakeBoundInclusive(
PropertyValue(std::map<std::string, PropertyValue>{{"id", PropertyValue("b")}})),
{PropertyValue(std::map<std::string, PropertyValue>{{"id", PropertyValue(5)}}),
PropertyValue(std::map<std::string, PropertyValue>{{"id", PropertyValue(10)}})});
verify(memgraph::utils::MakeBoundExclusive(PropertyValue(temporals[0])),
memgraph::utils::MakeBoundInclusive(PropertyValue(TemporalData{TemporalType::Date, 200})),
// LocalDateTime has a "higher" type number so it is not part of the range
{PropertyValue(temporals[1])});
verify(memgraph::utils::MakeBoundExclusive(PropertyValue(temporals[0])),
memgraph::utils::MakeBoundInclusive(PropertyValue(temporals[2])),
{PropertyValue(temporals[1]), PropertyValue(temporals[2])});
verify(memgraph::utils::MakeBoundInclusive(PropertyValue(temporals[0])),
memgraph::utils::MakeBoundExclusive(PropertyValue(temporals[2])),
{PropertyValue(temporals[0]), PropertyValue(temporals[1])});
verify(memgraph::utils::MakeBoundInclusive(PropertyValue(temporals[0])),
memgraph::utils::MakeBoundInclusive(PropertyValue(temporals[2])),
{PropertyValue(temporals[0]), PropertyValue(temporals[1]), PropertyValue(temporals[2])});
// Range iteration with one unspecified bound should only yield items that
// have the same type as the specified bound.
verify(memgraph::utils::MakeBoundInclusive(PropertyValue(false)), std::nullopt,
{PropertyValue(false), PropertyValue(true)});
verify(std::nullopt, memgraph::utils::MakeBoundExclusive(PropertyValue(true)), {PropertyValue(false)});
verify(memgraph::utils::MakeBoundInclusive(PropertyValue(1)), std::nullopt,
{PropertyValue(1), PropertyValue(1.5), PropertyValue(2), PropertyValue(std::numeric_limits<int64_t>::max()),
PropertyValue(std::numeric_limits<double>::infinity())});
verify(std::nullopt, memgraph::utils::MakeBoundExclusive(PropertyValue(0)),
{PropertyValue(-std::numeric_limits<double>::infinity()), PropertyValue(std::numeric_limits<int64_t>::min()),
PropertyValue(-1), PropertyValue(-0.5)});
verify(memgraph::utils::MakeBoundInclusive(PropertyValue("b")), std::nullopt,
{PropertyValue("b"), PropertyValue("c")});
verify(std::nullopt, memgraph::utils::MakeBoundExclusive(PropertyValue("b")),
{PropertyValue(""), PropertyValue("a")});
verify(memgraph::utils::MakeBoundInclusive(PropertyValue(std::vector<PropertyValue>{PropertyValue(false)})),
std::nullopt,
{PropertyValue(std::vector<PropertyValue>{PropertyValue(0.8)}),
PropertyValue(std::vector<PropertyValue>{PropertyValue(2)})});
verify(std::nullopt, memgraph::utils::MakeBoundExclusive(PropertyValue(std::vector<PropertyValue>{PropertyValue(1)})),
{PropertyValue(std::vector<PropertyValue>()), PropertyValue(std::vector<PropertyValue>{PropertyValue(0.8)})});
verify(memgraph::utils::MakeBoundInclusive(
PropertyValue(std::map<std::string, PropertyValue>{{"id", PropertyValue(false)}})),
std::nullopt,
{PropertyValue(std::map<std::string, PropertyValue>{{"id", PropertyValue(5)}}),
PropertyValue(std::map<std::string, PropertyValue>{{"id", PropertyValue(10)}})});
verify(std::nullopt,
memgraph::utils::MakeBoundExclusive(
PropertyValue(std::map<std::string, PropertyValue>{{"id", PropertyValue(7.5)}})),
{PropertyValue(std::map<std::string, PropertyValue>()),
PropertyValue(std::map<std::string, PropertyValue>{{"id", PropertyValue(5)}})});
verify(memgraph::utils::MakeBoundInclusive(PropertyValue(TemporalData(TemporalType::Date, 10))), std::nullopt,
{PropertyValue(temporals[0]), PropertyValue(temporals[1]), PropertyValue(temporals[2])});
verify(std::nullopt, memgraph::utils::MakeBoundExclusive(PropertyValue(TemporalData(TemporalType::Duration, 0))),
{PropertyValue(temporals[0]), PropertyValue(temporals[1]), PropertyValue(temporals[2])});
// Range iteration with two specified bounds that don't have the same type
// should yield no items.
for (size_t i = 0; i < values.size(); ++i) {
for (size_t j = i; j < values.size(); ++j) {
if (PropertyValue::AreComparableTypes(values[i].type(), values[j].type())) {
verify(memgraph::utils::MakeBoundInclusive(values[i]), memgraph::utils::MakeBoundInclusive(values[j]),
{values.begin() + i, values.begin() + j + 1});
} else {
verify(memgraph::utils::MakeBoundInclusive(values[i]), memgraph::utils::MakeBoundInclusive(values[j]), {});
}
}
}
// Iteration without any bounds should return all items of the index.
verify(std::nullopt, std::nullopt, values);
}
TEST_F(IndexTest, LabelPropertyIndexCreateWithExistingPrimaryKey) {
// Create index on primary label and on primary key
EXPECT_EQ(storage.ListAllIndices().label_property.size(), 0);
EXPECT_FALSE(storage.CreateIndex(primary_label, primary_property));
EXPECT_EQ(storage.ListAllIndices().label_property.size(), 0);
EXPECT_EQ(storage.ListAllIndices().label.size(), 0);
// Create index on primary label and on secondary property
EXPECT_TRUE(storage.CreateIndex(primary_label, prop_id));
EXPECT_EQ(storage.ListAllIndices().label_property.size(), 1);
EXPECT_EQ(storage.ListAllIndices().label.size(), 0);
{
auto acc = storage.Access();
EXPECT_TRUE(acc.LabelPropertyIndexExists(primary_label, prop_id));
}
EXPECT_THAT(storage.ListAllIndices().label_property, UnorderedElementsAre(Pair(primary_label, prop_id)));
// Create index on primary label
EXPECT_FALSE(storage.CreateIndex(primary_label));
EXPECT_EQ(storage.ListAllIndices().label.size(), 0);
EXPECT_EQ(storage.ListAllIndices().label_property.size(), 1);
// Create index on secondary label
EXPECT_TRUE(storage.CreateIndex(label1));
EXPECT_EQ(storage.ListAllIndices().label.size(), 1);
EXPECT_EQ(storage.ListAllIndices().label_property.size(), 1);
}
TEST_F(IndexTest, LabelIndexCreateVertexAndValidate) {
{
auto acc = storage.Access();
EXPECT_EQ(storage.ListAllIndices().label.size(), 0);
EXPECT_EQ(storage.ListAllIndices().label_property.size(), 0);
}
{
auto acc = storage.Access();
// Create vertices with CreateVertexAndValidate
for (int i = 0; i < 5; ++i) {
auto vertex =
acc.CreateVertexAndValidate(primary_label, {label1}, {{primary_property, PropertyValue(primary_key_id++)}});
ASSERT_TRUE(vertex.HasValue());
}
ASSERT_NO_ERROR(acc.Commit());
}
{
EXPECT_TRUE(storage.CreateIndex(label1));
{
auto acc = storage.Access();
EXPECT_THAT(GetPrimaryKeyIds(acc.Vertices(label1, View::OLD), View::OLD), UnorderedElementsAre(0, 1, 2, 3, 4));
}
}
{
EXPECT_TRUE(storage.DropIndex(label1));
{
auto acc = storage.Access();
EXPECT_FALSE(acc.LabelIndexExists(label1));
}
EXPECT_EQ(storage.ListAllIndices().label.size(), 0);
}
{
auto acc = storage.Access();
EXPECT_TRUE(storage.CreateIndex(label1));
EXPECT_THAT(GetPrimaryKeyIds(acc.Vertices(label1, View::OLD), View::OLD), UnorderedElementsAre(0, 1, 2, 3, 4));
for (int i = 0; i < 5; ++i) {
auto vertex =
acc.CreateVertexAndValidate(primary_label, {label1}, {{primary_property, PropertyValue(primary_key_id++)}});
ASSERT_TRUE(vertex.HasValue());
}
EXPECT_THAT(GetPrimaryKeyIds(acc.Vertices(label1, View::NEW), View::NEW),
UnorderedElementsAre(0, 1, 2, 3, 4, 5, 6, 7, 8, 9));
EXPECT_THAT(GetPrimaryKeyIds(acc.Vertices(label1, View::OLD), View::OLD), UnorderedElementsAre(0, 1, 2, 3, 4));
}
}
TEST_F(IndexTest, LabelPropertyIndexCreateVertexAndValidate) {
{
auto acc = storage.Access();
EXPECT_EQ(storage.ListAllIndices().label.size(), 0);
EXPECT_EQ(storage.ListAllIndices().label_property.size(), 0);
}
{
auto acc = storage.Access();
// Create vertices with CreateVertexAndValidate
for (int i = 0; i < 5; ++i) {
auto vertex = acc.CreateVertexAndValidate(
primary_label, {label1},
{{primary_property, PropertyValue(primary_key_id++)}, {prop_id, PropertyValue(vertex_id++)}});
ASSERT_TRUE(vertex.HasValue());
}
ASSERT_NO_ERROR(acc.Commit());
}
{
EXPECT_TRUE(storage.CreateIndex(label1, prop_id));
{
auto acc = storage.Access();
EXPECT_THAT(GetPrimaryKeyIds(acc.Vertices(label1, prop_id, View::OLD), View::OLD),
UnorderedElementsAre(0, 1, 2, 3, 4));
}
}
{
EXPECT_TRUE(storage.DropIndex(label1, prop_id));
{
auto acc = storage.Access();
EXPECT_FALSE(acc.LabelPropertyIndexExists(label1, prop_id));
}
EXPECT_EQ(storage.ListAllIndices().label_property.size(), 0);
}
{
auto acc = storage.Access();
EXPECT_TRUE(storage.CreateIndex(label1, prop_id));
EXPECT_THAT(GetPrimaryKeyIds(acc.Vertices(label1, prop_id, View::OLD), View::OLD),
UnorderedElementsAre(0, 1, 2, 3, 4));
for (int i = 0; i < 5; ++i) {
auto vertex = acc.CreateVertexAndValidate(
primary_label, {label1},
{{primary_property, PropertyValue(primary_key_id++)}, {prop_id, PropertyValue(vertex_id++)}});
ASSERT_TRUE(vertex.HasValue());
}
EXPECT_THAT(GetPrimaryKeyIds(acc.Vertices(label1, prop_id, View::NEW), View::NEW),
UnorderedElementsAre(0, 1, 2, 3, 4, 5, 6, 7, 8, 9));
EXPECT_THAT(GetPrimaryKeyIds(acc.Vertices(label1, prop_id, View::OLD), View::OLD),
UnorderedElementsAre(0, 1, 2, 3, 4));
}
}
} // namespace memgraph::storage::v3::tests