memgraph/tests/simulation/test_cluster.hpp

285 lines
10 KiB
C++

// Copyright 2022 Memgraph Ltd.
//
// Use of this software is governed by the Business Source License
// included in the file licenses/BSL.txt; by using this file, you agree to be bound by the terms of the Business Source
// License, and you may not use this file except in compliance with the Business Source License.
//
// As of the Change Date specified in that file, in accordance with
// the Business Source License, use of this software will be governed
// by the Apache License, Version 2.0, included in the file
// licenses/APL.txt.
#include <chrono>
#include <iostream>
#include <limits>
#include <memory>
#include <set>
#include <thread>
#include <rapidcheck.h>
#include "cluster_config.hpp"
#include "coordinator/coordinator_client.hpp"
#include "coordinator/coordinator_rsm.hpp"
#include "coordinator/shard_map.hpp"
#include "generated_operations.hpp"
#include "io/address.hpp"
#include "io/message_histogram_collector.hpp"
#include "io/simulator/simulator.hpp"
#include "io/simulator/simulator_config.hpp"
#include "io/simulator/simulator_transport.hpp"
#include "machine_manager/machine_config.hpp"
#include "machine_manager/machine_manager.hpp"
#include "query/v2/requests.hpp"
#include "query/v2/shard_request_manager.hpp"
#include "testing_constants.hpp"
#include "utils/print_helpers.hpp"
#include "utils/variant_helpers.hpp"
namespace memgraph::tests::simulation {
using coordinator::Coordinator;
using coordinator::CoordinatorClient;
using coordinator::CoordinatorReadRequests;
using coordinator::CoordinatorWriteRequests;
using coordinator::CoordinatorWriteResponses;
using coordinator::GetShardMapRequest;
using coordinator::GetShardMapResponse;
using coordinator::Hlc;
using coordinator::HlcResponse;
using coordinator::Shard;
using coordinator::ShardMap;
using io::Address;
using io::Io;
using io::rsm::RsmClient;
using io::simulator::Simulator;
using io::simulator::SimulatorConfig;
using io::simulator::SimulatorStats;
using io::simulator::SimulatorTransport;
using machine_manager::MachineConfig;
using machine_manager::MachineManager;
using memgraph::io::LatencyHistogramSummaries;
using msgs::ReadRequests;
using msgs::ReadResponses;
using msgs::WriteRequests;
using msgs::WriteResponses;
using storage::v3::LabelId;
using storage::v3::SchemaProperty;
using CompoundKey = std::pair<int, int>;
using ShardClient = RsmClient<SimulatorTransport, WriteRequests, WriteResponses, ReadRequests, ReadResponses>;
MachineManager<SimulatorTransport> MkMm(Simulator &simulator, std::vector<Address> coordinator_addresses, Address addr,
ShardMap shard_map) {
MachineConfig config{
.coordinator_addresses = coordinator_addresses,
.is_storage = true,
.is_coordinator = true,
.listen_ip = addr.last_known_ip,
.listen_port = addr.last_known_port,
.shard_worker_threads = 4,
.sync_message_handling = true,
};
Io<SimulatorTransport> io = simulator.Register(addr);
Coordinator coordinator{shard_map};
return MachineManager{io, config, coordinator};
}
void RunMachine(MachineManager<SimulatorTransport> mm) { mm.Run(); }
void WaitForShardsToInitialize(CoordinatorClient<SimulatorTransport> &coordinator_client) {
// Call coordinator client's read method for GetShardMap and keep
// reading it until the shard map contains proper replicas for
// each shard in the label space.
while (true) {
GetShardMapRequest req{};
CoordinatorReadRequests read_req = req;
auto read_res = coordinator_client.SendReadRequest(read_req);
if (read_res.HasError()) {
// timed out
continue;
}
auto response_result = read_res.GetValue();
auto response = std::get<GetShardMapResponse>(response_result);
auto shard_map = response.shard_map;
if (shard_map.ClusterInitialized()) {
spdlog::info("cluster stabilized - beginning workload");
return;
}
}
}
ShardMap TestShardMap(int n_splits, int replication_factor) {
ShardMap sm{};
const std::string label_name = std::string("test_label");
// register new properties
const std::vector<std::string> property_names = {"property_1", "property_2"};
const auto properties = sm.AllocatePropertyIds(property_names);
const auto property_id_1 = properties.at("property_1");
const auto property_id_2 = properties.at("property_2");
const auto type_1 = memgraph::common::SchemaType::INT;
const auto type_2 = memgraph::common::SchemaType::INT;
// register new label space
std::vector<SchemaProperty> schema = {
SchemaProperty{.property_id = property_id_1, .type = type_1},
SchemaProperty{.property_id = property_id_2, .type = type_2},
};
std::optional<LabelId> label_id = sm.InitializeNewLabel(label_name, schema, replication_factor, sm.shard_map_version);
RC_ASSERT(label_id.has_value());
// split the shard at N split points
for (int64_t i = 1; i < n_splits; ++i) {
const auto key1 = memgraph::storage::v3::PropertyValue(i);
const auto key2 = memgraph::storage::v3::PropertyValue(0);
const auto split_point = {key1, key2};
const bool split_success = sm.SplitShard(sm.shard_map_version, label_id.value(), split_point);
RC_ASSERT(split_success);
}
return sm;
}
void ExecuteOp(msgs::ShardRequestManager<SimulatorTransport> &shard_request_manager,
std::set<CompoundKey> &correctness_model, CreateVertex create_vertex) {
const auto key1 = memgraph::storage::v3::PropertyValue(create_vertex.first);
const auto key2 = memgraph::storage::v3::PropertyValue(create_vertex.second);
std::vector<msgs::Value> primary_key = {msgs::Value(int64_t(create_vertex.first)),
msgs::Value(int64_t(create_vertex.second))};
if (correctness_model.contains(std::make_pair(create_vertex.first, create_vertex.second))) {
// TODO(tyler) remove this early-return when we have properly handled setting non-unique vertexes
return;
}
msgs::ExecutionState<msgs::CreateVerticesRequest> state;
auto label_id = shard_request_manager.NameToLabel("test_label");
msgs::NewVertex nv{.primary_key = primary_key};
nv.label_ids.push_back({label_id});
std::vector<msgs::NewVertex> new_vertices;
new_vertices.push_back(std::move(nv));
auto result = shard_request_manager.Request(state, std::move(new_vertices));
RC_ASSERT(result.size() == 1);
RC_ASSERT(result[0].success);
correctness_model.emplace(std::make_pair(create_vertex.first, create_vertex.second));
}
void ExecuteOp(msgs::ShardRequestManager<SimulatorTransport> &shard_request_manager,
std::set<CompoundKey> &correctness_model, ScanAll scan_all) {
msgs::ExecutionState<msgs::ScanVerticesRequest> request{.label = "test_label"};
auto results = shard_request_manager.Request(request);
RC_ASSERT(results.size() == correctness_model.size());
for (const auto &vertex_accessor : results) {
const auto properties = vertex_accessor.Properties();
const auto primary_key = vertex_accessor.Id().second;
const CompoundKey model_key = std::make_pair(primary_key[0].int_v, primary_key[1].int_v);
RC_ASSERT(correctness_model.contains(model_key));
}
}
/// This struct exists as a way of detaching
/// a thread if something causes an uncaught
/// exception - because that thread would not
/// receive a ShutDown message otherwise, and
/// would cause the test to hang forever.
struct DetachIfDropped {
std::jthread &handle;
bool detach = true;
~DetachIfDropped() {
if (detach && handle.joinable()) {
handle.detach();
}
}
};
std::pair<SimulatorStats, LatencyHistogramSummaries> RunClusterSimulation(const SimulatorConfig &sim_config,
const ClusterConfig &cluster_config,
const std::vector<Op> &ops) {
spdlog::info("========================== NEW SIMULATION ==========================");
auto simulator = Simulator(sim_config);
auto machine_1_addr = Address::TestAddress(1);
auto cli_addr = Address::TestAddress(2);
auto cli_addr_2 = Address::TestAddress(3);
Io<SimulatorTransport> cli_io = simulator.Register(cli_addr);
Io<SimulatorTransport> cli_io_2 = simulator.Register(cli_addr_2);
auto coordinator_addresses = std::vector{
machine_1_addr,
};
ShardMap initialization_sm = TestShardMap(cluster_config.shards - 1, cluster_config.replication_factor);
auto mm_1 = MkMm(simulator, coordinator_addresses, machine_1_addr, initialization_sm);
Address coordinator_address = mm_1.CoordinatorAddress();
auto mm_thread_1 = std::jthread(RunMachine, std::move(mm_1));
simulator.IncrementServerCountAndWaitForQuiescentState(machine_1_addr);
auto detach_on_error = DetachIfDropped{.handle = mm_thread_1};
// TODO(tyler) clarify addresses of coordinator etc... as it's a mess
CoordinatorClient<SimulatorTransport> coordinator_client(cli_io, coordinator_address, {coordinator_address});
WaitForShardsToInitialize(coordinator_client);
msgs::ShardRequestManager<SimulatorTransport> shard_request_manager(std::move(coordinator_client), std::move(cli_io));
shard_request_manager.StartTransaction();
auto correctness_model = std::set<CompoundKey>{};
for (const Op &op : ops) {
std::visit([&](auto &o) { ExecuteOp(shard_request_manager, correctness_model, o); }, op.inner);
}
// We have now completed our workload without failing any assertions, so we can
// disable detaching the worker thread, which will cause the mm_thread_1 jthread
// to be joined when this function returns.
detach_on_error.detach = false;
simulator.ShutDown();
mm_thread_1.join();
SimulatorStats stats = simulator.Stats();
spdlog::info("total messages: {}", stats.total_messages);
spdlog::info("dropped messages: {}", stats.dropped_messages);
spdlog::info("timed out requests: {}", stats.timed_out_requests);
spdlog::info("total requests: {}", stats.total_requests);
spdlog::info("total responses: {}", stats.total_responses);
spdlog::info("simulator ticks: {}", stats.simulator_ticks);
auto histo = cli_io_2.ResponseLatencies();
spdlog::info("========================== SUCCESS :) ==========================");
return std::make_pair(stats, histo);
}
} // namespace memgraph::tests::simulation