memgraph/tests/unit/query_expression_evaluator.cpp
Dominik Gleich c294127065 Auto generate vertex/edge ids
Reviewers: buda

Reviewed By: buda

Subscribers: pullbot

Differential Revision: https://phabricator.memgraph.io/D1406
2018-05-25 16:03:12 +02:00

1411 lines
56 KiB
C++

#include <cmath>
#include <iterator>
#include <memory>
#include <unordered_map>
#include <vector>
#include "gflags/gflags.h"
#include "gmock/gmock.h"
#include "gtest/gtest.h"
#include "database/graph_db_accessor.hpp"
#include "query/frontend/ast/ast.hpp"
#include "query/frontend/opencypher/parser.hpp"
#include "query/interpret/awesome_memgraph_functions.hpp"
#include "query/interpret/eval.hpp"
#include "query/interpret/frame.hpp"
#include "query/path.hpp"
#include "storage/types.hpp"
#include "utils/string.hpp"
#include "query_common.hpp"
using namespace query;
using query::test_common::ToList;
using testing::ElementsAre;
using testing::UnorderedElementsAre;
DECLARE_bool(generate_vertex_ids);
DECLARE_bool(generate_edge_ids);
namespace {
struct NoContextExpressionEvaluator {
NoContextExpressionEvaluator() {}
Frame frame{128};
SymbolTable symbol_table;
database::SingleNode db;
database::GraphDbAccessor dba{db};
Parameters parameters;
ExpressionEvaluator eval{frame, parameters, symbol_table, dba,
GraphView::OLD};
};
TypedValue EvaluateFunction(const std::string &function_name,
const std::vector<TypedValue> &args,
database::GraphDb &db) {
AstTreeStorage storage;
SymbolTable symbol_table;
database::GraphDbAccessor dba(db);
Frame frame{128};
Parameters parameters;
ExpressionEvaluator eval{frame, parameters, symbol_table, dba,
GraphView::OLD};
std::vector<Expression *> expressions;
for (const auto &arg : args) {
expressions.push_back(storage.Create<PrimitiveLiteral>(arg));
}
auto *op = storage.Create<Function>(function_name, expressions);
return op->Accept(eval);
}
TypedValue EvaluateFunction(const std::string &function_name,
const std::vector<TypedValue> &args) {
database::SingleNode db;
return EvaluateFunction(function_name, args, db);
}
TEST(ExpressionEvaluator, OrOperator) {
AstTreeStorage storage;
NoContextExpressionEvaluator eval;
auto *op =
storage.Create<OrOperator>(storage.Create<PrimitiveLiteral>(true),
storage.Create<PrimitiveLiteral>(false));
auto val1 = op->Accept(eval.eval);
ASSERT_EQ(val1.Value<bool>(), true);
op = storage.Create<OrOperator>(storage.Create<PrimitiveLiteral>(true),
storage.Create<PrimitiveLiteral>(true));
auto val2 = op->Accept(eval.eval);
ASSERT_EQ(val2.Value<bool>(), true);
}
TEST(ExpressionEvaluator, XorOperator) {
AstTreeStorage storage;
NoContextExpressionEvaluator eval;
auto *op =
storage.Create<XorOperator>(storage.Create<PrimitiveLiteral>(true),
storage.Create<PrimitiveLiteral>(false));
auto val1 = op->Accept(eval.eval);
ASSERT_EQ(val1.Value<bool>(), true);
op = storage.Create<XorOperator>(storage.Create<PrimitiveLiteral>(true),
storage.Create<PrimitiveLiteral>(true));
auto val2 = op->Accept(eval.eval);
ASSERT_EQ(val2.Value<bool>(), false);
}
TEST(ExpressionEvaluator, AndOperator) {
AstTreeStorage storage;
NoContextExpressionEvaluator eval;
auto *op =
storage.Create<AndOperator>(storage.Create<PrimitiveLiteral>(true),
storage.Create<PrimitiveLiteral>(true));
auto val1 = op->Accept(eval.eval);
ASSERT_EQ(val1.Value<bool>(), true);
op = storage.Create<AndOperator>(storage.Create<PrimitiveLiteral>(false),
storage.Create<PrimitiveLiteral>(true));
auto val2 = op->Accept(eval.eval);
ASSERT_EQ(val2.Value<bool>(), false);
}
TEST(ExpressionEvaluator, AndOperatorShortCircuit) {
AstTreeStorage storage;
NoContextExpressionEvaluator eval;
{
auto *op =
storage.Create<AndOperator>(storage.Create<PrimitiveLiteral>(false),
storage.Create<PrimitiveLiteral>(5));
auto value = op->Accept(eval.eval);
EXPECT_EQ(value.Value<bool>(), false);
}
{
auto *op =
storage.Create<AndOperator>(storage.Create<PrimitiveLiteral>(5),
storage.Create<PrimitiveLiteral>(false));
// We are evaluating left to right, so we don't short circuit here and raise
// due to `5`. This differs from neo4j, where they evaluate both sides and
// return `false` without checking for type of the first expression.
EXPECT_THROW(op->Accept(eval.eval), QueryRuntimeException);
}
}
TEST(ExpressionEvaluator, AndOperatorNull) {
AstTreeStorage storage;
NoContextExpressionEvaluator eval;
{
// Null doesn't short circuit
auto *op = storage.Create<AndOperator>(
storage.Create<PrimitiveLiteral>(TypedValue::Null),
storage.Create<PrimitiveLiteral>(5));
EXPECT_THROW(op->Accept(eval.eval), QueryRuntimeException);
}
{
auto *op = storage.Create<AndOperator>(
storage.Create<PrimitiveLiteral>(TypedValue::Null),
storage.Create<PrimitiveLiteral>(true));
auto value = op->Accept(eval.eval);
EXPECT_TRUE(value.IsNull());
}
{
auto *op = storage.Create<AndOperator>(
storage.Create<PrimitiveLiteral>(TypedValue::Null),
storage.Create<PrimitiveLiteral>(false));
auto value = op->Accept(eval.eval);
ASSERT_TRUE(value.IsBool());
EXPECT_EQ(value.Value<bool>(), false);
}
}
TEST(ExpressionEvaluator, AdditionOperator) {
AstTreeStorage storage;
NoContextExpressionEvaluator eval;
auto *op = storage.Create<AdditionOperator>(
storage.Create<PrimitiveLiteral>(2), storage.Create<PrimitiveLiteral>(3));
auto value = op->Accept(eval.eval);
ASSERT_EQ(value.Value<int64_t>(), 5);
}
TEST(ExpressionEvaluator, SubtractionOperator) {
AstTreeStorage storage;
NoContextExpressionEvaluator eval;
auto *op = storage.Create<SubtractionOperator>(
storage.Create<PrimitiveLiteral>(2), storage.Create<PrimitiveLiteral>(3));
auto value = op->Accept(eval.eval);
ASSERT_EQ(value.Value<int64_t>(), -1);
}
TEST(ExpressionEvaluator, MultiplicationOperator) {
AstTreeStorage storage;
NoContextExpressionEvaluator eval;
auto *op = storage.Create<MultiplicationOperator>(
storage.Create<PrimitiveLiteral>(2), storage.Create<PrimitiveLiteral>(3));
auto value = op->Accept(eval.eval);
ASSERT_EQ(value.Value<int64_t>(), 6);
}
TEST(ExpressionEvaluator, DivisionOperator) {
AstTreeStorage storage;
NoContextExpressionEvaluator eval;
auto *op =
storage.Create<DivisionOperator>(storage.Create<PrimitiveLiteral>(50),
storage.Create<PrimitiveLiteral>(10));
auto value = op->Accept(eval.eval);
ASSERT_EQ(value.Value<int64_t>(), 5);
}
TEST(ExpressionEvaluator, ModOperator) {
AstTreeStorage storage;
NoContextExpressionEvaluator eval;
auto *op = storage.Create<ModOperator>(storage.Create<PrimitiveLiteral>(65),
storage.Create<PrimitiveLiteral>(10));
auto value = op->Accept(eval.eval);
ASSERT_EQ(value.Value<int64_t>(), 5);
}
TEST(ExpressionEvaluator, EqualOperator) {
AstTreeStorage storage;
NoContextExpressionEvaluator eval;
auto *op =
storage.Create<EqualOperator>(storage.Create<PrimitiveLiteral>(10),
storage.Create<PrimitiveLiteral>(15));
auto val1 = op->Accept(eval.eval);
ASSERT_EQ(val1.Value<bool>(), false);
op = storage.Create<EqualOperator>(storage.Create<PrimitiveLiteral>(15),
storage.Create<PrimitiveLiteral>(15));
auto val2 = op->Accept(eval.eval);
ASSERT_EQ(val2.Value<bool>(), true);
op = storage.Create<EqualOperator>(storage.Create<PrimitiveLiteral>(20),
storage.Create<PrimitiveLiteral>(15));
auto val3 = op->Accept(eval.eval);
ASSERT_EQ(val3.Value<bool>(), false);
}
TEST(ExpressionEvaluator, NotEqualOperator) {
AstTreeStorage storage;
NoContextExpressionEvaluator eval;
auto *op =
storage.Create<NotEqualOperator>(storage.Create<PrimitiveLiteral>(10),
storage.Create<PrimitiveLiteral>(15));
auto val1 = op->Accept(eval.eval);
ASSERT_EQ(val1.Value<bool>(), true);
op = storage.Create<NotEqualOperator>(storage.Create<PrimitiveLiteral>(15),
storage.Create<PrimitiveLiteral>(15));
auto val2 = op->Accept(eval.eval);
ASSERT_EQ(val2.Value<bool>(), false);
op = storage.Create<NotEqualOperator>(storage.Create<PrimitiveLiteral>(20),
storage.Create<PrimitiveLiteral>(15));
auto val3 = op->Accept(eval.eval);
ASSERT_EQ(val3.Value<bool>(), true);
}
TEST(ExpressionEvaluator, LessOperator) {
AstTreeStorage storage;
NoContextExpressionEvaluator eval;
auto *op = storage.Create<LessOperator>(storage.Create<PrimitiveLiteral>(10),
storage.Create<PrimitiveLiteral>(15));
auto val1 = op->Accept(eval.eval);
ASSERT_EQ(val1.Value<bool>(), true);
op = storage.Create<LessOperator>(storage.Create<PrimitiveLiteral>(15),
storage.Create<PrimitiveLiteral>(15));
auto val2 = op->Accept(eval.eval);
ASSERT_EQ(val2.Value<bool>(), false);
op = storage.Create<LessOperator>(storage.Create<PrimitiveLiteral>(20),
storage.Create<PrimitiveLiteral>(15));
auto val3 = op->Accept(eval.eval);
ASSERT_EQ(val3.Value<bool>(), false);
}
TEST(ExpressionEvaluator, GreaterOperator) {
AstTreeStorage storage;
NoContextExpressionEvaluator eval;
auto *op =
storage.Create<GreaterOperator>(storage.Create<PrimitiveLiteral>(10),
storage.Create<PrimitiveLiteral>(15));
auto val1 = op->Accept(eval.eval);
ASSERT_EQ(val1.Value<bool>(), false);
op = storage.Create<GreaterOperator>(storage.Create<PrimitiveLiteral>(15),
storage.Create<PrimitiveLiteral>(15));
auto val2 = op->Accept(eval.eval);
ASSERT_EQ(val2.Value<bool>(), false);
op = storage.Create<GreaterOperator>(storage.Create<PrimitiveLiteral>(20),
storage.Create<PrimitiveLiteral>(15));
auto val3 = op->Accept(eval.eval);
ASSERT_EQ(val3.Value<bool>(), true);
}
TEST(ExpressionEvaluator, LessEqualOperator) {
AstTreeStorage storage;
NoContextExpressionEvaluator eval;
auto *op =
storage.Create<LessEqualOperator>(storage.Create<PrimitiveLiteral>(10),
storage.Create<PrimitiveLiteral>(15));
auto val1 = op->Accept(eval.eval);
ASSERT_EQ(val1.Value<bool>(), true);
op = storage.Create<LessEqualOperator>(storage.Create<PrimitiveLiteral>(15),
storage.Create<PrimitiveLiteral>(15));
auto val2 = op->Accept(eval.eval);
ASSERT_EQ(val2.Value<bool>(), true);
op = storage.Create<LessEqualOperator>(storage.Create<PrimitiveLiteral>(20),
storage.Create<PrimitiveLiteral>(15));
auto val3 = op->Accept(eval.eval);
ASSERT_EQ(val3.Value<bool>(), false);
}
TEST(ExpressionEvaluator, GreaterEqualOperator) {
AstTreeStorage storage;
NoContextExpressionEvaluator eval;
auto *op = storage.Create<GreaterEqualOperator>(
storage.Create<PrimitiveLiteral>(10),
storage.Create<PrimitiveLiteral>(15));
auto val1 = op->Accept(eval.eval);
ASSERT_EQ(val1.Value<bool>(), false);
op = storage.Create<GreaterEqualOperator>(
storage.Create<PrimitiveLiteral>(15),
storage.Create<PrimitiveLiteral>(15));
auto val2 = op->Accept(eval.eval);
ASSERT_EQ(val2.Value<bool>(), true);
op = storage.Create<GreaterEqualOperator>(
storage.Create<PrimitiveLiteral>(20),
storage.Create<PrimitiveLiteral>(15));
auto val3 = op->Accept(eval.eval);
ASSERT_EQ(val3.Value<bool>(), true);
}
TEST(ExpressionEvaluator, InListOperator) {
AstTreeStorage storage;
NoContextExpressionEvaluator eval;
auto *list_literal = storage.Create<ListLiteral>(std::vector<Expression *>{
storage.Create<PrimitiveLiteral>(1), storage.Create<PrimitiveLiteral>(2),
storage.Create<PrimitiveLiteral>("a")});
{
// Element exists in list.
auto *op = storage.Create<InListOperator>(
storage.Create<PrimitiveLiteral>(2), list_literal);
auto value = op->Accept(eval.eval);
EXPECT_EQ(value.Value<bool>(), true);
}
{
// Element doesn't exist in list.
auto *op = storage.Create<InListOperator>(
storage.Create<PrimitiveLiteral>("x"), list_literal);
auto value = op->Accept(eval.eval);
EXPECT_EQ(value.Value<bool>(), false);
}
{
auto *list_literal = storage.Create<ListLiteral>(std::vector<Expression *>{
storage.Create<PrimitiveLiteral>(TypedValue::Null),
storage.Create<PrimitiveLiteral>(2),
storage.Create<PrimitiveLiteral>("a")});
// Element doesn't exist in list with null element.
auto *op = storage.Create<InListOperator>(
storage.Create<PrimitiveLiteral>("x"), list_literal);
auto value = op->Accept(eval.eval);
EXPECT_TRUE(value.IsNull());
}
{
// Null list.
auto *op = storage.Create<InListOperator>(
storage.Create<PrimitiveLiteral>("x"),
storage.Create<PrimitiveLiteral>(TypedValue::Null));
auto value = op->Accept(eval.eval);
EXPECT_TRUE(value.IsNull());
}
{
// Null literal.
auto *op = storage.Create<InListOperator>(
storage.Create<PrimitiveLiteral>(TypedValue::Null), list_literal);
auto value = op->Accept(eval.eval);
EXPECT_TRUE(value.IsNull());
}
{
// Null literal, empty list.
auto *op = storage.Create<InListOperator>(
storage.Create<PrimitiveLiteral>(TypedValue::Null),
storage.Create<ListLiteral>(std::vector<Expression *>()));
auto value = op->Accept(eval.eval);
EXPECT_FALSE(value.ValueBool());
}
}
TEST(ExpressionEvaluator, ListMapIndexingOperator) {
AstTreeStorage storage;
NoContextExpressionEvaluator eval;
auto *list_literal = storage.Create<ListLiteral>(std::vector<Expression *>{
storage.Create<PrimitiveLiteral>(1), storage.Create<PrimitiveLiteral>(2),
storage.Create<PrimitiveLiteral>(3),
storage.Create<PrimitiveLiteral>(4)});
{
// Legal indexing.
auto *op = storage.Create<ListMapIndexingOperator>(
list_literal, storage.Create<PrimitiveLiteral>(2));
auto value = op->Accept(eval.eval);
EXPECT_EQ(value.Value<int64_t>(), 3);
}
{
// Out of bounds indexing.
auto *op = storage.Create<ListMapIndexingOperator>(
list_literal, storage.Create<PrimitiveLiteral>(4));
auto value = op->Accept(eval.eval);
EXPECT_EQ(value.type(), TypedValue::Type::Null);
}
{
// Out of bounds indexing with negative bound.
auto *op = storage.Create<ListMapIndexingOperator>(
list_literal, storage.Create<PrimitiveLiteral>(-100));
auto value = op->Accept(eval.eval);
EXPECT_EQ(value.type(), TypedValue::Type::Null);
}
{
// Legal indexing with negative index.
auto *op = storage.Create<ListMapIndexingOperator>(
list_literal, storage.Create<PrimitiveLiteral>(-2));
auto value = op->Accept(eval.eval);
EXPECT_EQ(value.Value<int64_t>(), 3);
}
{
// Indexing with one operator being null.
auto *op = storage.Create<ListMapIndexingOperator>(
storage.Create<PrimitiveLiteral>(TypedValue::Null),
storage.Create<PrimitiveLiteral>(-2));
auto value = op->Accept(eval.eval);
EXPECT_EQ(value.type(), TypedValue::Type::Null);
}
{
// Indexing with incompatible type.
auto *op = storage.Create<ListMapIndexingOperator>(
storage.Create<PrimitiveLiteral>(2),
storage.Create<PrimitiveLiteral>(TypedValue::Null));
EXPECT_THROW(op->Accept(eval.eval), QueryRuntimeException);
}
}
TEST(ExpressionEvaluator, MapIndexing) {
AstTreeStorage storage;
NoContextExpressionEvaluator eval;
database::SingleNode db;
database::GraphDbAccessor dba(db);
auto *map_literal = storage.Create<MapLiteral>(
std::unordered_map<std::pair<std::string, storage::Property>,
Expression *>{
{PROPERTY_PAIR("a"), storage.Create<PrimitiveLiteral>(1)},
{PROPERTY_PAIR("b"), storage.Create<PrimitiveLiteral>(2)},
{PROPERTY_PAIR("c"), storage.Create<PrimitiveLiteral>(3)}});
{
// Legal indexing.
auto *op = storage.Create<ListMapIndexingOperator>(
map_literal, storage.Create<PrimitiveLiteral>("b"));
auto value = op->Accept(eval.eval);
EXPECT_EQ(value.Value<int64_t>(), 2);
}
{
// Legal indexing, non-existing key.
auto *op = storage.Create<ListMapIndexingOperator>(
map_literal, storage.Create<PrimitiveLiteral>("z"));
auto value = op->Accept(eval.eval);
EXPECT_TRUE(value.IsNull());
}
{
// Wrong key type.
auto *op = storage.Create<ListMapIndexingOperator>(
map_literal, storage.Create<PrimitiveLiteral>(42));
EXPECT_THROW(op->Accept(eval.eval), QueryRuntimeException);
}
{
// Indexing with Null.
auto *op = storage.Create<ListMapIndexingOperator>(
map_literal, storage.Create<PrimitiveLiteral>(TypedValue::Null));
auto value = op->Accept(eval.eval);
EXPECT_TRUE(value.IsNull());
}
}
TEST(ExpressionEvaluator, ListSlicingOperator) {
AstTreeStorage storage;
NoContextExpressionEvaluator eval;
auto *list_literal = storage.Create<ListLiteral>(std::vector<Expression *>{
storage.Create<PrimitiveLiteral>(1), storage.Create<PrimitiveLiteral>(2),
storage.Create<PrimitiveLiteral>(3),
storage.Create<PrimitiveLiteral>(4)});
auto extract_ints = [](TypedValue list) {
std::vector<int64_t> int_list;
for (auto x : list.Value<std::vector<TypedValue>>()) {
int_list.push_back(x.Value<int64_t>());
}
return int_list;
};
{
// Legal slicing with both bounds defined.
auto *op = storage.Create<ListSlicingOperator>(
list_literal, storage.Create<PrimitiveLiteral>(2),
storage.Create<PrimitiveLiteral>(4));
auto value = op->Accept(eval.eval);
EXPECT_THAT(extract_ints(value), ElementsAre(3, 4));
}
{
// Legal slicing with negative bound.
auto *op = storage.Create<ListSlicingOperator>(
list_literal, storage.Create<PrimitiveLiteral>(2),
storage.Create<PrimitiveLiteral>(-1));
auto value = op->Accept(eval.eval);
EXPECT_THAT(extract_ints(value), ElementsAre(3));
}
{
// Lower bound larger than upper bound.
auto *op = storage.Create<ListSlicingOperator>(
list_literal, storage.Create<PrimitiveLiteral>(2),
storage.Create<PrimitiveLiteral>(-4));
auto value = op->Accept(eval.eval);
EXPECT_THAT(extract_ints(value), ElementsAre());
}
{
// Bounds ouf or range.
auto *op = storage.Create<ListSlicingOperator>(
list_literal, storage.Create<PrimitiveLiteral>(-100),
storage.Create<PrimitiveLiteral>(10));
auto value = op->Accept(eval.eval);
EXPECT_THAT(extract_ints(value), ElementsAre(1, 2, 3, 4));
}
{
// Lower bound undefined.
auto *op = storage.Create<ListSlicingOperator>(
list_literal, nullptr, storage.Create<PrimitiveLiteral>(3));
auto value = op->Accept(eval.eval);
EXPECT_THAT(extract_ints(value), ElementsAre(1, 2, 3));
}
{
// Upper bound undefined.
auto *op = storage.Create<ListSlicingOperator>(
list_literal, storage.Create<PrimitiveLiteral>(-2), nullptr);
auto value = op->Accept(eval.eval);
EXPECT_THAT(extract_ints(value), ElementsAre(3, 4));
}
{
// Bound of illegal type and null value bound.
auto *op = storage.Create<ListSlicingOperator>(
list_literal, storage.Create<PrimitiveLiteral>(TypedValue::Null),
storage.Create<PrimitiveLiteral>("mirko"));
EXPECT_THROW(op->Accept(eval.eval), QueryRuntimeException);
}
{
// List of illegal type.
auto *op = storage.Create<ListSlicingOperator>(
storage.Create<PrimitiveLiteral>("a"),
storage.Create<PrimitiveLiteral>(-2), nullptr);
EXPECT_THROW(op->Accept(eval.eval), QueryRuntimeException);
}
{
// Null value list with undefined upper bound.
auto *op = storage.Create<ListSlicingOperator>(
storage.Create<PrimitiveLiteral>(TypedValue::Null),
storage.Create<PrimitiveLiteral>(-2), nullptr);
auto value = op->Accept(eval.eval);
EXPECT_EQ(value.type(), TypedValue::Type::Null);
}
{
// Null value index.
auto *op = storage.Create<ListSlicingOperator>(
list_literal, storage.Create<PrimitiveLiteral>(-2),
storage.Create<PrimitiveLiteral>(TypedValue::Null));
auto value = op->Accept(eval.eval);
EXPECT_EQ(value.type(), TypedValue::Type::Null);
}
}
TEST(ExpressionEvaluator, IfOperator) {
AstTreeStorage storage;
NoContextExpressionEvaluator eval;
auto *then_expression = storage.Create<PrimitiveLiteral>(10);
auto *else_expression = storage.Create<PrimitiveLiteral>(20);
{
auto *condition_true =
storage.Create<EqualOperator>(storage.Create<PrimitiveLiteral>(2),
storage.Create<PrimitiveLiteral>(2));
auto *op = storage.Create<IfOperator>(condition_true, then_expression,
else_expression);
auto value = op->Accept(eval.eval);
ASSERT_EQ(value.Value<int64_t>(), 10);
}
{
auto *condition_false =
storage.Create<EqualOperator>(storage.Create<PrimitiveLiteral>(2),
storage.Create<PrimitiveLiteral>(3));
auto *op = storage.Create<IfOperator>(condition_false, then_expression,
else_expression);
auto value = op->Accept(eval.eval);
ASSERT_EQ(value.Value<int64_t>(), 20);
}
{
auto *condition_exception =
storage.Create<AdditionOperator>(storage.Create<PrimitiveLiteral>(2),
storage.Create<PrimitiveLiteral>(3));
auto *op = storage.Create<IfOperator>(condition_exception, then_expression,
else_expression);
ASSERT_THROW(op->Accept(eval.eval), QueryRuntimeException);
}
}
TEST(ExpressionEvaluator, NotOperator) {
AstTreeStorage storage;
NoContextExpressionEvaluator eval;
auto *op =
storage.Create<NotOperator>(storage.Create<PrimitiveLiteral>(false));
auto value = op->Accept(eval.eval);
ASSERT_EQ(value.Value<bool>(), true);
}
TEST(ExpressionEvaluator, UnaryPlusOperator) {
AstTreeStorage storage;
NoContextExpressionEvaluator eval;
auto *op =
storage.Create<UnaryPlusOperator>(storage.Create<PrimitiveLiteral>(5));
auto value = op->Accept(eval.eval);
ASSERT_EQ(value.Value<int64_t>(), 5);
}
TEST(ExpressionEvaluator, UnaryMinusOperator) {
AstTreeStorage storage;
NoContextExpressionEvaluator eval;
auto *op =
storage.Create<UnaryMinusOperator>(storage.Create<PrimitiveLiteral>(5));
auto value = op->Accept(eval.eval);
ASSERT_EQ(value.Value<int64_t>(), -5);
}
TEST(ExpressionEvaluator, IsNullOperator) {
AstTreeStorage storage;
NoContextExpressionEvaluator eval;
auto *op =
storage.Create<IsNullOperator>(storage.Create<PrimitiveLiteral>(1));
auto val1 = op->Accept(eval.eval);
ASSERT_EQ(val1.Value<bool>(), false);
op = storage.Create<IsNullOperator>(
storage.Create<PrimitiveLiteral>(TypedValue::Null));
auto val2 = op->Accept(eval.eval);
ASSERT_EQ(val2.Value<bool>(), true);
}
class ExpressionEvaluatorPropertyLookup : public testing::Test {
protected:
AstTreeStorage storage;
NoContextExpressionEvaluator eval;
database::SingleNode db;
database::GraphDbAccessor dba{db};
std::pair<std::string, storage::Property> prop_age = PROPERTY_PAIR("age");
std::pair<std::string, storage::Property> prop_height =
PROPERTY_PAIR("height");
Expression *identifier = storage.Create<Identifier>("element");
Symbol symbol = eval.symbol_table.CreateSymbol("element", true);
void SetUp() { eval.symbol_table[*identifier] = symbol; }
auto Value(std::pair<std::string, storage::Property> property) {
auto *op = storage.Create<PropertyLookup>(identifier, property);
return op->Accept(eval.eval);
}
};
TEST_F(ExpressionEvaluatorPropertyLookup, Vertex) {
auto v1 = dba.InsertVertex();
v1.PropsSet(prop_age.second, 10);
eval.frame[symbol] = v1;
EXPECT_EQ(Value(prop_age).Value<int64_t>(), 10);
EXPECT_TRUE(Value(prop_height).IsNull());
}
TEST_F(ExpressionEvaluatorPropertyLookup, Edge) {
auto v1 = dba.InsertVertex();
auto v2 = dba.InsertVertex();
auto e12 = dba.InsertEdge(v1, v2, dba.EdgeType("edge_type"));
e12.PropsSet(prop_age.second, 10);
eval.frame[symbol] = e12;
EXPECT_EQ(Value(prop_age).Value<int64_t>(), 10);
EXPECT_TRUE(Value(prop_height).IsNull());
}
TEST_F(ExpressionEvaluatorPropertyLookup, Null) {
eval.frame[symbol] = TypedValue::Null;
EXPECT_TRUE(Value(prop_age).IsNull());
}
TEST_F(ExpressionEvaluatorPropertyLookup, MapLiteral) {
eval.frame[symbol] = std::map<std::string, TypedValue>{{prop_age.first, 10}};
EXPECT_EQ(Value(prop_age).Value<int64_t>(), 10);
EXPECT_TRUE(Value(prop_height).IsNull());
}
TEST(ExpressionEvaluator, LabelsTest) {
AstTreeStorage storage;
NoContextExpressionEvaluator eval;
database::SingleNode db;
database::GraphDbAccessor dba(db);
auto v1 = dba.InsertVertex();
v1.add_label(dba.Label("ANIMAL"));
v1.add_label(dba.Label("DOG"));
v1.add_label(dba.Label("NICE_DOG"));
auto *identifier = storage.Create<Identifier>("n");
auto node_symbol = eval.symbol_table.CreateSymbol("n", true);
eval.symbol_table[*identifier] = node_symbol;
eval.frame[node_symbol] = v1;
{
auto *op = storage.Create<LabelsTest>(
identifier,
std::vector<storage::Label>{dba.Label("DOG"), dba.Label("ANIMAL")});
auto value = op->Accept(eval.eval);
EXPECT_EQ(value.Value<bool>(), true);
}
{
auto *op = storage.Create<LabelsTest>(
identifier,
std::vector<storage::Label>{dba.Label("DOG"), dba.Label("BAD_DOG"),
dba.Label("ANIMAL")});
auto value = op->Accept(eval.eval);
EXPECT_EQ(value.Value<bool>(), false);
}
{
eval.frame[node_symbol] = TypedValue::Null;
auto *op = storage.Create<LabelsTest>(
identifier,
std::vector<storage::Label>{dba.Label("DOG"), dba.Label("BAD_DOG"),
dba.Label("ANIMAL")});
auto value = op->Accept(eval.eval);
EXPECT_TRUE(value.IsNull());
}
}
TEST(ExpressionEvaluator, Aggregation) {
AstTreeStorage storage;
auto aggr = storage.Create<Aggregation>(storage.Create<PrimitiveLiteral>(42),
nullptr, Aggregation::Op::COUNT);
SymbolTable symbol_table;
auto aggr_sym = symbol_table.CreateSymbol("aggr", true);
symbol_table[*aggr] = aggr_sym;
Frame frame{symbol_table.max_position()};
frame[aggr_sym] = TypedValue(1);
database::SingleNode db;
database::GraphDbAccessor dba(db);
Parameters parameters;
ExpressionEvaluator eval{frame, parameters, symbol_table, dba,
GraphView::OLD};
auto value = aggr->Accept(eval);
EXPECT_EQ(value.Value<int64_t>(), 1);
}
TEST(ExpressionEvaluator, ListLiteral) {
AstTreeStorage storage;
NoContextExpressionEvaluator eval;
auto *list_literal = storage.Create<ListLiteral>(
std::vector<Expression *>{storage.Create<PrimitiveLiteral>(1),
storage.Create<PrimitiveLiteral>("bla"),
storage.Create<PrimitiveLiteral>(true)});
TypedValue result = list_literal->Accept(eval.eval);
ASSERT_EQ(result.type(), TypedValue::Type::List);
auto &result_elems = result.Value<std::vector<TypedValue>>();
ASSERT_EQ(3, result_elems.size());
EXPECT_EQ(result_elems[0].type(), TypedValue::Type::Int);
EXPECT_EQ(result_elems[1].type(), TypedValue::Type::String);
EXPECT_EQ(result_elems[2].type(), TypedValue::Type::Bool);
}
TEST(ExpressionEvaluator, FunctionCoalesce) {
ASSERT_THROW(EvaluateFunction("COALESCE", {}), QueryRuntimeException);
ASSERT_EQ(
EvaluateFunction("COALESCE", {TypedValue::Null, TypedValue::Null}).type(),
TypedValue::Type::Null);
ASSERT_EQ(
EvaluateFunction("COALESCE", {TypedValue::Null, 2, 3}).Value<int64_t>(),
2);
}
TEST(ExpressionEvaluator, FunctionEndNode) {
ASSERT_THROW(EvaluateFunction("ENDNODE", {}), QueryRuntimeException);
ASSERT_EQ(EvaluateFunction("ENDNODE", {TypedValue::Null}).type(),
TypedValue::Type::Null);
database::SingleNode db;
database::GraphDbAccessor dba(db);
auto v1 = dba.InsertVertex();
v1.add_label(dba.Label("label1"));
auto v2 = dba.InsertVertex();
v2.add_label(dba.Label("label2"));
auto e = dba.InsertEdge(v1, v2, dba.EdgeType("t"));
ASSERT_TRUE(EvaluateFunction("ENDNODE", {e})
.Value<VertexAccessor>()
.has_label(dba.Label("label2")));
ASSERT_THROW(EvaluateFunction("ENDNODE", {2}), QueryRuntimeException);
}
TEST(ExpressionEvaluator, FunctionHead) {
ASSERT_THROW(EvaluateFunction("HEAD", {}), QueryRuntimeException);
ASSERT_EQ(EvaluateFunction("HEAD", {TypedValue::Null}).type(),
TypedValue::Type::Null);
std::vector<TypedValue> arguments;
arguments.push_back(std::vector<TypedValue>{3, 4, 5});
ASSERT_EQ(EvaluateFunction("HEAD", arguments).Value<int64_t>(), 3);
arguments[0].Value<std::vector<TypedValue>>().clear();
ASSERT_EQ(EvaluateFunction("HEAD", arguments).type(), TypedValue::Type::Null);
ASSERT_THROW(EvaluateFunction("HEAD", {2}), QueryRuntimeException);
}
TEST(ExpressionEvaluator, FunctionProperties) {
ASSERT_THROW(EvaluateFunction("PROPERTIES", {}), QueryRuntimeException);
ASSERT_EQ(EvaluateFunction("PROPERTIES", {TypedValue::Null}).type(),
TypedValue::Type::Null);
database::SingleNode db;
database::GraphDbAccessor dba(db);
auto v1 = dba.InsertVertex();
v1.PropsSet(dba.Property("height"), 5);
v1.PropsSet(dba.Property("age"), 10);
auto v2 = dba.InsertVertex();
auto e = dba.InsertEdge(v1, v2, dba.EdgeType("type1"));
e.PropsSet(dba.Property("height"), 3);
e.PropsSet(dba.Property("age"), 15);
auto prop_values_to_int = [](TypedValue t) {
std::unordered_map<std::string, int> properties;
for (auto property : t.Value<std::map<std::string, TypedValue>>()) {
properties[property.first] = property.second.Value<int64_t>();
}
return properties;
};
ASSERT_THAT(prop_values_to_int(EvaluateFunction("PROPERTIES", {v1}, db)),
UnorderedElementsAre(testing::Pair("height", 5),
testing::Pair("age", 10)));
ASSERT_THAT(prop_values_to_int(EvaluateFunction("PROPERTIES", {e}, db)),
UnorderedElementsAre(testing::Pair("height", 3),
testing::Pair("age", 15)));
ASSERT_THROW(EvaluateFunction("PROPERTIES", {2}, db), QueryRuntimeException);
}
TEST(ExpressionEvaluator, FunctionLast) {
ASSERT_THROW(EvaluateFunction("LAST", {}), QueryRuntimeException);
ASSERT_EQ(EvaluateFunction("LAST", {TypedValue::Null}).type(),
TypedValue::Type::Null);
std::vector<TypedValue> arguments;
arguments.push_back(std::vector<TypedValue>{3, 4, 5});
ASSERT_EQ(EvaluateFunction("LAST", arguments).Value<int64_t>(), 5);
arguments[0].Value<std::vector<TypedValue>>().clear();
ASSERT_EQ(EvaluateFunction("LAST", arguments).type(), TypedValue::Type::Null);
ASSERT_THROW(EvaluateFunction("LAST", {5}), QueryRuntimeException);
}
TEST(ExpressionEvaluator, FunctionSize) {
ASSERT_THROW(EvaluateFunction("SIZE", {}), QueryRuntimeException);
ASSERT_EQ(EvaluateFunction("SIZE", {TypedValue::Null}).type(),
TypedValue::Type::Null);
std::vector<TypedValue> arguments;
arguments.push_back(std::vector<TypedValue>{3, 4, 5});
ASSERT_EQ(EvaluateFunction("SIZE", arguments).Value<int64_t>(), 3);
ASSERT_EQ(EvaluateFunction("SIZE", {"john"}).Value<int64_t>(), 4);
ASSERT_EQ(EvaluateFunction("SIZE", {std::map<std::string, TypedValue>{
{"a", 5}, {"b", true}, {"c", "123"}}})
.Value<int64_t>(),
3);
ASSERT_THROW(EvaluateFunction("SIZE", {5}), QueryRuntimeException);
database::SingleNode db;
database::GraphDbAccessor dba(db);
auto v0 = dba.InsertVertex();
query::Path path(v0);
EXPECT_EQ(EvaluateFunction("SIZE", {path}).ValueInt(), 0);
auto v1 = dba.InsertVertex();
path.Expand(dba.InsertEdge(v0, v1, dba.EdgeType("type")));
path.Expand(v1);
EXPECT_EQ(EvaluateFunction("SIZE", {path}).ValueInt(), 1);
}
TEST(ExpressionEvaluator, FunctionStartNode) {
ASSERT_THROW(EvaluateFunction("STARTNODE", {}), QueryRuntimeException);
ASSERT_EQ(EvaluateFunction("STARTNODE", {TypedValue::Null}).type(),
TypedValue::Type::Null);
database::SingleNode db;
database::GraphDbAccessor dba(db);
auto v1 = dba.InsertVertex();
v1.add_label(dba.Label("label1"));
auto v2 = dba.InsertVertex();
v2.add_label(dba.Label("label2"));
auto e = dba.InsertEdge(v1, v2, dba.EdgeType("t"));
ASSERT_TRUE(EvaluateFunction("STARTNODE", {e})
.Value<VertexAccessor>()
.has_label(dba.Label("label1")));
ASSERT_THROW(EvaluateFunction("STARTNODE", {2}), QueryRuntimeException);
}
TEST(ExpressionEvaluator, FunctionDegree) {
ASSERT_THROW(EvaluateFunction("DEGREE", {}), QueryRuntimeException);
ASSERT_EQ(EvaluateFunction("DEGREE", {TypedValue::Null}).type(),
TypedValue::Type::Null);
database::SingleNode db;
database::GraphDbAccessor dba(db);
auto v1 = dba.InsertVertex();
auto v2 = dba.InsertVertex();
auto v3 = dba.InsertVertex();
auto e12 = dba.InsertEdge(v1, v2, dba.EdgeType("t"));
dba.InsertEdge(v3, v2, dba.EdgeType("t"));
ASSERT_EQ(EvaluateFunction("DEGREE", {v1}).Value<int64_t>(), 1);
ASSERT_EQ(EvaluateFunction("DEGREE", {v2}).Value<int64_t>(), 2);
ASSERT_EQ(EvaluateFunction("DEGREE", {v3}).Value<int64_t>(), 1);
ASSERT_THROW(EvaluateFunction("DEGREE", {2}), QueryRuntimeException);
ASSERT_THROW(EvaluateFunction("DEGREE", {e12}), QueryRuntimeException);
}
TEST(ExpressionEvaluator, FunctionToBoolean) {
ASSERT_THROW(EvaluateFunction("TOBOOLEAN", {}), QueryRuntimeException);
ASSERT_EQ(EvaluateFunction("TOBOOLEAN", {TypedValue::Null}).type(),
TypedValue::Type::Null);
ASSERT_EQ(EvaluateFunction("TOBOOLEAN", {123}).ValueBool(), true);
ASSERT_EQ(EvaluateFunction("TOBOOLEAN", {-213}).ValueBool(), true);
ASSERT_EQ(EvaluateFunction("TOBOOLEAN", {0}).ValueBool(), false);
ASSERT_EQ(EvaluateFunction("TOBOOLEAN", {" trUE \n\t"}).Value<bool>(), true);
ASSERT_EQ(EvaluateFunction("TOBOOLEAN", {"\n\tFalsE "}).Value<bool>(), false);
ASSERT_EQ(EvaluateFunction("TOBOOLEAN", {"\n\tFALSEA "}).type(),
TypedValue::Type::Null);
ASSERT_EQ(EvaluateFunction("TOBOOLEAN", {true}).Value<bool>(), true);
ASSERT_EQ(EvaluateFunction("TOBOOLEAN", {false}).Value<bool>(), false);
}
TEST(ExpressionEvaluator, FunctionToFloat) {
ASSERT_THROW(EvaluateFunction("TOFLOAT", {}), QueryRuntimeException);
ASSERT_EQ(EvaluateFunction("TOFLOAT", {TypedValue::Null}).type(),
TypedValue::Type::Null);
ASSERT_EQ(EvaluateFunction("TOFLOAT", {" -3.5 \n\t"}).Value<double>(), -3.5);
ASSERT_EQ(EvaluateFunction("TOFLOAT", {"\n\t0.5e-1"}).Value<double>(), 0.05);
ASSERT_EQ(EvaluateFunction("TOFLOAT", {"\n\t3.4e-3X "}).type(),
TypedValue::Type::Null);
ASSERT_EQ(EvaluateFunction("TOFLOAT", {-3.5}).Value<double>(), -3.5);
ASSERT_EQ(EvaluateFunction("TOFLOAT", {-3}).Value<double>(), -3.0);
ASSERT_THROW(EvaluateFunction("TOFLOAT", {true}), QueryRuntimeException);
}
TEST(ExpressionEvaluator, FunctionToInteger) {
ASSERT_THROW(EvaluateFunction("TOINTEGER", {}), QueryRuntimeException);
ASSERT_EQ(EvaluateFunction("TOINTEGER", {TypedValue::Null}).type(),
TypedValue::Type::Null);
ASSERT_EQ(EvaluateFunction("TOINTEGER", {false}).Value<int64_t>(), 0);
ASSERT_EQ(EvaluateFunction("TOINTEGER", {true}).Value<int64_t>(), 1);
ASSERT_EQ(EvaluateFunction("TOINTEGER", {"\n\t3"}).Value<int64_t>(), 3);
ASSERT_EQ(EvaluateFunction("TOINTEGER", {" -3.5 \n\t"}).Value<int64_t>(), -3);
ASSERT_EQ(EvaluateFunction("TOINTEGER", {"\n\t3X "}).type(),
TypedValue::Type::Null);
ASSERT_EQ(EvaluateFunction("TOINTEGER", {-3.5}).Value<int64_t>(), -3);
ASSERT_EQ(EvaluateFunction("TOINTEGER", {3.5}).Value<int64_t>(), 3);
}
TEST(ExpressionEvaluator, FunctionType) {
ASSERT_THROW(EvaluateFunction("TYPE", {}), QueryRuntimeException);
ASSERT_EQ(EvaluateFunction("TYPE", {TypedValue::Null}).type(),
TypedValue::Type::Null);
database::SingleNode db;
database::GraphDbAccessor dba(db);
auto v1 = dba.InsertVertex();
v1.add_label(dba.Label("label1"));
auto v2 = dba.InsertVertex();
v2.add_label(dba.Label("label2"));
auto e = dba.InsertEdge(v1, v2, dba.EdgeType("type1"));
ASSERT_EQ(EvaluateFunction("TYPE", {e}, db).Value<std::string>(), "type1");
ASSERT_THROW(EvaluateFunction("TYPE", {2}, db), QueryRuntimeException);
}
TEST(ExpressionEvaluator, FunctionLabels) {
ASSERT_THROW(EvaluateFunction("LABELS", {}), QueryRuntimeException);
ASSERT_EQ(EvaluateFunction("LABELS", {TypedValue::Null}).type(),
TypedValue::Type::Null);
database::SingleNode db;
database::GraphDbAccessor dba(db);
auto v = dba.InsertVertex();
v.add_label(dba.Label("label1"));
v.add_label(dba.Label("label2"));
std::vector<std::string> labels;
auto _labels =
EvaluateFunction("LABELS", {v}, db).Value<std::vector<TypedValue>>();
for (auto label : _labels) {
labels.push_back(label.Value<std::string>());
}
ASSERT_THAT(labels, UnorderedElementsAre("label1", "label2"));
ASSERT_THROW(EvaluateFunction("LABELS", {2}, db), QueryRuntimeException);
}
TEST(ExpressionEvaluator, FunctionNodesRelationships) {
EXPECT_THROW(EvaluateFunction("NODES", {}), QueryRuntimeException);
EXPECT_THROW(EvaluateFunction("RELATIONSHIPS", {}), QueryRuntimeException);
EXPECT_TRUE(EvaluateFunction("NODES", {TypedValue::Null}).IsNull());
EXPECT_TRUE(EvaluateFunction("RELATIONSHIPS", {TypedValue::Null}).IsNull());
{
database::SingleNode db;
database::GraphDbAccessor dba(db);
auto v1 = dba.InsertVertex();
auto v2 = dba.InsertVertex();
auto v3 = dba.InsertVertex();
auto e1 = dba.InsertEdge(v1, v2, dba.EdgeType("Type"));
auto e2 = dba.InsertEdge(v2, v3, dba.EdgeType("Type"));
query::Path path(v1, e1, v2, e2, v3);
auto _nodes = EvaluateFunction("NODES", {path}).ValueList();
std::vector<VertexAccessor> nodes;
for (const auto &node : _nodes) {
nodes.push_back(node.ValueVertex());
}
EXPECT_THAT(nodes, ElementsAre(v1, v2, v3));
auto _edges = EvaluateFunction("RELATIONSHIPS", {path}).ValueList();
std::vector<EdgeAccessor> edges;
for (const auto &edge : _edges) {
edges.push_back(edge.ValueEdge());
}
EXPECT_THAT(edges, ElementsAre(e1, e2));
}
EXPECT_THROW(EvaluateFunction("NODES", {2}), QueryRuntimeException);
EXPECT_THROW(EvaluateFunction("RELATIONSHIPS", {2}), QueryRuntimeException);
}
TEST(ExpressionEvaluator, FunctionRange) {
EXPECT_THROW(EvaluateFunction("RANGE", {}), QueryRuntimeException);
EXPECT_TRUE(EvaluateFunction("RANGE", {1, 2, TypedValue::Null}).IsNull());
EXPECT_THROW(EvaluateFunction("RANGE", {1, TypedValue::Null, 1.3}),
QueryRuntimeException);
EXPECT_THROW(EvaluateFunction("RANGE", {1, 2, 0}), QueryRuntimeException);
EXPECT_THAT(ToList<int64_t>(EvaluateFunction("RANGE", {1, 3})),
ElementsAre(1, 2, 3));
EXPECT_THAT(ToList<int64_t>(EvaluateFunction("RANGE", {-1, 5, 2})),
ElementsAre(-1, 1, 3, 5));
EXPECT_THAT(ToList<int64_t>(EvaluateFunction("RANGE", {2, 10, 3})),
ElementsAre(2, 5, 8));
EXPECT_THAT(ToList<int64_t>(EvaluateFunction("RANGE", {2, 2, 2})),
ElementsAre(2));
EXPECT_THAT(ToList<int64_t>(EvaluateFunction("RANGE", {3, 0, 5})),
ElementsAre());
EXPECT_THAT(ToList<int64_t>(EvaluateFunction("RANGE", {5, 1, -2})),
ElementsAre(5, 3, 1));
EXPECT_THAT(ToList<int64_t>(EvaluateFunction("RANGE", {6, 1, -2})),
ElementsAre(6, 4, 2));
EXPECT_THAT(ToList<int64_t>(EvaluateFunction("RANGE", {2, 2, -3})),
ElementsAre(2));
EXPECT_THAT(ToList<int64_t>(EvaluateFunction("RANGE", {-2, 4, -1})),
ElementsAre());
}
TEST(ExpressionEvaluator, FunctionKeys) {
ASSERT_THROW(EvaluateFunction("KEYS", {}), QueryRuntimeException);
ASSERT_EQ(EvaluateFunction("KEYS", {TypedValue::Null}).type(),
TypedValue::Type::Null);
database::SingleNode db;
database::GraphDbAccessor dba(db);
auto v1 = dba.InsertVertex();
v1.PropsSet(dba.Property("height"), 5);
v1.PropsSet(dba.Property("age"), 10);
auto v2 = dba.InsertVertex();
auto e = dba.InsertEdge(v1, v2, dba.EdgeType("type1"));
e.PropsSet(dba.Property("width"), 3);
e.PropsSet(dba.Property("age"), 15);
auto prop_keys_to_string = [](TypedValue t) {
std::vector<std::string> keys;
for (auto property : t.Value<std::vector<TypedValue>>()) {
keys.push_back(property.Value<std::string>());
}
return keys;
};
ASSERT_THAT(prop_keys_to_string(EvaluateFunction("KEYS", {v1}, db)),
UnorderedElementsAre("height", "age"));
ASSERT_THAT(prop_keys_to_string(EvaluateFunction("KEYS", {e}, db)),
UnorderedElementsAre("width", "age"));
ASSERT_THROW(EvaluateFunction("KEYS", {2}, db), QueryRuntimeException);
}
TEST(ExpressionEvaluator, FunctionTail) {
ASSERT_THROW(EvaluateFunction("TAIL", {}), QueryRuntimeException);
ASSERT_EQ(EvaluateFunction("TAIL", {TypedValue::Null}).type(),
TypedValue::Type::Null);
std::vector<TypedValue> arguments;
arguments.push_back(std::vector<TypedValue>{});
ASSERT_EQ(EvaluateFunction("TAIL", arguments)
.Value<std::vector<TypedValue>>()
.size(),
0U);
arguments[0] = std::vector<TypedValue>{3, 4, true, "john"};
auto list =
EvaluateFunction("TAIL", arguments).Value<std::vector<TypedValue>>();
ASSERT_EQ(list.size(), 3U);
ASSERT_EQ(list[0].Value<int64_t>(), 4);
ASSERT_EQ(list[1].Value<bool>(), true);
ASSERT_EQ(list[2].Value<std::string>(), "john");
ASSERT_THROW(EvaluateFunction("TAIL", {2}), QueryRuntimeException);
}
TEST(ExpressionEvaluator, FunctionAbs) {
ASSERT_THROW(EvaluateFunction("ABS", {}), QueryRuntimeException);
ASSERT_EQ(EvaluateFunction("ABS", {TypedValue::Null}).type(),
TypedValue::Type::Null);
ASSERT_EQ(EvaluateFunction("ABS", {-2}).Value<int64_t>(), 2);
ASSERT_EQ(EvaluateFunction("ABS", {-2.5}).Value<double>(), 2.5);
ASSERT_THROW(EvaluateFunction("ABS", {true}), QueryRuntimeException);
}
// Test if log works. If it does then all functions wrapped with
// WRAP_CMATH_FLOAT_FUNCTION macro should work and are not gonna be tested for
// correctnes..
TEST(ExpressionEvaluator, FunctionLog) {
ASSERT_THROW(EvaluateFunction("LOG", {}), QueryRuntimeException);
ASSERT_EQ(EvaluateFunction("LOG", {TypedValue::Null}).type(),
TypedValue::Type::Null);
ASSERT_DOUBLE_EQ(EvaluateFunction("LOG", {2}).Value<double>(), log(2));
ASSERT_DOUBLE_EQ(EvaluateFunction("LOG", {1.5}).Value<double>(), log(1.5));
// Not portable, but should work on most platforms.
ASSERT_TRUE(std::isnan(EvaluateFunction("LOG", {-1.5}).Value<double>()));
ASSERT_THROW(EvaluateFunction("LOG", {true}), QueryRuntimeException);
}
// Function Round wraps round from cmath and will work if FunctionLog test
// passes. This test is used to show behavior of round since it differs from
// neo4j's round.
TEST(ExpressionEvaluator, FunctionRound) {
ASSERT_THROW(EvaluateFunction("ROUND", {}), QueryRuntimeException);
ASSERT_EQ(EvaluateFunction("ROUND", {TypedValue::Null}).type(),
TypedValue::Type::Null);
ASSERT_EQ(EvaluateFunction("ROUND", {-2}).Value<double>(), -2);
ASSERT_EQ(EvaluateFunction("ROUND", {-2.4}).Value<double>(), -2);
ASSERT_EQ(EvaluateFunction("ROUND", {-2.5}).Value<double>(), -3);
ASSERT_EQ(EvaluateFunction("ROUND", {-2.6}).Value<double>(), -3);
ASSERT_EQ(EvaluateFunction("ROUND", {2.4}).Value<double>(), 2);
ASSERT_EQ(EvaluateFunction("ROUND", {2.5}).Value<double>(), 3);
ASSERT_EQ(EvaluateFunction("ROUND", {2.6}).Value<double>(), 3);
ASSERT_THROW(EvaluateFunction("ROUND", {true}), QueryRuntimeException);
}
// Check if wrapped functions are callable (check if everything was spelled
// correctly...). Wrapper correctnes is checked in FunctionLog test.
TEST(ExpressionEvaluator, FunctionWrappedMathFunctions) {
for (auto function_name :
{"FLOOR", "CEIL", "ROUND", "EXP", "LOG", "LOG10", "SQRT", "ACOS", "ASIN",
"ATAN", "COS", "SIN", "TAN"}) {
EvaluateFunction(function_name, {0.5});
}
}
TEST(ExpressionEvaluator, FunctionAtan2) {
ASSERT_THROW(EvaluateFunction("ATAN2", {}), QueryRuntimeException);
ASSERT_EQ(EvaluateFunction("ATAN2", {TypedValue::Null, 1}).type(),
TypedValue::Type::Null);
ASSERT_EQ(EvaluateFunction("ATAN2", {1, TypedValue::Null}).type(),
TypedValue::Type::Null);
ASSERT_DOUBLE_EQ(EvaluateFunction("ATAN2", {2, -1.0}).Value<double>(),
atan2(2, -1));
ASSERT_THROW(EvaluateFunction("ATAN2", {3.0, true}), QueryRuntimeException);
}
TEST(ExpressionEvaluator, FunctionSign) {
ASSERT_THROW(EvaluateFunction("SIGN", {}), QueryRuntimeException);
ASSERT_EQ(EvaluateFunction("SIGN", {TypedValue::Null}).type(),
TypedValue::Type::Null);
ASSERT_EQ(EvaluateFunction("SIGN", {-2}).Value<int64_t>(), -1);
ASSERT_EQ(EvaluateFunction("SIGN", {-0.2}).Value<int64_t>(), -1);
ASSERT_EQ(EvaluateFunction("SIGN", {0.0}).Value<int64_t>(), 0);
ASSERT_EQ(EvaluateFunction("SIGN", {2.5}).Value<int64_t>(), 1);
ASSERT_THROW(EvaluateFunction("SIGN", {true}), QueryRuntimeException);
}
TEST(ExpressionEvaluator, FunctionE) {
ASSERT_THROW(EvaluateFunction("E", {1}), QueryRuntimeException);
ASSERT_DOUBLE_EQ(EvaluateFunction("E", {}).Value<double>(), M_E);
}
TEST(ExpressionEvaluator, FunctionPi) {
ASSERT_THROW(EvaluateFunction("PI", {1}), QueryRuntimeException);
ASSERT_DOUBLE_EQ(EvaluateFunction("PI", {}).Value<double>(), M_PI);
}
TEST(ExpressionEvaluator, FunctionRand) {
ASSERT_THROW(EvaluateFunction("RAND", {1}), QueryRuntimeException);
ASSERT_GE(EvaluateFunction("RAND", {}).Value<double>(), 0.0);
ASSERT_LT(EvaluateFunction("RAND", {}).Value<double>(), 1.0);
}
TEST(ExpressionEvaluator, FunctionStartsWith) {
EXPECT_THROW(EvaluateFunction(kStartsWith, {}), QueryRuntimeException);
EXPECT_TRUE(EvaluateFunction(kStartsWith, {"a", TypedValue::Null}).IsNull());
EXPECT_THROW(EvaluateFunction(kStartsWith, {TypedValue::Null, 1.3}),
QueryRuntimeException);
EXPECT_TRUE(EvaluateFunction(kStartsWith, {"abc", "abc"}).Value<bool>());
EXPECT_TRUE(EvaluateFunction(kStartsWith, {"abcdef", "abc"}).Value<bool>());
EXPECT_FALSE(EvaluateFunction(kStartsWith, {"abcdef", "aBc"}).Value<bool>());
EXPECT_FALSE(EvaluateFunction(kStartsWith, {"abc", "abcd"}).Value<bool>());
}
TEST(ExpressionEvaluator, FunctionEndsWith) {
EXPECT_THROW(EvaluateFunction(kEndsWith, {}), QueryRuntimeException);
EXPECT_TRUE(EvaluateFunction(kEndsWith, {"a", TypedValue::Null}).IsNull());
EXPECT_THROW(EvaluateFunction(kEndsWith, {TypedValue::Null, 1.3}),
QueryRuntimeException);
EXPECT_TRUE(EvaluateFunction(kEndsWith, {"abc", "abc"}).Value<bool>());
EXPECT_TRUE(EvaluateFunction(kEndsWith, {"abcdef", "def"}).Value<bool>());
EXPECT_FALSE(EvaluateFunction(kEndsWith, {"abcdef", "dEf"}).Value<bool>());
EXPECT_FALSE(EvaluateFunction(kEndsWith, {"bcd", "abcd"}).Value<bool>());
}
TEST(ExpressionEvaluator, FunctionContains) {
EXPECT_THROW(EvaluateFunction(kContains, {}), QueryRuntimeException);
EXPECT_TRUE(EvaluateFunction(kContains, {"a", TypedValue::Null}).IsNull());
EXPECT_THROW(EvaluateFunction(kContains, {TypedValue::Null, 1.3}),
QueryRuntimeException);
EXPECT_TRUE(EvaluateFunction(kContains, {"abc", "abc"}).Value<bool>());
EXPECT_TRUE(EvaluateFunction(kContains, {"abcde", "bcd"}).Value<bool>());
EXPECT_FALSE(EvaluateFunction(kContains, {"cde", "abcdef"}).Value<bool>());
EXPECT_FALSE(EvaluateFunction(kContains, {"abcdef", "dEf"}).Value<bool>());
}
TEST(ExpressionEvaluator, FunctionAll) {
AstTreeStorage storage;
auto *ident_x = IDENT("x");
auto *all =
ALL("x", LIST(LITERAL(1), LITERAL(2)), WHERE(EQ(ident_x, LITERAL(1))));
NoContextExpressionEvaluator eval;
const auto x_sym = eval.symbol_table.CreateSymbol("x", true);
eval.symbol_table[*all->identifier_] = x_sym;
eval.symbol_table[*ident_x] = x_sym;
auto value = all->Accept(eval.eval);
ASSERT_EQ(value.type(), TypedValue::Type::Bool);
EXPECT_FALSE(value.Value<bool>());
}
TEST(ExpressionEvaluator, FunctionAllNullList) {
AstTreeStorage storage;
auto *all = ALL("x", LITERAL(TypedValue::Null), WHERE(LITERAL(true)));
NoContextExpressionEvaluator eval;
const auto x_sym = eval.symbol_table.CreateSymbol("x", true);
eval.symbol_table[*all->identifier_] = x_sym;
auto value = all->Accept(eval.eval);
EXPECT_TRUE(value.IsNull());
}
TEST(ExpressionEvaluator, FunctionAllWhereWrongType) {
AstTreeStorage storage;
auto *all = ALL("x", LIST(LITERAL(1)), WHERE(LITERAL(2)));
NoContextExpressionEvaluator eval;
const auto x_sym = eval.symbol_table.CreateSymbol("x", true);
eval.symbol_table[*all->identifier_] = x_sym;
EXPECT_THROW(all->Accept(eval.eval), QueryRuntimeException);
}
TEST(ExpressionEvaluator, FunctionSingle) {
AstTreeStorage storage;
auto *ident_x = IDENT("x");
auto *single =
SINGLE("x", LIST(LITERAL(1), LITERAL(2)), WHERE(EQ(ident_x, LITERAL(1))));
NoContextExpressionEvaluator eval;
const auto x_sym = eval.symbol_table.CreateSymbol("x", true);
eval.symbol_table[*single->identifier_] = x_sym;
eval.symbol_table[*ident_x] = x_sym;
auto value = single->Accept(eval.eval);
ASSERT_EQ(value.type(), TypedValue::Type::Bool);
EXPECT_TRUE(value.Value<bool>());
}
TEST(ExpressionEvaluator, FunctionSingle2) {
AstTreeStorage storage;
auto *ident_x = IDENT("x");
auto *single = SINGLE("x", LIST(LITERAL(1), LITERAL(2)),
WHERE(GREATER(ident_x, LITERAL(0))));
NoContextExpressionEvaluator eval;
const auto x_sym = eval.symbol_table.CreateSymbol("x", true);
eval.symbol_table[*single->identifier_] = x_sym;
eval.symbol_table[*ident_x] = x_sym;
auto value = single->Accept(eval.eval);
ASSERT_EQ(value.type(), TypedValue::Type::Bool);
EXPECT_FALSE(value.Value<bool>());
}
TEST(ExpressionEvaluator, FunctionSingleNullList) {
AstTreeStorage storage;
auto *single = SINGLE("x", LITERAL(TypedValue::Null), WHERE(LITERAL(true)));
NoContextExpressionEvaluator eval;
const auto x_sym = eval.symbol_table.CreateSymbol("x", true);
eval.symbol_table[*single->identifier_] = x_sym;
auto value = single->Accept(eval.eval);
EXPECT_TRUE(value.IsNull());
}
TEST(ExpressionEvaluator, FunctionReduce) {
AstTreeStorage storage;
auto *ident_sum = IDENT("sum");
auto *ident_x = IDENT("x");
auto *reduce = REDUCE("sum", LITERAL(0), "x", LIST(LITERAL(1), LITERAL(2)),
ADD(ident_sum, ident_x));
NoContextExpressionEvaluator eval;
const auto sum_sym = eval.symbol_table.CreateSymbol("sum", true);
eval.symbol_table[*reduce->accumulator_] = sum_sym;
eval.symbol_table[*ident_sum] = sum_sym;
const auto x_sym = eval.symbol_table.CreateSymbol("x", true);
eval.symbol_table[*reduce->identifier_] = x_sym;
eval.symbol_table[*ident_x] = x_sym;
auto value = reduce->Accept(eval.eval);
ASSERT_EQ(value.type(), TypedValue::Type::Int);
EXPECT_EQ(value.Value<int64_t>(), 3);
}
TEST(ExpressionEvaluator, FunctionAssert) {
// Invalid calls.
ASSERT_THROW(EvaluateFunction("ASSERT", {}), QueryRuntimeException);
ASSERT_THROW(EvaluateFunction("ASSERT", {false, false}),
QueryRuntimeException);
ASSERT_THROW(EvaluateFunction("ASSERT", {"string", false}),
QueryRuntimeException);
ASSERT_THROW(EvaluateFunction("ASSERT", {false, "reason", true}),
QueryRuntimeException);
// Valid calls, assertion fails.
ASSERT_THROW(EvaluateFunction("ASSERT", {false}), QueryRuntimeException);
ASSERT_THROW(EvaluateFunction("ASSERT", {false, "message"}),
QueryRuntimeException);
try {
EvaluateFunction("ASSERT", {false, "bbgba"});
} catch (QueryRuntimeException &e) {
ASSERT_TRUE(utils::EndsWith(e.what(), "bbgba"));
}
// Valid calls, assertion passes.
ASSERT_TRUE(EvaluateFunction("ASSERT", {true}).ValueBool());
ASSERT_TRUE(EvaluateFunction("ASSERT", {true, "message"}).ValueBool());
}
TEST(ExpressionEvaluator, ParameterLookup) {
NoContextExpressionEvaluator eval;
eval.parameters.Add(0, 42);
AstTreeStorage storage;
auto *param_lookup = storage.Create<ParameterLookup>(0);
auto value = param_lookup->Accept(eval.eval);
ASSERT_EQ(value.type(), TypedValue::Type::Int);
EXPECT_EQ(value.Value<int64_t>(), 42);
}
TEST(ExpressionEvaluator, FunctionCounter) {
database::SingleNode db;
EXPECT_THROW(EvaluateFunction("COUNTER", {}, db), QueryRuntimeException);
EXPECT_THROW(EvaluateFunction("COUNTER", {"a", "b"}, db),
QueryRuntimeException);
EXPECT_EQ(EvaluateFunction("COUNTER", {"c1"}, db).ValueInt(), 0);
EXPECT_EQ(EvaluateFunction("COUNTER", {"c1"}, db).ValueInt(), 1);
EXPECT_EQ(EvaluateFunction("COUNTER", {"c2"}, db).ValueInt(), 0);
EXPECT_EQ(EvaluateFunction("COUNTER", {"c1"}, db).ValueInt(), 2);
EXPECT_EQ(EvaluateFunction("COUNTER", {"c2"}, db).ValueInt(), 1);
}
TEST(ExpressionEvaluator, FunctionCounterSet) {
database::SingleNode db;
EXPECT_THROW(EvaluateFunction("COUNTERSET", {}, db), QueryRuntimeException);
EXPECT_THROW(EvaluateFunction("COUNTERSET", {"a"}, db),
QueryRuntimeException);
EXPECT_THROW(EvaluateFunction("COUNTERSET", {"a", "b"}, db),
QueryRuntimeException);
EXPECT_THROW(EvaluateFunction("COUNTERSET", {"a", 11, 12}, db),
QueryRuntimeException);
EXPECT_EQ(EvaluateFunction("COUNTER", {"c1"}, db).ValueInt(), 0);
EvaluateFunction("COUNTERSET", {"c1", 12}, db);
EXPECT_EQ(EvaluateFunction("COUNTER", {"c1"}, db).ValueInt(), 12);
EvaluateFunction("COUNTERSET", {"c2", 42}, db);
EXPECT_EQ(EvaluateFunction("COUNTER", {"c2"}, db).ValueInt(), 42);
EXPECT_EQ(EvaluateFunction("COUNTER", {"c1"}, db).ValueInt(), 13);
EXPECT_EQ(EvaluateFunction("COUNTER", {"c2"}, db).ValueInt(), 43);
}
TEST(ExpressionEvaluator, FunctionIndexInfo) {
database::SingleNode db;
EXPECT_THROW(EvaluateFunction("INDEXINFO", {1}, db), QueryRuntimeException);
EXPECT_EQ(EvaluateFunction("INDEXINFO", {}, db).ValueList().size(), 0);
database::GraphDbAccessor dba(db);
dba.InsertVertex().add_label(dba.Label("l1"));
{
auto info = ToList<std::string>(EvaluateFunction("INDEXINFO", {}, db));
EXPECT_EQ(info.size(), 1);
EXPECT_EQ(info[0], ":l1");
}
{
dba.BuildIndex(dba.Label("l1"), dba.Property("prop"));
auto info = ToList<std::string>(EvaluateFunction("INDEXINFO", {}, db));
EXPECT_EQ(info.size(), 2);
EXPECT_THAT(info, testing::UnorderedElementsAre(":l1", ":l1(prop)"));
}
}
TEST(ExpressionEvaluator, FunctionIdNoGeneration) {
database::SingleNode db;
EXPECT_THROW(EvaluateFunction("ID", {}, db), QueryRuntimeException);
database::GraphDbAccessor dba(db);
auto va = dba.InsertVertex();
auto ea = dba.InsertEdge(va, va, dba.EdgeType("edge"));
// Unable to get id if they are not set
EXPECT_THROW(EvaluateFunction("ID", {va}, db), QueryRuntimeException);
EXPECT_THROW(EvaluateFunction("ID", {ea}, db), QueryRuntimeException);
}
TEST(ExpressionEvaluator, FunctionIdGenerateVertexIds) {
FLAGS_generate_vertex_ids = true;
database::SingleNode db;
database::GraphDbAccessor dba(db);
auto va = dba.InsertVertex();
auto ea = dba.InsertEdge(va, va, dba.EdgeType("edge"));
EXPECT_EQ(EvaluateFunction("ID", {va}, db).Value<int64_t>(), 0);
EXPECT_THROW(EvaluateFunction("ID", {ea}, db), QueryRuntimeException);
auto vb = dba.InsertVertex();
EXPECT_EQ(EvaluateFunction("ID", {vb}, db).Value<int64_t>(), 1024);
FLAGS_generate_vertex_ids = false;
}
TEST(ExpressionEvaluator, FunctionIdGenerateEdgeIds) {
FLAGS_generate_edge_ids = true;
database::SingleNode db;
database::GraphDbAccessor dba(db);
auto va = dba.InsertVertex();
auto ea = dba.InsertEdge(va, va, dba.EdgeType("edge"));
EXPECT_THROW(EvaluateFunction("ID", {va}, db), QueryRuntimeException);
EXPECT_EQ(EvaluateFunction("ID", {ea}, db).Value<int64_t>(), 0);
auto eb = dba.InsertEdge(va, va, dba.EdgeType("edge"));
EXPECT_EQ(EvaluateFunction("ID", {eb}, db).Value<int64_t>(), 1024);
FLAGS_generate_edge_ids = false;
}
} // namespace