5d235b51f3
tmp commit tmp commit v2 Finished reimplementation of propertys. They now can be placed in a holder with different source of type information. Tmp commit
301 lines
8.2 KiB
C++
301 lines
8.2 KiB
C++
#include <chrono>
|
|
#include <cstring>
|
|
#include <ctime>
|
|
#include <fstream>
|
|
#include <iostream>
|
|
#include <queue>
|
|
#include <regex>
|
|
#include <sstream>
|
|
#include <string>
|
|
#include <vector>
|
|
|
|
#include "data_structures/map/rh_hashmap.hpp"
|
|
#include "database/db.hpp"
|
|
#include "database/db_accessor.cpp"
|
|
#include "database/db_accessor.hpp"
|
|
#include "import/csv_import.hpp"
|
|
#include "storage/edge_x_vertex.hpp"
|
|
#include "storage/edges.cpp"
|
|
#include "storage/edges.hpp"
|
|
#include "storage/indexes/impl/nonunique_unordered_index.cpp"
|
|
#include "storage/model/properties/properties.cpp"
|
|
#include "storage/record_accessor.cpp"
|
|
// #include "storage/vertex_accessor.cpp"
|
|
#include "communication/bolt/v1/serialization/bolt_serializer.hpp"
|
|
#include "storage/vertex_accessor.hpp"
|
|
#include "storage/vertices.cpp"
|
|
#include "storage/vertices.hpp"
|
|
#include "utils/command_line/arguments.hpp"
|
|
|
|
const int max_score = 1000000;
|
|
|
|
using namespace std;
|
|
typedef VertexAccessor VertexAccessor;
|
|
|
|
void add_scores(Db &db);
|
|
|
|
class Node
|
|
{
|
|
public:
|
|
Node *parent = {nullptr};
|
|
type_key_t<TypeGroupVertex, Double> tkey;
|
|
double cost;
|
|
int depth = {0};
|
|
VertexAccessor vacc;
|
|
|
|
Node(VertexAccessor vacc, double cost,
|
|
type_key_t<TypeGroupVertex, Double> tkey)
|
|
: cost(cost), vacc(vacc), tkey(tkey)
|
|
{
|
|
}
|
|
Node(VertexAccessor vacc, double cost, Node *parent,
|
|
type_key_t<TypeGroupVertex, Double> tkey)
|
|
: cost(cost), vacc(vacc), parent(parent), depth(parent->depth + 1),
|
|
tkey(tkey)
|
|
{
|
|
}
|
|
|
|
double sum_vertex_score()
|
|
{
|
|
auto now = this;
|
|
double sum = 0;
|
|
do {
|
|
sum += (now->vacc.at(tkey).get())->value();
|
|
now = now->parent;
|
|
} while (now != nullptr);
|
|
return sum;
|
|
}
|
|
};
|
|
|
|
class Score
|
|
{
|
|
public:
|
|
Score() : value(std::numeric_limits<double>::max()) {}
|
|
Score(double v) : value(v) {}
|
|
double value;
|
|
};
|
|
|
|
void found_result(Node *res)
|
|
{
|
|
double sum = res->sum_vertex_score();
|
|
|
|
std::cout << "{score: " << sum << endl;
|
|
auto bef = res;
|
|
while (bef != nullptr) {
|
|
std::cout << " " << *(bef->vacc.operator->()) << endl;
|
|
bef = bef->parent;
|
|
}
|
|
}
|
|
|
|
double calc_heuristic_cost_dummy(type_key_t<TypeGroupVertex, Double> tkey,
|
|
EdgeAccessor &edge, VertexAccessor &vertex)
|
|
{
|
|
assert(!vertex.empty());
|
|
return 1 - vertex.at(tkey).get()->value();
|
|
}
|
|
|
|
typedef bool (*EdgeFilter)(DbAccessor &t, EdgeAccessor &, Node *before);
|
|
typedef bool (*VertexFilter)(DbAccessor &t, VertexAccessor &, Node *before);
|
|
|
|
bool edge_filter_dummy(DbAccessor &t, EdgeAccessor &e, Node *before)
|
|
{
|
|
return true;
|
|
}
|
|
|
|
bool vertex_filter_dummy(DbAccessor &t, VertexAccessor &va, Node *before)
|
|
{
|
|
return va.fill();
|
|
}
|
|
|
|
bool vertex_filter_contained_dummy(DbAccessor &t, VertexAccessor &v,
|
|
Node *before)
|
|
{
|
|
if (v.fill()) {
|
|
bool found;
|
|
do {
|
|
found = false;
|
|
before = before->parent;
|
|
if (before == nullptr) {
|
|
return true;
|
|
}
|
|
auto it = before->vacc.out();
|
|
for (auto e = it.next(); e.is_present(); e = it.next()) {
|
|
VertexAccessor va = e.get().to();
|
|
if (va == v) {
|
|
found = true;
|
|
break;
|
|
}
|
|
}
|
|
} while (found);
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool vertex_filter_contained(DbAccessor &t, VertexAccessor &v, Node *before)
|
|
{
|
|
if (v.fill()) {
|
|
bool found;
|
|
do {
|
|
found = false;
|
|
before = before->parent;
|
|
if (before == nullptr) {
|
|
return true;
|
|
}
|
|
} while (v.in_contains(before->vacc));
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// Vertex filter ima max_depth funkcija te edge filter ima max_depth funkcija.
|
|
// Jedan za svaku dubinu.
|
|
// Filtri vracaju true ako element zadovoljava uvjete.
|
|
auto a_star(
|
|
Db &db, int64_t sys_id_start, uint max_depth, EdgeFilter e_filter[],
|
|
VertexFilter v_filter[],
|
|
double (*calc_heuristic_cost)(type_key_t<TypeGroupVertex, Double> tkey,
|
|
EdgeAccessor &edge, VertexAccessor &vertex),
|
|
int limit)
|
|
{
|
|
DbAccessor t(db);
|
|
type_key_t<TypeGroupVertex, Double> tkey =
|
|
t.vertex_property_family_get("score")
|
|
.get(Flags::Double)
|
|
.type_key<Double>();
|
|
|
|
auto best_found = new std::map<Id, Score>[max_depth];
|
|
|
|
std::vector<Node *> best;
|
|
auto cmp = [](Node *left, Node *right) { return left->cost > right->cost; };
|
|
std::priority_queue<Node *, std::vector<Node *>, decltype(cmp)> queue(cmp);
|
|
|
|
auto start_vr = t.vertex_find(sys_id_start);
|
|
assert(start_vr);
|
|
start_vr.get().fill();
|
|
Node *start = new Node(start_vr.take(), 0, tkey);
|
|
queue.push(start);
|
|
int count = 0;
|
|
do {
|
|
auto now = queue.top();
|
|
queue.pop();
|
|
// if(!visited.insert(now)){
|
|
// continue;
|
|
// }
|
|
|
|
if (max_depth <= now->depth) {
|
|
best.push_back(now);
|
|
count++;
|
|
if (count >= limit) {
|
|
return best;
|
|
}
|
|
continue;
|
|
}
|
|
|
|
// { // FOUND FILTER
|
|
// Score &bef = best_found[now->depth][now->vacc.id()];
|
|
// if (bef.value <= now->cost) {
|
|
// continue;
|
|
// }
|
|
// bef.value = now->cost;
|
|
// }
|
|
|
|
iter::for_all(now->vacc.out(), [&](auto edge) {
|
|
if (e_filter[now->depth](t, edge, now)) {
|
|
VertexAccessor va = edge.to();
|
|
if (v_filter[now->depth](t, va, now)) {
|
|
auto cost = calc_heuristic_cost(tkey, edge, va);
|
|
Node *n = new Node(va, now->cost + cost, now, tkey);
|
|
queue.push(n);
|
|
}
|
|
}
|
|
});
|
|
} while (!queue.empty());
|
|
|
|
// TODO: GUBI SE MEMORIJA JER SE NODOVI NEBRISU
|
|
|
|
t.commit();
|
|
return best;
|
|
}
|
|
|
|
int main(int argc, char **argv)
|
|
{
|
|
auto para = all_arguments(argc, argv);
|
|
|
|
Db db;
|
|
auto loaded = import_csv_from_arguments(db, para);
|
|
add_scores(db);
|
|
|
|
EdgeFilter e_filters[] = {&edge_filter_dummy, &edge_filter_dummy,
|
|
&edge_filter_dummy, &edge_filter_dummy};
|
|
VertexFilter f_filters[] = {
|
|
&vertex_filter_contained, &vertex_filter_contained,
|
|
&vertex_filter_contained, &vertex_filter_contained};
|
|
|
|
// CONF
|
|
std::srand(time(0));
|
|
auto best_n = 10;
|
|
auto bench_n = 1000;
|
|
auto best_print_n = 10;
|
|
bool pick_best_found =
|
|
strcmp(get_argument(para, "-p", "true").c_str(), "true") == 0;
|
|
|
|
double sum = 0;
|
|
std::vector<Node *> best;
|
|
for (int i = 0; i < bench_n; i++) {
|
|
auto start_vertex_index = std::rand() % loaded.first;
|
|
|
|
auto begin = clock();
|
|
auto found = a_star(db, start_vertex_index, 3, e_filters, f_filters,
|
|
&calc_heuristic_cost_dummy, best_n);
|
|
clock_t end = clock();
|
|
|
|
double elapsed_ms = (double(end - begin) / CLOCKS_PER_SEC) * 1000;
|
|
sum += elapsed_ms;
|
|
|
|
if ((best.size() < best_print_n && found.size() > best.size()) ||
|
|
(pick_best_found && found.size() > 0 &&
|
|
found.front()->sum_vertex_score() >
|
|
best.front()->sum_vertex_score())) {
|
|
best = found;
|
|
}
|
|
|
|
// Just to be safe
|
|
if (i + 1 == bench_n && best.size() == 0) {
|
|
bench_n++;
|
|
}
|
|
}
|
|
|
|
std::cout << "\nSearch for best " << best_n
|
|
<< " results has runing time of:\n avg: " << sum / bench_n
|
|
<< " [ms]\n";
|
|
std::cout << "\nExample of best result:\n";
|
|
for (int i = 0; i < best_print_n && best.size() > 0; i++) {
|
|
found_result(best.front());
|
|
best.erase(best.begin());
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
// Adds property score to all vertices.
|
|
void add_scores(Db &db)
|
|
{
|
|
DbAccessor t(db);
|
|
|
|
auto key_score =
|
|
t.vertex_property_family_get("score").get(Flags::Double).family_key();
|
|
|
|
int i = 1;
|
|
iter::for_all(t.vertex_access(), [&](auto v) {
|
|
if (v.fill()) {
|
|
// from Kruno's head :) (could be ALMOST anything else)
|
|
std::srand(i ^ 0x7482616);
|
|
v.set(StoredProperty<TypeGroupVertex>(
|
|
Double((std::rand() % max_score) / (max_score + 0.0)),
|
|
key_score));
|
|
i++;
|
|
}
|
|
});
|
|
|
|
t.commit();
|
|
}
|