memgraph/tests/unit/bolt_decoder.cpp
Teon Banek b15eeffd48 Extract communication to static library
Summary:
Session specifics have been move out of the Bolt `executing` state, and
are accessed via pure virtual Session type. Our server is templated on
the session and we are setting the concrete type, so there should be no
virtual call overhead. Abstract Session is used to indicate the
interface, this could have also been templated, but the explicit
interface definition makes it clearer.

Specific session implementation for running Memgraph is now implemented
in memgraph_bolt, which instantiates the concrete session type. This may
not be 100% appropriate place, but Memgraph specific session isn't
needed anywhere else.

Bolt/communication tests now use a dummy session and depend only on
communication, which significantly improves test run times.

All these changes make the communication a library which doesn't depend
on storage nor the database. Only shared connection points, which aren't
part of the base communication library are:

  * glue/conversion -- which converts between storage and bolt types, and
  * communication/result_stream_faker -- templated, but used in tests and query/repl

Depends on D1453

Reviewers: mferencevic, buda, mtomic, msantl

Reviewed By: mferencevic, mtomic

Subscribers: pullbot

Differential Revision: https://phabricator.memgraph.io/D1456
2018-07-11 12:52:41 +02:00

444 lines
12 KiB
C++

#include <glog/logging.h>
#include "bolt_common.hpp"
#include "bolt_testdata.hpp"
#include "communication/bolt/v1/decoder/decoder.hpp"
using communication::bolt::DecodedValue;
constexpr const int SIZE = 131072;
uint8_t data[SIZE];
/**
* TestDecoderBuffer
* This class provides a dummy Buffer used for testing the Decoder.
* It's Read function is the necessary public interface for the Decoder.
* It's Write and Clear methods are used for testing. Through the Write
* method you can store data in the buffer, and throgh the Clear method
* you can clear the buffer. The decoder uses the Read function to get
* data from the buffer.
*/
class TestDecoderBuffer {
public:
bool Read(uint8_t *data, size_t len) {
if (len > buffer_.size()) return false;
memcpy(data, buffer_.data(), len);
buffer_.erase(buffer_.begin(), buffer_.begin() + len);
return true;
}
void Write(const uint8_t *data, size_t len) {
for (size_t i = 0; i < len; ++i) buffer_.push_back(data[i]);
}
void Clear() { buffer_.clear(); }
private:
std::vector<uint8_t> buffer_;
};
using DecoderT = communication::bolt::Decoder<TestDecoderBuffer>;
TEST(BoltDecoder, NullAndBool) {
TestDecoderBuffer buffer;
DecoderT decoder(buffer);
DecodedValue dv;
// test null
buffer.Write((const uint8_t *)"\xC0", 1);
ASSERT_EQ(decoder.ReadValue(&dv), true);
ASSERT_EQ(dv.type(), DecodedValue::Type::Null);
// test true
buffer.Write((const uint8_t *)"\xC3", 1);
ASSERT_EQ(decoder.ReadValue(&dv), true);
ASSERT_EQ(dv.type(), DecodedValue::Type::Bool);
ASSERT_EQ(dv.ValueBool(), true);
// test false
buffer.Write((const uint8_t *)"\xC2", 1);
ASSERT_EQ(decoder.ReadValue(&dv), true);
ASSERT_EQ(dv.type(), DecodedValue::Type::Bool);
ASSERT_EQ(dv.ValueBool(), false);
}
TEST(BoltDecoder, Int) {
TestDecoderBuffer buffer;
DecoderT decoder(buffer);
DecodedValue dv;
// test invalid marker
buffer.Clear();
buffer.Write((uint8_t *)"\xCD", 1); // 0xCD is reserved in the protocol
ASSERT_EQ(decoder.ReadValue(&dv), false);
for (int i = 0; i < 28; ++i) {
// test missing data
buffer.Clear();
buffer.Write(int_encoded[i], int_encoded_len[i] - 1);
ASSERT_EQ(decoder.ReadValue(&dv), false);
// test all ok
buffer.Clear();
buffer.Write(int_encoded[i], int_encoded_len[i]);
ASSERT_EQ(decoder.ReadValue(&dv), true);
ASSERT_EQ(dv.type(), DecodedValue::Type::Int);
ASSERT_EQ(dv.ValueInt(), int_decoded[i]);
}
}
TEST(BoltDecoder, Double) {
TestDecoderBuffer buffer;
DecoderT decoder(buffer);
DecodedValue dv;
for (int i = 0; i < 4; ++i) {
// test missing data
buffer.Clear();
buffer.Write(double_encoded[i], 8);
ASSERT_EQ(decoder.ReadValue(&dv), false);
// test all ok
buffer.Clear();
buffer.Write(double_encoded[i], 9);
ASSERT_EQ(decoder.ReadValue(&dv), true);
ASSERT_EQ(dv.type(), DecodedValue::Type::Double);
ASSERT_EQ(dv.ValueDouble(), double_decoded[i]);
}
}
TEST(BoltDecoder, String) {
TestDecoderBuffer buffer;
DecoderT decoder(buffer);
DecodedValue dv;
uint8_t headers[][6] = {"\x8F", "\xD0\x0F", "\xD1\x00\x0F",
"\xD2\x00\x00\x00\x0F"};
int headers_len[] = {1, 2, 3, 5};
for (int i = 0; i < 4; ++i) {
// test missing data in header
buffer.Clear();
buffer.Write(headers[i], headers_len[i] - 1);
ASSERT_EQ(decoder.ReadValue(&dv), false);
// test missing elements
buffer.Clear();
buffer.Write(headers[i], headers_len[i]);
buffer.Write(data, 14);
ASSERT_EQ(decoder.ReadValue(&dv), false);
// test all ok
buffer.Clear();
buffer.Write(headers[i], headers_len[i]);
buffer.Write(data, 15);
ASSERT_EQ(decoder.ReadValue(&dv), true);
ASSERT_EQ(dv.type(), DecodedValue::Type::String);
std::string &str = dv.ValueString();
for (int j = 0; j < 15; ++j) EXPECT_EQ((uint8_t)str[j], data[j]);
}
}
TEST(BoltDecoder, StringLarge) {
TestDecoderBuffer buffer;
DecoderT decoder(buffer);
DecodedValue dv;
uint8_t header[6] = "\xD2\x00\x01\x86\xA0";
// test missing data
buffer.Clear();
buffer.Write(header, 5);
buffer.Write(data, 10);
ASSERT_EQ(decoder.ReadValue(&dv), false);
// test all ok
buffer.Clear();
buffer.Write(header, 5);
buffer.Write(data, 100000);
ASSERT_EQ(decoder.ReadValue(&dv), true);
ASSERT_EQ(dv.type(), DecodedValue::Type::String);
std::string &str = dv.ValueString();
for (int j = 0; j < 100000; ++j) EXPECT_EQ((uint8_t)str[j], data[j]);
}
TEST(BoltDecoder, List) {
TestDecoderBuffer buffer;
DecoderT decoder(buffer);
DecodedValue dv;
uint8_t headers[][6] = {"\x9F", "\xD4\x0F", "\xD5\x00\x0F",
"\xD6\x00\x00\x00\x0F"};
int headers_len[] = {1, 2, 3, 5};
for (int i = 0; i < 4; ++i) {
// test missing data in header
buffer.Clear();
buffer.Write(headers[i], headers_len[i] - 1);
ASSERT_EQ(decoder.ReadValue(&dv), false);
// test missing elements
buffer.Clear();
buffer.Write(headers[i], headers_len[i]);
for (uint8_t j = 0; j < 14; ++j) buffer.Write(&j, 1);
ASSERT_EQ(decoder.ReadValue(&dv), false);
// test all ok
buffer.Clear();
buffer.Write(headers[i], headers_len[i]);
for (uint8_t j = 0; j < 15; ++j) buffer.Write(&j, 1);
ASSERT_EQ(decoder.ReadValue(&dv), true);
ASSERT_EQ(dv.type(), DecodedValue::Type::List);
std::vector<DecodedValue> &val = dv.ValueList();
ASSERT_EQ(val.size(), 15);
for (int j = 0; j < 15; ++j) EXPECT_EQ(val[j].ValueInt(), j);
}
}
TEST(BoltDecoder, Map) {
TestDecoderBuffer buffer;
DecoderT decoder(buffer);
DecodedValue dv;
uint8_t headers[][6] = {"\xAF", "\xD8\x0F", "\xD9\x00\x0F",
"\xDA\x00\x00\x00\x0F"};
int headers_len[] = {1, 2, 3, 5};
uint8_t index[] = "\x81\x61";
uint8_t wrong_index = 1;
for (int i = 0; i < 4; ++i) {
// test missing data in header
buffer.Clear();
buffer.Write(headers[i], headers_len[i] - 1);
ASSERT_EQ(decoder.ReadValue(&dv), false);
// test wrong index type
buffer.Clear();
buffer.Write(headers[i], headers_len[i]);
buffer.Write(&wrong_index, 1);
buffer.Write(&wrong_index, 1);
ASSERT_EQ(decoder.ReadValue(&dv), false);
// test missing element data
buffer.Clear();
buffer.Write(headers[i], headers_len[i]);
buffer.Write(index, 2);
ASSERT_EQ(decoder.ReadValue(&dv), false);
// test missing elements
buffer.Clear();
buffer.Write(headers[i], headers_len[i]);
for (uint8_t j = 0; j < 14; ++j) {
buffer.Write(index, 2);
buffer.Write(&j, 1);
}
ASSERT_EQ(decoder.ReadValue(&dv), false);
// test elements with same index
buffer.Clear();
buffer.Write(headers[i], headers_len[i]);
for (uint8_t j = 0; j < 15; ++j) {
buffer.Write(index, 2);
buffer.Write(&j, 1);
}
ASSERT_EQ(decoder.ReadValue(&dv), false);
// test all ok
buffer.Clear();
buffer.Write(headers[i], headers_len[i]);
for (uint8_t j = 0; j < 15; ++j) {
uint8_t tmp = 'a' + j;
buffer.Write(index, 1);
buffer.Write(&tmp, 1);
buffer.Write(&j, 1);
}
ASSERT_EQ(decoder.ReadValue(&dv), true);
ASSERT_EQ(dv.type(), DecodedValue::Type::Map);
std::map<std::string, DecodedValue> &val = dv.ValueMap();
ASSERT_EQ(val.size(), 15);
for (int j = 0; j < 15; ++j) {
char tmp_chr = 'a' + j;
DecodedValue tmp_dv = val[std::string(1, tmp_chr)];
EXPECT_EQ(tmp_dv.type(), DecodedValue::Type::Int);
EXPECT_EQ(tmp_dv.ValueInt(), j);
}
}
}
TEST(BoltDecoder, Vertex) {
TestDecoderBuffer buffer;
DecoderT decoder(buffer);
DecodedValue dv;
uint8_t header[] = "\xB3\x4E";
uint8_t wrong_header[] = "\x00\x00";
uint8_t test_int[] = "\x01";
uint8_t test_str[] = "\x81\x61";
uint8_t test_list[] = "\x91";
uint8_t test_map[] = "\xA1";
// test missing signature
buffer.Clear();
buffer.Write(wrong_header, 1);
ASSERT_EQ(decoder.ReadValue(&dv, DecodedValue::Type::Vertex), false);
// test wrong marker
buffer.Clear();
buffer.Write(wrong_header, 2);
ASSERT_EQ(decoder.ReadValue(&dv, DecodedValue::Type::Vertex), false);
// test wrong signature
buffer.Clear();
buffer.Write(header, 1);
buffer.Write(wrong_header, 1);
ASSERT_EQ(decoder.ReadValue(&dv, DecodedValue::Type::Vertex), false);
// test ID wrong type
buffer.Clear();
buffer.Write(header, 2);
buffer.Write(test_str, 2);
ASSERT_EQ(decoder.ReadValue(&dv, DecodedValue::Type::Vertex), false);
// test labels wrong outer type
buffer.Clear();
buffer.Write(header, 2);
buffer.Write(test_int, 1);
buffer.Write(test_int, 1);
ASSERT_EQ(decoder.ReadValue(&dv, DecodedValue::Type::Vertex), false);
// test labels wrong inner type
buffer.Clear();
buffer.Write(header, 2);
buffer.Write(test_int, 1);
buffer.Write(test_list, 1);
buffer.Write(test_int, 1);
ASSERT_EQ(decoder.ReadValue(&dv, DecodedValue::Type::Vertex), false);
// test properties wrong outer type
buffer.Clear();
buffer.Write(header, 2);
buffer.Write(test_int, 1);
buffer.Write(test_list, 1);
buffer.Write(test_str, 2);
ASSERT_EQ(decoder.ReadValue(&dv, DecodedValue::Type::Vertex), false);
// test all ok
buffer.Clear();
buffer.Write(header, 2);
buffer.Write(test_int, 1);
buffer.Write(test_list, 1);
buffer.Write(test_str, 2);
buffer.Write(test_map, 1);
buffer.Write(test_str, 2);
buffer.Write(test_int, 1);
ASSERT_EQ(decoder.ReadValue(&dv, DecodedValue::Type::Vertex), true);
auto &vertex = dv.ValueVertex();
ASSERT_EQ(vertex.id.AsUint(), 1);
ASSERT_EQ(vertex.labels[0], std::string("a"));
ASSERT_EQ(vertex.properties[std::string("a")].ValueInt(), 1);
}
TEST(BoltDecoder, Edge) {
TestDecoderBuffer buffer;
DecoderT decoder(buffer);
DecodedValue de;
uint8_t header[] = "\xB5\x52";
uint8_t wrong_header[] = "\x00\x00";
uint8_t test_int1[] = "\x01";
uint8_t test_int2[] = "\x02";
uint8_t test_int3[] = "\x03";
uint8_t test_str[] = "\x81\x61";
uint8_t test_map[] = "\xA1";
// test missing signature
buffer.Clear();
buffer.Write(wrong_header, 1);
ASSERT_EQ(decoder.ReadValue(&de, DecodedValue::Type::Edge), false);
// test wrong marker
buffer.Clear();
buffer.Write(wrong_header, 2);
ASSERT_EQ(decoder.ReadValue(&de, DecodedValue::Type::Edge), false);
// test wrong signature
buffer.Clear();
buffer.Write(header, 1);
buffer.Write(wrong_header, 1);
ASSERT_EQ(decoder.ReadValue(&de, DecodedValue::Type::Edge), false);
// test ID wrong type
buffer.Clear();
buffer.Write(header, 2);
buffer.Write(test_str, 2);
ASSERT_EQ(decoder.ReadValue(&de, DecodedValue::Type::Edge), false);
// test from_id wrong type
buffer.Clear();
buffer.Write(header, 2);
buffer.Write(test_int1, 1);
buffer.Write(test_str, 2);
ASSERT_EQ(decoder.ReadValue(&de, DecodedValue::Type::Edge), false);
// test to_id wrong type
buffer.Clear();
buffer.Write(header, 2);
buffer.Write(test_int1, 1);
buffer.Write(test_int2, 1);
buffer.Write(test_str, 2);
ASSERT_EQ(decoder.ReadValue(&de, DecodedValue::Type::Edge), false);
// test type wrong type
buffer.Clear();
buffer.Write(header, 2);
buffer.Write(test_int1, 1);
buffer.Write(test_int2, 1);
buffer.Write(test_int3, 1);
buffer.Write(test_int1, 1);
ASSERT_EQ(decoder.ReadValue(&de, DecodedValue::Type::Edge), false);
// test properties wrong outer type
buffer.Clear();
buffer.Write(header, 2);
buffer.Write(test_int1, 1);
buffer.Write(test_int2, 1);
buffer.Write(test_int3, 1);
buffer.Write(test_str, 2);
buffer.Write(test_int1, 1);
ASSERT_EQ(decoder.ReadValue(&de, DecodedValue::Type::Edge), false);
// test all ok
buffer.Clear();
buffer.Write(header, 2);
buffer.Write(test_int1, 1);
buffer.Write(test_int2, 1);
buffer.Write(test_int3, 1);
buffer.Write(test_str, 2);
buffer.Write(test_map, 1);
buffer.Write(test_str, 2);
buffer.Write(test_int1, 1);
ASSERT_EQ(decoder.ReadValue(&de, DecodedValue::Type::Edge), true);
auto &edge = de.ValueEdge();
ASSERT_EQ(edge.id.AsUint(), 1);
ASSERT_EQ(edge.from.AsUint(), 2);
ASSERT_EQ(edge.to.AsUint(), 3);
ASSERT_EQ(edge.type, std::string("a"));
ASSERT_EQ(edge.properties[std::string("a")].ValueInt(), 1);
}
int main(int argc, char **argv) {
InitializeData(data, SIZE);
google::InitGoogleLogging(argv[0]);
::testing::InitGoogleTest(&argc, argv);
return RUN_ALL_TESTS();
}