memgraph/tests/unit/bolt_chunked_encoder_buffer.cpp
Dominik Gleich e2f3aba332 Use GLogger instead of broken memgraph Logger.
Summary:
http://rpg.ifi.uzh.ch/docs/glog.html

Second phase before tests complete.

Delete logging test.

Finish relase loging.

Reviewers: mislav.bradac, teon.banek, buda

Reviewed By: teon.banek

Subscribers: buda, pullbot

Differential Revision: https://phabricator.memgraph.io/D500
2017-06-21 15:33:24 +02:00

117 lines
3.6 KiB
C++

#include "bolt_common.hpp"
#include "communication/bolt/v1/encoder/chunked_encoder_buffer.hpp"
// aliases
using SocketT = TestSocket;
using BufferT = communication::bolt::ChunkedEncoderBuffer<SocketT>;
// "alias" constants
static constexpr auto CHS = communication::bolt::CHUNK_HEADER_SIZE;
static constexpr auto CEMS = communication::bolt::CHUNK_END_MARKER_SIZE;
static constexpr auto MCS = communication::bolt::MAX_CHUNK_SIZE;
static constexpr auto WCS = communication::bolt::WHOLE_CHUNK_SIZE;
/**
* Verifies a single chunk. The chunk should be constructed from header
* (chunk size), data and end marker. The header is two bytes long number
* written in big endian format. Data is array of elements which max size is
* 0xFFFF. The end marker is always two bytes long array of two zeros.
*
* @param data pointer on data array (array of bytes)
* @param size of data array
* @param element expected element in all positions of chunk data array
* (all data bytes in tested chunk should be equal to element)
*/
void VerifyChunkOfOnes(uint8_t *data, int size, uint8_t element) {
// first two bytes are size (big endian)
uint8_t lower_byte = size & 0xFF;
uint8_t higher_byte = (size & 0xFF00) >> 8;
ASSERT_EQ(*data, higher_byte);
ASSERT_EQ(*(data + 1), lower_byte);
// in the data array should be size number of ones
// the header is skipped
for (auto i = CHS; i < size + CHS; ++i) {
ASSERT_EQ(*(data + i), element);
}
// last two bytes should be zeros
// next to header and data
ASSERT_EQ(*(data + CHS + size), 0x00);
ASSERT_EQ(*(data + CHS + size + 1), 0x00);
}
TEST(BoltChunkedEncoderBuffer, OneSmallChunk) {
// initialize array of 100 ones (small chunk)
int size = 100;
uint8_t element = '1';
std::vector<uint8_t> data(100, element);
// initialize tested buffer
SocketT socket(10);
BufferT buffer(socket);
// write into buffer
buffer.Write(data.data(), size);
buffer.Flush();
// check the output array
// the array should look like: [0, 100, 1, 1, ... , 1, 0, 0]
VerifyChunkOfOnes(socket.output.data(), size, element);
}
TEST(BoltChunkedEncoderBuffer, TwoSmallChunks) {
// initialize the small arrays
int size1 = 100;
uint8_t element1 = '1';
std::vector<uint8_t> data1(size1, element1);
int size2 = 200;
uint8_t element2 = '2';
std::vector<uint8_t> data2(size2, element2);
// initialize tested buffer
SocketT socket(10);
BufferT buffer(socket);
// write into buffer
buffer.Write(data1.data(), size1);
buffer.Chunk();
buffer.Write(data2.data(), size2);
buffer.Flush();
// check the output array
// the output array should look like this: [0, 100, 1, 1, ... , 1, 0, 0] +
// [0, 100, 2, 2, ...... , 2, 0, 0]
auto data = socket.output.data();
VerifyChunkOfOnes(data, size1, element1);
VerifyChunkOfOnes(data + CHS + size1 + CEMS, size2, element2);
}
TEST(BoltChunkedEncoderBuffer, OneAndAHalfOfMaxChunk) {
// initialize a big chunk
int size = 100000;
uint8_t element = '1';
std::vector<uint8_t> data(size, element);
// initialize tested buffer
SocketT socket(10);
BufferT buffer(socket);
// write into buffer
buffer.Write(data.data(), size);
buffer.Flush();
// check the output array
// the output array should look like this:
// [0xFF, 0xFF, 1, 1, ... , 1, 0, 0, 0x86, 0xA1, 1, 1, ... , 1, 0, 0]
auto output = socket.output.data();
VerifyChunkOfOnes(output, MCS, element);
VerifyChunkOfOnes(output + WCS, size - MCS, element);
}
int main(int argc, char **argv) {
google::InitGoogleLogging(argv[0]);
::testing::InitGoogleTest(&argc, argv);
return RUN_ALL_TESTS();
}