memgraph/tests/unit/interpreter.cpp
florijan 4c73a0a71c Query::Plan::Accumulate[Advance] implementation and test
Summary: see above

Reviewers: teon.banek, buda, mislav.bradac

Reviewed By: teon.banek

Subscribers: pullbot

Differential Revision: https://phabricator.memgraph.io/D226
2017-04-05 15:04:58 +02:00

1353 lines
45 KiB
C++

//
// Copyright 2017 Memgraph
// Created by Florijan Stamenkovic on 14.03.17.
//
#include <iterator>
#include <memory>
#include <vector>
#include "gmock/gmock.h"
#include "gtest/gtest.h"
#include "communication/result_stream_faker.hpp"
#include "dbms/dbms.hpp"
#include "query/context.hpp"
#include "query/exceptions.hpp"
#include "query/frontend/interpret/interpret.hpp"
#include "query/frontend/logical/planner.hpp"
#include "query_common.hpp"
using namespace query;
using namespace query::plan;
/**
* Helper function that collects all the results from the given
* Produce into a ResultStreamFaker and returns that object.
*
* @param produce
* @param symbol_table
* @param db_accessor
* @return
*/
auto CollectProduce(std::shared_ptr<Produce> produce, SymbolTable &symbol_table,
GraphDbAccessor &db_accessor) {
ResultStreamFaker stream;
Frame frame(symbol_table.max_position());
// top level node in the operator tree is a produce (return)
// so stream out results
// generate header
std::vector<std::string> header;
for (auto named_expression : produce->named_expressions())
header.push_back(named_expression->name_);
stream.Header(header);
// collect the symbols from the return clause
std::vector<Symbol> symbols;
for (auto named_expression : produce->named_expressions())
symbols.emplace_back(symbol_table[*named_expression]);
// stream out results
auto cursor = produce->MakeCursor(db_accessor);
while (cursor->Pull(frame, symbol_table)) {
std::vector<TypedValue> values;
for (auto &symbol : symbols) values.emplace_back(frame[symbol]);
stream.Result(values);
}
stream.Summary({{std::string("type"), TypedValue("r")}});
return stream;
}
int PullAll(std::shared_ptr<LogicalOperator> logical_op, GraphDbAccessor &db,
SymbolTable symbol_table) {
Frame frame(symbol_table.max_position());
auto cursor = logical_op->MakeCursor(db);
int count = 0;
while (cursor->Pull(frame, symbol_table)) count++;
return count;
}
template <typename... TNamedExpressions>
auto MakeProduce(std::shared_ptr<LogicalOperator> input,
TNamedExpressions... named_expressions) {
return std::make_shared<Produce>(
input, std::vector<NamedExpression *>{named_expressions...});
}
struct ScanAllTuple {
NodeAtom *node_;
std::shared_ptr<LogicalOperator> op_;
Symbol sym_;
};
/**
* Creates and returns a tuple of stuff for a scan-all starting
* from the node with the given name.
*
* Returns (node_atom, scan_all_logical_op, symbol).
*/
ScanAllTuple MakeScanAll(AstTreeStorage &storage, SymbolTable &symbol_table,
const std::string &identifier,
std::shared_ptr<LogicalOperator> input = {nullptr}) {
auto node = NODE(identifier);
auto logical_op = std::make_shared<ScanAll>(node, input);
auto symbol = symbol_table.CreateSymbol(identifier);
symbol_table[*node->identifier_] = symbol;
// return std::make_tuple(node, logical_op, symbol);
return ScanAllTuple{node, logical_op, symbol};
}
struct ExpandTuple {
EdgeAtom *edge_;
Symbol edge_sym_;
NodeAtom *node_;
Symbol node_sym_;
std::shared_ptr<LogicalOperator> op_;
};
ExpandTuple MakeExpand(AstTreeStorage &storage, SymbolTable &symbol_table,
std::shared_ptr<LogicalOperator> input,
Symbol input_symbol, const std::string &edge_identifier,
EdgeAtom::Direction direction, bool edge_cycle,
const std::string &node_identifier, bool node_cycle) {
auto edge = EDGE(edge_identifier, direction);
auto edge_sym = symbol_table.CreateSymbol(edge_identifier);
symbol_table[*edge->identifier_] = edge_sym;
auto node = NODE(node_identifier);
auto node_sym = symbol_table.CreateSymbol(node_identifier);
symbol_table[*node->identifier_] = node_sym;
auto op = std::make_shared<Expand>(node, edge, input, input_symbol,
node_cycle, edge_cycle);
return ExpandTuple{edge, edge_sym, node, node_sym, op};
}
template <typename TIterable>
auto CountIterable(TIterable iterable) {
return std::distance(iterable.begin(), iterable.end());
}
/*
* Actual tests start here.
*/
TEST(Interpreter, MatchReturn) {
Dbms dbms;
auto dba = dbms.active();
// add a few nodes to the database
dba->insert_vertex();
dba->insert_vertex();
dba->advance_command();
AstTreeStorage storage;
SymbolTable symbol_table;
auto scan_all = MakeScanAll(storage, symbol_table, "n");
auto output = NEXPR("n", IDENT("n"));
auto produce = MakeProduce(scan_all.op_, output);
symbol_table[*output->expression_] = scan_all.sym_;
symbol_table[*output] = symbol_table.CreateSymbol("named_expression_1");
ResultStreamFaker result = CollectProduce(produce, symbol_table, *dba);
EXPECT_EQ(result.GetResults().size(), 2);
}
TEST(Interpreter, MatchReturnCartesian) {
Dbms dbms;
auto dba = dbms.active();
dba->insert_vertex().add_label(dba->label("l1"));
dba->insert_vertex().add_label(dba->label("l2"));
dba->advance_command();
AstTreeStorage storage;
SymbolTable symbol_table;
auto n = MakeScanAll(storage, symbol_table, "n");
auto m = MakeScanAll(storage, symbol_table, "m", n.op_);
auto return_n = NEXPR("n", IDENT("n"));
symbol_table[*return_n->expression_] = n.sym_;
symbol_table[*return_n] = symbol_table.CreateSymbol("named_expression_1");
auto return_m = NEXPR("m", IDENT("m"));
symbol_table[*return_m->expression_] = m.sym_;
symbol_table[*return_m] = symbol_table.CreateSymbol("named_expression_2");
auto produce = MakeProduce(m.op_, return_n, return_m);
ResultStreamFaker result = CollectProduce(produce, symbol_table, *dba);
auto result_data = result.GetResults();
EXPECT_EQ(result_data.size(), 4);
// ensure the result ordering is OK:
// "n" from the results is the same for the first two rows, while "m" isn't
EXPECT_EQ(result_data[0][0].Value<VertexAccessor>(),
result_data[1][0].Value<VertexAccessor>());
EXPECT_NE(result_data[0][1].Value<VertexAccessor>(),
result_data[1][1].Value<VertexAccessor>());
}
TEST(Interpreter, StandaloneReturn) {
Dbms dbms;
auto dba = dbms.active();
// add a few nodes to the database
dba->insert_vertex();
dba->insert_vertex();
dba->advance_command();
AstTreeStorage storage;
SymbolTable symbol_table;
auto output = NEXPR("n", LITERAL(42));
auto produce = MakeProduce(std::shared_ptr<LogicalOperator>(nullptr), output);
symbol_table[*output] = symbol_table.CreateSymbol("named_expression_1");
ResultStreamFaker result = CollectProduce(produce, symbol_table, *dba);
EXPECT_EQ(result.GetResults().size(), 1);
EXPECT_EQ(result.GetResults()[0].size(), 1);
EXPECT_EQ(result.GetResults()[0][0].Value<int64_t>(), 42);
}
TEST(Interpreter, NodeFilterLabelsAndProperties) {
Dbms dbms;
auto dba = dbms.active();
// add a few nodes to the database
GraphDbTypes::Label label = dba->label("Label");
GraphDbTypes::Property property = dba->property("Property");
auto v1 = dba->insert_vertex();
auto v2 = dba->insert_vertex();
auto v3 = dba->insert_vertex();
auto v4 = dba->insert_vertex();
auto v5 = dba->insert_vertex();
dba->insert_vertex();
// test all combination of (label | no_label) * (no_prop | wrong_prop |
// right_prop)
// only v1 will have the right labels
v1.add_label(label);
v2.add_label(label);
v3.add_label(label);
v1.PropsSet(property, 42);
v2.PropsSet(property, 1);
v4.PropsSet(property, 42);
v5.PropsSet(property, 1);
dba->advance_command();
AstTreeStorage storage;
SymbolTable symbol_table;
// make a scan all
auto n = MakeScanAll(storage, symbol_table, "n");
n.node_->labels_.emplace_back(label);
n.node_->properties_[property] = LITERAL(42);
// node filtering
auto node_filter = std::make_shared<NodeFilter>(n.op_, n.sym_, n.node_);
// make a named expression and a produce
auto output = NEXPR("x", IDENT("n"));
symbol_table[*output->expression_] = n.sym_;
symbol_table[*output] = symbol_table.CreateSymbol("named_expression_1");
auto produce = MakeProduce(node_filter, output);
ResultStreamFaker result = CollectProduce(produce, symbol_table, *dba);
EXPECT_EQ(result.GetResults().size(), 1);
}
TEST(Interpreter, NodeFilterMultipleLabels) {
Dbms dbms;
auto dba = dbms.active();
// add a few nodes to the database
GraphDbTypes::Label label1 = dba->label("label1");
GraphDbTypes::Label label2 = dba->label("label2");
GraphDbTypes::Label label3 = dba->label("label3");
// the test will look for nodes that have label1 and label2
dba->insert_vertex(); // NOT accepted
dba->insert_vertex().add_label(label1); // NOT accepted
dba->insert_vertex().add_label(label2); // NOT accepted
dba->insert_vertex().add_label(label3); // NOT accepted
auto v1 = dba->insert_vertex(); // YES accepted
v1.add_label(label1);
v1.add_label(label2);
auto v2 = dba->insert_vertex(); // NOT accepted
v2.add_label(label1);
v2.add_label(label3);
auto v3 = dba->insert_vertex(); // YES accepted
v3.add_label(label1);
v3.add_label(label2);
v3.add_label(label3);
dba->advance_command();
AstTreeStorage storage;
SymbolTable symbol_table;
// make a scan all
auto n = MakeScanAll(storage, symbol_table, "n");
n.node_->labels_.emplace_back(label1);
n.node_->labels_.emplace_back(label2);
// node filtering
auto node_filter = std::make_shared<NodeFilter>(n.op_, n.sym_, n.node_);
// make a named expression and a produce
auto output = NEXPR("n", IDENT("n"));
auto produce = MakeProduce(node_filter, output);
// fill up the symbol table
symbol_table[*output] = symbol_table.CreateSymbol("named_expression_1");
symbol_table[*output->expression_] = n.sym_;
ResultStreamFaker result = CollectProduce(produce, symbol_table, *dba);
EXPECT_EQ(result.GetResults().size(), 2);
}
TEST(Interpreter, CreateNodeWithAttributes) {
Dbms dbms;
auto dba = dbms.active();
GraphDbTypes::Label label = dba->label("Person");
GraphDbTypes::Property property = dba->label("age");
AstTreeStorage storage;
SymbolTable symbol_table;
auto node = NODE("n");
symbol_table[*node->identifier_] = symbol_table.CreateSymbol("n");
node->labels_.emplace_back(label);
node->properties_[property] = LITERAL(42);
auto create = std::make_shared<CreateNode>(node, nullptr);
PullAll(create, *dba, symbol_table);
dba->advance_command();
// count the number of vertices
int vertex_count = 0;
for (VertexAccessor vertex : dba->vertices()) {
vertex_count++;
EXPECT_EQ(vertex.labels().size(), 1);
EXPECT_EQ(*vertex.labels().begin(), label);
EXPECT_EQ(vertex.Properties().size(), 1);
auto prop_eq = vertex.PropsAt(property) == TypedValue(42);
ASSERT_EQ(prop_eq.type(), TypedValue::Type::Bool);
EXPECT_TRUE(prop_eq.Value<bool>());
}
EXPECT_EQ(vertex_count, 1);
}
TEST(Interpreter, CreateReturn) {
// test CREATE (n:Person {age: 42}) RETURN n, n.age
Dbms dbms;
auto dba = dbms.active();
GraphDbTypes::Label label = dba->label("Person");
GraphDbTypes::Property property = dba->label("age");
AstTreeStorage storage;
SymbolTable symbol_table;
auto node = NODE("n");
auto sym_n = symbol_table.CreateSymbol("n");
symbol_table[*node->identifier_] = sym_n;
node->labels_.emplace_back(label);
node->properties_[property] = LITERAL(42);
auto create = std::make_shared<CreateNode>(node, nullptr);
auto named_expr_n = NEXPR("n", IDENT("n"));
symbol_table[*named_expr_n] = symbol_table.CreateSymbol("named_expr_n");
symbol_table[*named_expr_n->expression_] = sym_n;
auto prop_lookup = PROPERTY_LOOKUP("n", property);
symbol_table[*prop_lookup->expression_] = sym_n;
auto named_expr_n_p = NEXPR("n", prop_lookup);
symbol_table[*named_expr_n_p] = symbol_table.CreateSymbol("named_expr_n_p");
symbol_table[*named_expr_n->expression_] = sym_n;
auto produce = MakeProduce(create, named_expr_n, named_expr_n_p);
auto result = CollectProduce(produce, symbol_table, *dba);
EXPECT_EQ(1, result.GetResults().size());
EXPECT_EQ(2, result.GetResults()[0].size());
EXPECT_EQ(TypedValue::Type::Vertex, result.GetResults()[0][0].type());
EXPECT_EQ(1,
result.GetResults()[0][0].Value<VertexAccessor>().labels().size());
EXPECT_EQ(label,
result.GetResults()[0][0].Value<VertexAccessor>().labels()[0]);
EXPECT_EQ(TypedValue::Type::Int, result.GetResults()[0][1].type());
EXPECT_EQ(42, result.GetResults()[0][1].Value<int64_t>());
dba->advance_command();
EXPECT_EQ(1, CountIterable(dba->vertices()));
}
TEST(Interpreter, CreateExpand) {
Dbms dbms;
auto dba = dbms.active();
GraphDbTypes::Label label_node_1 = dba->label("Node1");
GraphDbTypes::Label label_node_2 = dba->label("Node2");
GraphDbTypes::Property property = dba->label("prop");
GraphDbTypes::EdgeType edge_type = dba->label("edge_type");
SymbolTable symbol_table;
AstTreeStorage storage;
auto test_create_path = [&](bool cycle, int expected_nodes_created,
int expected_edges_created) {
int before_v = CountIterable(dba->vertices());
int before_e = CountIterable(dba->edges());
// data for the first node
auto n = NODE("n");
n->labels_.emplace_back(label_node_1);
n->properties_[property] = LITERAL(1);
auto n_sym = symbol_table.CreateSymbol("n");
symbol_table[*n->identifier_] = n_sym;
// data for the second node
auto m = NODE("m");
m->labels_.emplace_back(label_node_2);
m->properties_[property] = LITERAL(2);
if (cycle)
symbol_table[*m->identifier_] = n_sym;
else
symbol_table[*m->identifier_] = symbol_table.CreateSymbol("m");
auto r = EDGE("r", EdgeAtom::Direction::RIGHT);
symbol_table[*r->identifier_] = symbol_table.CreateSymbol("r");
r->edge_types_.emplace_back(edge_type);
r->properties_[property] = LITERAL(3);
auto create_op = std::make_shared<CreateNode>(n, nullptr);
auto create_expand =
std::make_shared<CreateExpand>(m, r, create_op, n_sym, cycle);
PullAll(create_expand, *dba, symbol_table);
dba->advance_command();
EXPECT_EQ(CountIterable(dba->vertices()) - before_v,
expected_nodes_created);
EXPECT_EQ(CountIterable(dba->edges()) - before_e, expected_edges_created);
};
test_create_path(false, 2, 1);
test_create_path(true, 1, 1);
for (VertexAccessor vertex : dba->vertices()) {
EXPECT_EQ(vertex.labels().size(), 1);
GraphDbTypes::Label label = vertex.labels()[0];
if (label == label_node_1) {
// node created by first op
EXPECT_EQ(vertex.PropsAt(property).Value<int64_t>(), 1);
} else if (label == label_node_2) {
// node create by expansion
EXPECT_EQ(vertex.PropsAt(property).Value<int64_t>(), 2);
} else {
// should not happen
FAIL();
}
for (EdgeAccessor edge : dba->edges()) {
EXPECT_EQ(edge.edge_type(), edge_type);
EXPECT_EQ(edge.PropsAt(property).Value<int64_t>(), 3);
}
}
}
TEST(Interpreter, MatchCreateNode) {
Dbms dbms;
auto dba = dbms.active();
// add three nodes we'll match and expand-create from
dba->insert_vertex();
dba->insert_vertex();
dba->insert_vertex();
dba->advance_command();
SymbolTable symbol_table;
AstTreeStorage storage;
// first node
auto n_scan_all = MakeScanAll(storage, symbol_table, "n");
// second node
auto m = NODE("m");
symbol_table[*m->identifier_] = symbol_table.CreateSymbol("m");
// creation op
auto create_node = std::make_shared<CreateNode>(m, n_scan_all.op_);
EXPECT_EQ(CountIterable(dba->vertices()), 3);
PullAll(create_node, *dba, symbol_table);
dba->advance_command();
EXPECT_EQ(CountIterable(dba->vertices()), 6);
}
TEST(Interpreter, MatchCreateExpand) {
Dbms dbms;
auto dba = dbms.active();
// add three nodes we'll match and expand-create from
dba->insert_vertex();
dba->insert_vertex();
dba->insert_vertex();
dba->advance_command();
// GraphDbTypes::Label label_node_1 = dba->label("Node1");
// GraphDbTypes::Label label_node_2 = dba->label("Node2");
// GraphDbTypes::Property property = dba->label("prop");
GraphDbTypes::EdgeType edge_type = dba->label("edge_type");
SymbolTable symbol_table;
AstTreeStorage storage;
auto test_create_path = [&](bool cycle, int expected_nodes_created,
int expected_edges_created) {
int before_v = CountIterable(dba->vertices());
int before_e = CountIterable(dba->edges());
// data for the first node
auto n_scan_all = MakeScanAll(storage, symbol_table, "n");
// data for the second node
auto m = NODE("m");
if (cycle)
symbol_table[*m->identifier_] = n_scan_all.sym_;
else
symbol_table[*m->identifier_] = symbol_table.CreateSymbol("m");
auto r = EDGE("r", EdgeAtom::Direction::RIGHT);
symbol_table[*r->identifier_] = symbol_table.CreateSymbol("r");
r->edge_types_.emplace_back(edge_type);
auto create_expand = std::make_shared<CreateExpand>(m, r, n_scan_all.op_,
n_scan_all.sym_, cycle);
PullAll(create_expand, *dba, symbol_table);
dba->advance_command();
EXPECT_EQ(CountIterable(dba->vertices()) - before_v,
expected_nodes_created);
EXPECT_EQ(CountIterable(dba->edges()) - before_e, expected_edges_created);
};
test_create_path(false, 3, 3);
test_create_path(true, 0, 6);
}
TEST(Interpreter, Expand) {
Dbms dbms;
auto dba = dbms.active();
// make a V-graph (v3)<-[r2]-(v1)-[r1]->(v2)
auto v1 = dba->insert_vertex();
v1.add_label((GraphDbTypes::Label)1);
auto v2 = dba->insert_vertex();
v2.add_label((GraphDbTypes::Label)2);
auto v3 = dba->insert_vertex();
v3.add_label((GraphDbTypes::Label)3);
auto edge_type = dba->edge_type("Edge");
dba->insert_edge(v1, v2, edge_type);
dba->insert_edge(v1, v3, edge_type);
dba->advance_command();
AstTreeStorage storage;
SymbolTable symbol_table;
auto test_expand = [&](EdgeAtom::Direction direction,
int expected_result_count) {
auto n = MakeScanAll(storage, symbol_table, "n");
auto r_m = MakeExpand(storage, symbol_table, n.op_, n.sym_, "r", direction,
false, "m", false);
// make a named expression and a produce
auto output = NEXPR("m", IDENT("m"));
symbol_table[*output->expression_] = r_m.node_sym_;
symbol_table[*output] = symbol_table.CreateSymbol("named_expression_1");
auto produce = MakeProduce(r_m.op_, output);
ResultStreamFaker result = CollectProduce(produce, symbol_table, *dba);
EXPECT_EQ(result.GetResults().size(), expected_result_count);
};
test_expand(EdgeAtom::Direction::RIGHT, 2);
test_expand(EdgeAtom::Direction::LEFT, 2);
test_expand(EdgeAtom::Direction::BOTH, 4);
}
TEST(Interpreter, ExpandNodeCycle) {
Dbms dbms;
auto dba = dbms.active();
// make a graph (v1)->(v2) that
// has a recursive edge (v1)->(v1)
auto v1 = dba->insert_vertex();
auto v2 = dba->insert_vertex();
auto edge_type = dba->edge_type("Edge");
dba->insert_edge(v1, v1, edge_type);
dba->insert_edge(v1, v2, edge_type);
dba->advance_command();
AstTreeStorage storage;
SymbolTable symbol_table;
auto test_cycle = [&](bool with_cycle, int expected_result_count) {
auto n = MakeScanAll(storage, symbol_table, "n");
auto r_n = MakeExpand(storage, symbol_table, n.op_, n.sym_, "r",
EdgeAtom::Direction::RIGHT, false, "n", with_cycle);
if (with_cycle)
symbol_table[*r_n.node_->identifier_] =
symbol_table[*n.node_->identifier_];
// make a named expression and a produce
auto output = NEXPR("n", IDENT("n"));
symbol_table[*output->expression_] = n.sym_;
symbol_table[*output] = symbol_table.CreateSymbol("named_expression_1");
auto produce = MakeProduce(r_n.op_, output);
ResultStreamFaker result = CollectProduce(produce, symbol_table, *dba);
EXPECT_EQ(result.GetResults().size(), expected_result_count);
};
test_cycle(true, 1);
test_cycle(false, 2);
}
TEST(Interpreter, ExpandEdgeCycle) {
Dbms dbms;
auto dba = dbms.active();
// make a V-graph (v3)<-[r2]-(v1)-[r1]->(v2)
auto v1 = dba->insert_vertex();
v1.add_label((GraphDbTypes::Label)1);
auto v2 = dba->insert_vertex();
v2.add_label((GraphDbTypes::Label)2);
auto v3 = dba->insert_vertex();
v3.add_label((GraphDbTypes::Label)3);
auto edge_type = dba->edge_type("Edge");
dba->insert_edge(v1, v2, edge_type);
dba->insert_edge(v1, v3, edge_type);
dba->advance_command();
AstTreeStorage storage;
SymbolTable symbol_table;
auto test_cycle = [&](bool with_cycle, int expected_result_count) {
auto i = MakeScanAll(storage, symbol_table, "i");
auto r_j = MakeExpand(storage, symbol_table, i.op_, i.sym_, "r",
EdgeAtom::Direction::BOTH, false, "j", false);
auto r_k = MakeExpand(storage, symbol_table, r_j.op_, r_j.node_sym_, "r",
EdgeAtom::Direction::BOTH, with_cycle, "k", false);
if (with_cycle)
symbol_table[*r_k.edge_->identifier_] =
symbol_table[*r_j.edge_->identifier_];
// make a named expression and a produce
auto output = NEXPR("r", IDENT("r"));
symbol_table[*output->expression_] = r_j.edge_sym_;
symbol_table[*output] = symbol_table.CreateSymbol("named_expression_1");
auto produce = MakeProduce(r_k.op_, output);
ResultStreamFaker result = CollectProduce(produce, symbol_table, *dba);
EXPECT_EQ(result.GetResults().size(), expected_result_count);
};
test_cycle(true, 4);
test_cycle(false, 6);
}
TEST(Interpreter, EdgeFilter) {
Dbms dbms;
auto dba = dbms.active();
// make an N-star expanding from (v1)
// where only one edge will qualify
// and there are all combinations of
// (edge_type yes|no) * (property yes|absent|no)
std::vector<GraphDbTypes::EdgeType> edge_types;
for (int j = 0; j < 2; ++j)
edge_types.push_back(dba->edge_type("et" + std::to_string(j)));
std::vector<VertexAccessor> vertices;
for (int i = 0; i < 7; ++i) vertices.push_back(dba->insert_vertex());
GraphDbTypes::Property prop = dba->property("prop");
std::vector<EdgeAccessor> edges;
for (int i = 0; i < 6; ++i) {
edges.push_back(
dba->insert_edge(vertices[0], vertices[i + 1], edge_types[i % 2]));
switch (i % 3) {
case 0:
edges.back().PropsSet(prop, 42);
break;
case 1:
edges.back().PropsSet(prop, 100);
break;
default:
break;
}
}
dba->advance_command();
AstTreeStorage storage;
SymbolTable symbol_table;
// define an operator tree for query
// MATCH (n)-[r]->(m) RETURN m
auto n = MakeScanAll(storage, symbol_table, "n");
auto r_m = MakeExpand(storage, symbol_table, n.op_, n.sym_, "r",
EdgeAtom::Direction::RIGHT, false, "m", false);
r_m.edge_->edge_types_.push_back(edge_types[0]);
r_m.edge_->properties_[prop] = LITERAL(42);
auto edge_filter =
std::make_shared<EdgeFilter>(r_m.op_, r_m.edge_sym_, r_m.edge_);
// make a named expression and a produce
auto output = NEXPR("m", IDENT("m"));
symbol_table[*output->expression_] = r_m.node_sym_;
symbol_table[*output] = symbol_table.CreateSymbol("named_expression_1");
auto produce = MakeProduce(edge_filter, output);
ResultStreamFaker result = CollectProduce(produce, symbol_table, *dba);
EXPECT_EQ(result.GetResults().size(), 1);
}
TEST(Interpreter, EdgeFilterMultipleTypes) {
Dbms dbms;
auto dba = dbms.active();
auto v1 = dba->insert_vertex();
auto v2 = dba->insert_vertex();
auto type_1 = dba->edge_type("type_1");
auto type_2 = dba->edge_type("type_2");
auto type_3 = dba->edge_type("type_3");
dba->insert_edge(v1, v2, type_1);
dba->insert_edge(v1, v2, type_2);
dba->insert_edge(v1, v2, type_3);
dba->advance_command();
AstTreeStorage storage;
SymbolTable symbol_table;
// make a scan all
auto n = MakeScanAll(storage, symbol_table, "n");
auto r_m = MakeExpand(storage, symbol_table, n.op_, n.sym_, "r",
EdgeAtom::Direction::RIGHT, false, "m", false);
// add a property filter
auto edge_filter =
std::make_shared<EdgeFilter>(r_m.op_, r_m.edge_sym_, r_m.edge_);
r_m.edge_->edge_types_.push_back(type_1);
r_m.edge_->edge_types_.push_back(type_2);
// make a named expression and a produce
auto output = NEXPR("m", IDENT("m"));
auto produce = MakeProduce(edge_filter, output);
// fill up the symbol table
symbol_table[*output] = symbol_table.CreateSymbol("named_expression_1");
symbol_table[*output->expression_] = r_m.node_sym_;
ResultStreamFaker result = CollectProduce(produce, symbol_table, *dba);
EXPECT_EQ(result.GetResults().size(), 2);
}
TEST(Interpreter, Delete) {
Dbms dbms;
auto dba = dbms.active();
// make a fully-connected (one-direction, no cycles) with 4 nodes
std::vector<VertexAccessor> vertices;
for (int i = 0; i < 4; ++i) vertices.push_back(dba->insert_vertex());
auto type = dba->edge_type("type");
for (int j = 0; j < 4; ++j)
for (int k = j + 1; k < 4; ++k)
dba->insert_edge(vertices[j], vertices[k], type);
dba->advance_command();
EXPECT_EQ(4, CountIterable(dba->vertices()));
EXPECT_EQ(6, CountIterable(dba->edges()));
AstTreeStorage storage;
SymbolTable symbol_table;
// attempt to delete a vertex, and fail
{
auto n = MakeScanAll(storage, symbol_table, "n");
auto n_get = storage.Create<Identifier>("n");
symbol_table[*n_get] = n.sym_;
auto delete_op = std::make_shared<plan::Delete>(
n.op_, std::vector<Expression *>{n_get}, false);
EXPECT_THROW(PullAll(delete_op, *dba, symbol_table), QueryRuntimeException);
dba->advance_command();
EXPECT_EQ(4, CountIterable(dba->vertices()));
EXPECT_EQ(6, CountIterable(dba->edges()));
}
// detach delete a single vertex
{
auto n = MakeScanAll(storage, symbol_table, "n");
auto n_get = storage.Create<Identifier>("n");
symbol_table[*n_get] = n.sym_;
auto delete_op = std::make_shared<plan::Delete>(
n.op_, std::vector<Expression *>{n_get}, true);
Frame frame(symbol_table.max_position());
delete_op->MakeCursor(*dba)->Pull(frame, symbol_table);
dba->advance_command();
EXPECT_EQ(3, CountIterable(dba->vertices()));
EXPECT_EQ(3, CountIterable(dba->edges()));
}
// delete all remaining edges
{
auto n = MakeScanAll(storage, symbol_table, "n");
auto r_m = MakeExpand(storage, symbol_table, n.op_, n.sym_, "r",
EdgeAtom::Direction::RIGHT, false, "m", false);
auto r_get = storage.Create<Identifier>("r");
symbol_table[*r_get] = r_m.edge_sym_;
auto delete_op = std::make_shared<plan::Delete>(
r_m.op_, std::vector<Expression *>{r_get}, false);
PullAll(delete_op, *dba, symbol_table);
dba->advance_command();
EXPECT_EQ(3, CountIterable(dba->vertices()));
EXPECT_EQ(0, CountIterable(dba->edges()));
}
// delete all remaining vertices
{
auto n = MakeScanAll(storage, symbol_table, "n");
auto n_get = storage.Create<Identifier>("n");
symbol_table[*n_get] = n.sym_;
auto delete_op = std::make_shared<plan::Delete>(
n.op_, std::vector<Expression *>{n_get}, false);
PullAll(delete_op, *dba, symbol_table);
dba->advance_command();
EXPECT_EQ(0, CountIterable(dba->vertices()));
EXPECT_EQ(0, CountIterable(dba->edges()));
}
}
TEST(Interpreter, DeleteReturn) {
Dbms dbms;
auto dba = dbms.active();
// make a fully-connected (one-direction, no cycles) with 4 nodes
auto prop = dba->property("prop");
for (int i = 0; i < 4; ++i) {
auto va = dba->insert_vertex();
va.PropsSet(prop, 42);
}
dba->advance_command();
EXPECT_EQ(4, CountIterable(dba->vertices()));
EXPECT_EQ(0, CountIterable(dba->edges()));
AstTreeStorage storage;
SymbolTable symbol_table;
auto n = MakeScanAll(storage, symbol_table, "n");
auto n_get = storage.Create<Identifier>("n");
symbol_table[*n_get] = n.sym_;
auto delete_op = std::make_shared<plan::Delete>(
n.op_, std::vector<Expression *>{n_get}, true);
auto prop_lookup =
storage.Create<PropertyLookup>(storage.Create<Identifier>("n"), prop);
symbol_table[*prop_lookup->expression_] = n.sym_;
auto n_p = storage.Create<NamedExpression>("n", prop_lookup);
symbol_table[*n_p] = symbol_table.CreateSymbol("bla");
auto produce = MakeProduce(delete_op, n_p);
auto result = CollectProduce(produce, symbol_table, *dba);
EXPECT_EQ(4, result.GetResults().size());
dba->advance_command();
EXPECT_EQ(0, CountIterable(dba->vertices()));
}
TEST(Interpreter, Filter) {
Dbms dbms;
auto dba = dbms.active();
// add a 6 nodes with property 'prop', 2 have true as value
GraphDbTypes::Property property = dba->property("Property");
for (int i = 0; i < 6; ++i)
dba->insert_vertex().PropsSet(property, i % 3 == 0);
dba->insert_vertex(); // prop not set, gives NULL
dba->advance_command();
AstTreeStorage storage;
SymbolTable symbol_table;
auto n = MakeScanAll(storage, symbol_table, "n");
auto e =
storage.Create<PropertyLookup>(storage.Create<Identifier>("n"), property);
symbol_table[*e->expression_] = n.sym_;
auto f = std::make_shared<Filter>(n.op_, e);
auto output =
storage.Create<NamedExpression>("x", storage.Create<Identifier>("n"));
symbol_table[*output->expression_] = n.sym_;
symbol_table[*output] = symbol_table.CreateSymbol("named_expression_1");
auto produce = MakeProduce(f, output);
EXPECT_EQ(CollectProduce(produce, symbol_table, *dba).GetResults().size(), 2);
}
TEST(Interpreter, SetProperty) {
Dbms dbms;
auto dba = dbms.active();
// graph with 4 vertices in connected pairs
// the origin vertex in each par and both edges
// have a property set
auto v1 = dba->insert_vertex();
auto v2 = dba->insert_vertex();
auto v3 = dba->insert_vertex();
auto v4 = dba->insert_vertex();
auto edge_type = dba->edge_type("edge_type");
dba->insert_edge(v1, v3, edge_type);
dba->insert_edge(v2, v4, edge_type);
dba->advance_command();
AstTreeStorage storage;
SymbolTable symbol_table;
// scan (n)-[r]->(m)
auto n = MakeScanAll(storage, symbol_table, "n");
auto r_m = MakeExpand(storage, symbol_table, n.op_, n.sym_, "r",
EdgeAtom::Direction::RIGHT, false, "m", false);
// set prop1 to 42 on n and r
auto prop1 = dba->property("prop1");
auto literal = LITERAL(42);
auto n_p = PROPERTY_LOOKUP("n", prop1);
symbol_table[*n_p->expression_] = n.sym_;
auto set_n_p = std::make_shared<plan::SetProperty>(r_m.op_, n_p, literal);
auto r_p = PROPERTY_LOOKUP("r", prop1);
symbol_table[*r_p->expression_] = r_m.edge_sym_;
auto set_r_p = std::make_shared<plan::SetProperty>(set_n_p, r_p, literal);
EXPECT_EQ(2, PullAll(set_r_p, *dba, symbol_table));
dba->advance_command();
EXPECT_EQ(CountIterable(dba->edges()), 2);
for (EdgeAccessor edge : dba->edges()) {
ASSERT_EQ(edge.PropsAt(prop1).type(), PropertyValue::Type::Int);
EXPECT_EQ(edge.PropsAt(prop1).Value<int64_t>(), 42);
VertexAccessor from = edge.from();
VertexAccessor to = edge.to();
ASSERT_EQ(from.PropsAt(prop1).type(), PropertyValue::Type::Int);
EXPECT_EQ(from.PropsAt(prop1).Value<int64_t>(), 42);
ASSERT_EQ(to.PropsAt(prop1).type(), PropertyValue::Type::Null);
}
}
TEST(Interpreter, SetProperties) {
auto test_set_properties = [](bool update) {
Dbms dbms;
auto dba = dbms.active();
// graph: ({a: 0})-[:R {b:1}]->({c:2})
auto prop_a = dba->property("a");
auto prop_b = dba->property("b");
auto prop_c = dba->property("c");
auto v1 = dba->insert_vertex();
auto v2 = dba->insert_vertex();
auto e = dba->insert_edge(v1, v2, dba->edge_type("R"));
v1.PropsSet(prop_a, 0);
e.PropsSet(prop_b, 1);
v2.PropsSet(prop_c, 2);
dba->advance_command();
AstTreeStorage storage;
SymbolTable symbol_table;
// scan (n)-[r]->(m)
auto n = MakeScanAll(storage, symbol_table, "n");
auto r_m = MakeExpand(storage, symbol_table, n.op_, n.sym_, "r",
EdgeAtom::Direction::RIGHT, false, "m", false);
auto op = update ? plan::SetProperties::Op::UPDATE
: plan::SetProperties::Op::REPLACE;
// set properties on r to n, and on r to m
auto r_ident = IDENT("r");
symbol_table[*r_ident] = r_m.edge_sym_;
auto m_ident = IDENT("m");
symbol_table[*m_ident] = r_m.node_sym_;
auto set_r_to_n =
std::make_shared<plan::SetProperties>(r_m.op_, n.sym_, r_ident, op);
auto set_m_to_r = std::make_shared<plan::SetProperties>(
set_r_to_n, r_m.edge_sym_, m_ident, op);
EXPECT_EQ(1, PullAll(set_m_to_r, *dba, symbol_table));
dba->advance_command();
EXPECT_EQ(CountIterable(dba->edges()), 1);
for (EdgeAccessor edge : dba->edges()) {
VertexAccessor from = edge.from();
EXPECT_EQ(from.Properties().size(), update ? 2 : 1);
if (update) {
ASSERT_EQ(from.PropsAt(prop_a).type(), PropertyValue::Type::Int);
EXPECT_EQ(from.PropsAt(prop_a).Value<int64_t>(), 0);
}
ASSERT_EQ(from.PropsAt(prop_b).type(), PropertyValue::Type::Int);
EXPECT_EQ(from.PropsAt(prop_b).Value<int64_t>(), 1);
EXPECT_EQ(edge.Properties().size(), update ? 2 : 1);
if (update) {
ASSERT_EQ(edge.PropsAt(prop_b).type(), PropertyValue::Type::Int);
EXPECT_EQ(edge.PropsAt(prop_b).Value<int64_t>(), 1);
}
ASSERT_EQ(edge.PropsAt(prop_c).type(), PropertyValue::Type::Int);
EXPECT_EQ(edge.PropsAt(prop_c).Value<int64_t>(), 2);
VertexAccessor to = edge.to();
EXPECT_EQ(to.Properties().size(), 1);
ASSERT_EQ(to.PropsAt(prop_c).type(), PropertyValue::Type::Int);
EXPECT_EQ(to.PropsAt(prop_c).Value<int64_t>(), 2);
}
};
test_set_properties(true);
test_set_properties(false);
}
TEST(Interpreter, SetLabels) {
Dbms dbms;
auto dba = dbms.active();
auto label1 = dba->label("label1");
auto label2 = dba->label("label2");
auto label3 = dba->label("label3");
dba->insert_vertex().add_label(label1);
dba->insert_vertex().add_label(label1);
dba->advance_command();
AstTreeStorage storage;
SymbolTable symbol_table;
auto n = MakeScanAll(storage, symbol_table, "n");
auto label_set = std::make_shared<plan::SetLabels>(
n.op_, n.sym_, std::vector<GraphDbTypes::Label>{label2, label3});
EXPECT_EQ(2, PullAll(label_set, *dba, symbol_table));
for (VertexAccessor vertex : dba->vertices()) {
vertex.SwitchNew();
EXPECT_EQ(3, vertex.labels().size());
EXPECT_TRUE(vertex.has_label(label2));
EXPECT_TRUE(vertex.has_label(label3));
}
}
TEST(Interpreter, RemoveProperty) {
Dbms dbms;
auto dba = dbms.active();
// graph with 4 vertices in connected pairs
// the origin vertex in each par and both edges
// have a property set
auto prop1 = dba->property("prop1");
auto v1 = dba->insert_vertex();
auto v2 = dba->insert_vertex();
auto v3 = dba->insert_vertex();
auto v4 = dba->insert_vertex();
auto edge_type = dba->edge_type("edge_type");
dba->insert_edge(v1, v3, edge_type).PropsSet(prop1, 42);
dba->insert_edge(v2, v4, edge_type);
v2.PropsSet(prop1, 42);
v3.PropsSet(prop1, 42);
v4.PropsSet(prop1, 42);
auto prop2 = dba->property("prop2");
v1.PropsSet(prop2, 0);
v2.PropsSet(prop2, 0);
dba->advance_command();
AstTreeStorage storage;
SymbolTable symbol_table;
// scan (n)-[r]->(m)
auto n = MakeScanAll(storage, symbol_table, "n");
auto r_m = MakeExpand(storage, symbol_table, n.op_, n.sym_, "r",
EdgeAtom::Direction::RIGHT, false, "m", false);
auto n_p = PROPERTY_LOOKUP("n", prop1);
symbol_table[*n_p->expression_] = n.sym_;
auto set_n_p = std::make_shared<plan::RemoveProperty>(r_m.op_, n_p);
auto r_p = PROPERTY_LOOKUP("r", prop1);
symbol_table[*r_p->expression_] = r_m.edge_sym_;
auto set_r_p = std::make_shared<plan::RemoveProperty>(set_n_p, r_p);
EXPECT_EQ(2, PullAll(set_r_p, *dba, symbol_table));
dba->advance_command();
EXPECT_EQ(CountIterable(dba->edges()), 2);
for (EdgeAccessor edge : dba->edges()) {
EXPECT_EQ(edge.PropsAt(prop1).type(), PropertyValue::Type::Null);
VertexAccessor from = edge.from();
VertexAccessor to = edge.to();
EXPECT_EQ(from.PropsAt(prop1).type(), PropertyValue::Type::Null);
EXPECT_EQ(from.PropsAt(prop2).type(), PropertyValue::Type::Int);
EXPECT_EQ(to.PropsAt(prop1).type(), PropertyValue::Type::Int);
}
}
TEST(Interpreter, RemoveLabels) {
Dbms dbms;
auto dba = dbms.active();
auto label1 = dba->label("label1");
auto label2 = dba->label("label2");
auto label3 = dba->label("label3");
auto v1 = dba->insert_vertex();
v1.add_label(label1);
v1.add_label(label2);
v1.add_label(label3);
auto v2 = dba->insert_vertex();
v2.add_label(label1);
v2.add_label(label3);
dba->advance_command();
AstTreeStorage storage;
SymbolTable symbol_table;
auto n = MakeScanAll(storage, symbol_table, "n");
auto label_remove = std::make_shared<plan::RemoveLabels>(
n.op_, n.sym_, std::vector<GraphDbTypes::Label>{label1, label2});
EXPECT_EQ(2, PullAll(label_remove, *dba, symbol_table));
for (VertexAccessor vertex : dba->vertices()) {
vertex.SwitchNew();
EXPECT_EQ(1, vertex.labels().size());
EXPECT_FALSE(vertex.has_label(label1));
EXPECT_FALSE(vertex.has_label(label2));
}
}
TEST(Interpreter, NodeFilterSet) {
Dbms dbms;
auto dba = dbms.active();
// Create a graph such that (v1 {prop: 42}) is connected to v2 and v3.
auto v1 = dba->insert_vertex();
auto prop = dba->property("prop");
v1.PropsSet(prop, 42);
auto v2 = dba->insert_vertex();
auto v3 = dba->insert_vertex();
auto edge_type = dba->edge_type("Edge");
dba->insert_edge(v1, v2, edge_type);
dba->insert_edge(v1, v3, edge_type);
dba->advance_command();
// Create operations which match (v1 {prop: 42}) -- (v) and increment the
// v1.prop. The expected result is two incremenentations, since v1 is matched
// twice for 2 edges it has.
AstTreeStorage storage;
SymbolTable symbol_table;
// MATCH (n {prop: 42}) -[r]- (m)
auto scan_all = MakeScanAll(storage, symbol_table, "n");
scan_all.node_->properties_[prop] = LITERAL(42);
auto expand = MakeExpand(storage, symbol_table, scan_all.op_, scan_all.sym_,
"r", EdgeAtom::Direction::BOTH, false, "m", false);
auto node_filter =
std::make_shared<NodeFilter>(expand.op_, scan_all.sym_, scan_all.node_);
// SET n.prop = n.prop + 1
auto set_prop = PROPERTY_LOOKUP("n", prop);
auto add = ADD(PROPERTY_LOOKUP("n", prop), LITERAL(1));
auto set = std::make_shared<plan::SetProperty>(node_filter, set_prop, add);
EXPECT_EQ(2, PullAll(set, *dba, symbol_table));
dba->advance_command();
v1.Reconstruct();
auto prop_eq = v1.PropsAt(prop) == TypedValue(42 + 2);
ASSERT_EQ(prop_eq.type(), TypedValue::Type::Bool);
EXPECT_TRUE(prop_eq.Value<bool>());
}
TEST(Interpreter, FilterRemove) {
Dbms dbms;
auto dba = dbms.active();
// Create a graph such that (v1 {prop: 42}) is connected to v2 and v3.
auto v1 = dba->insert_vertex();
auto prop = dba->property("prop");
v1.PropsSet(prop, 42);
auto v2 = dba->insert_vertex();
auto v3 = dba->insert_vertex();
auto edge_type = dba->edge_type("Edge");
dba->insert_edge(v1, v2, edge_type);
dba->insert_edge(v1, v3, edge_type);
dba->advance_command();
// Create operations which match (v1 {prop: 42}) -- (v) and remove v1.prop.
// The expected result is two matches, for each edge of v1.
AstTreeStorage storage;
SymbolTable symbol_table;
// MATCH (n) -[r]- (m) WHERE n.prop < 43
auto scan_all = MakeScanAll(storage, symbol_table, "n");
scan_all.node_->properties_[prop] = LITERAL(42);
auto expand = MakeExpand(storage, symbol_table, scan_all.op_, scan_all.sym_,
"r", EdgeAtom::Direction::BOTH, false, "m", false);
auto filter_prop = PROPERTY_LOOKUP("n", prop);
symbol_table[*filter_prop->expression_] = scan_all.sym_;
auto filter =
std::make_shared<Filter>(expand.op_, LESS(filter_prop, LITERAL(43)));
// REMOVE n.prop
auto rem_prop = PROPERTY_LOOKUP("n", prop);
symbol_table[*rem_prop->expression_] = scan_all.sym_;
auto rem = std::make_shared<plan::RemoveProperty>(filter, rem_prop);
EXPECT_EQ(2, PullAll(rem, *dba, symbol_table));
dba->advance_command();
v1.Reconstruct();
EXPECT_EQ(v1.PropsAt(prop).type(), PropertyValue::Type::Null);
}
TEST(Interpreter, SetRemove) {
Dbms dbms;
auto dba = dbms.active();
auto v = dba->insert_vertex();
auto label1 = dba->label("label1");
auto label2 = dba->label("label2");
dba->advance_command();
// Create operations which match (v) and set and remove v :label.
// The expected result is single (v) as it was at the start.
AstTreeStorage storage;
SymbolTable symbol_table;
// MATCH (n) SET n :label1 :label2 REMOVE n :label1 :label2
auto scan_all = MakeScanAll(storage, symbol_table, "n");
auto set = std::make_shared<plan::SetLabels>(
scan_all.op_, scan_all.sym_,
std::vector<GraphDbTypes::Label>{label1, label2});
auto rem = std::make_shared<plan::RemoveLabels>(
set, scan_all.sym_, std::vector<GraphDbTypes::Label>{label1, label2});
EXPECT_EQ(1, PullAll(rem, *dba, symbol_table));
dba->advance_command();
v.Reconstruct();
EXPECT_FALSE(v.has_label(label1));
EXPECT_FALSE(v.has_label(label2));
}
TEST(Interpreter, ExpandUniquenessFilter) {
Dbms dbms;
auto dba = dbms.active();
// make a graph that has (v1)->(v2) and a recursive edge (v1)->(v1)
auto v1 = dba->insert_vertex();
auto v2 = dba->insert_vertex();
auto edge_type = dba->edge_type("edge_type");
dba->insert_edge(v1, v2, edge_type);
dba->insert_edge(v1, v1, edge_type);
dba->advance_command();
auto check_expand_results = [&](bool vertex_uniqueness,
bool edge_uniqueness) {
AstTreeStorage storage;
SymbolTable symbol_table;
auto n1 = MakeScanAll(storage, symbol_table, "n1");
auto r1_n2 = MakeExpand(storage, symbol_table, n1.op_, n1.sym_, "r1",
EdgeAtom::Direction::RIGHT, false, "n2", false);
std::shared_ptr<LogicalOperator> last_op = r1_n2.op_;
if (vertex_uniqueness)
last_op = std::make_shared<ExpandUniquenessFilter<VertexAccessor>>(
last_op, r1_n2.node_sym_, std::vector<Symbol>{n1.sym_});
auto r2_n3 =
MakeExpand(storage, symbol_table, last_op, r1_n2.node_sym_, "r2",
EdgeAtom::Direction::RIGHT, false, "n3", false);
last_op = r2_n3.op_;
if (edge_uniqueness)
last_op = std::make_shared<ExpandUniquenessFilter<EdgeAccessor>>(
last_op, r2_n3.edge_sym_, std::vector<Symbol>{r1_n2.edge_sym_});
if (vertex_uniqueness)
last_op = std::make_shared<ExpandUniquenessFilter<VertexAccessor>>(
last_op, r2_n3.node_sym_,
std::vector<Symbol>{n1.sym_, r1_n2.node_sym_});
return PullAll(last_op, *dba, symbol_table);
};
EXPECT_EQ(2, check_expand_results(false, false));
EXPECT_EQ(0, check_expand_results(true, false));
EXPECT_EQ(1, check_expand_results(false, true));
}
TEST(Interpreter, Accumulate) {
// simulate the following two query execution on an empty db
// CREATE ({x:0})-[:T]->({x:0})
// MATCH (n)--(m) SET n.x = n.x + 1, m.x = m.x + 1 RETURN n.x, m.x
// without accumulation we expected results to be [[1, 1], [2, 2]]
// with accumulation we expect them to be [[2, 2], [2, 2]]
auto check = [&](bool accumulate) {
Dbms dbms;
auto dba = dbms.active();
auto prop = dba->property("x");
auto v1 = dba->insert_vertex();
v1.PropsSet(prop, 0);
auto v2 = dba->insert_vertex();
v2.PropsSet(prop, 0);
dba->insert_edge(v1, v2, dba->edge_type("T"));
dba->advance_command();
AstTreeStorage storage;
SymbolTable symbol_table;
auto n = MakeScanAll(storage, symbol_table, "n");
auto r_m = MakeExpand(storage, symbol_table, n.op_, n.sym_, "r",
EdgeAtom::Direction::BOTH, false, "m", false);
auto one = LITERAL(1);
auto n_p = PROPERTY_LOOKUP("n", prop);
symbol_table[*n_p->expression_] = n.sym_;
auto set_n_p =
std::make_shared<plan::SetProperty>(r_m.op_, n_p, ADD(n_p, one));
auto m_p = PROPERTY_LOOKUP("m", prop);
symbol_table[*m_p->expression_] = r_m.node_sym_;
auto set_m_p =
std::make_shared<plan::SetProperty>(set_n_p, m_p, ADD(m_p, one));
std::shared_ptr<LogicalOperator> last_op = set_m_p;
if (accumulate) {
last_op = std::make_shared<Accumulate>(
last_op, std::vector<Symbol>{n.sym_, r_m.node_sym_});
}
auto n_p_ne = NEXPR("n.p", n_p);
symbol_table[*n_p_ne] = symbol_table.CreateSymbol("n_p_ne");
auto m_p_ne = NEXPR("m.p", m_p);
symbol_table[*m_p_ne] = symbol_table.CreateSymbol("m_p_ne");
auto produce = MakeProduce(last_op, n_p_ne, m_p_ne);
ResultStreamFaker results = CollectProduce(produce, symbol_table, *dba);
std::vector<int> results_data;
for (const auto &row : results.GetResults())
for (const auto &column : row)
results_data.emplace_back(column.Value<int64_t>());
if (accumulate)
EXPECT_THAT(results_data, testing::ElementsAre(2, 2, 2, 2));
else
EXPECT_THAT(results_data, testing::ElementsAre(1, 1, 2, 2));
};
check(false);
check(true);
}
TEST(Interpreter, AccumulateAdvance) {
// we simulate 'CREATE (n) WITH n AS n MATCH (m) RETURN m'
// to get correct results we need to advance the command
auto check = [&](bool advance) {
Dbms dbms;
auto dba = dbms.active();
AstTreeStorage storage;
SymbolTable symbol_table;
auto node = NODE("n");
auto sym_n = symbol_table.CreateSymbol("n");
symbol_table[*node->identifier_] = sym_n;
auto create = std::make_shared<CreateNode>(node, nullptr);
auto accumulate = std::make_shared<Accumulate>(
create, std::vector<Symbol>{sym_n}, advance);
auto match = MakeScanAll(storage, symbol_table, "m", accumulate);
EXPECT_EQ(advance ? 1 : 0, PullAll(match.op_, *dba, symbol_table));
};
check(false);
check(true);
}