285 lines
9.8 KiB
Python
Executable File
285 lines
9.8 KiB
Python
Executable File
#!/usr/bin/env python3
|
|
|
|
# Copyright 2022 Memgraph Ltd.
|
|
#
|
|
# Use of this software is governed by the Business Source License
|
|
# included in the file licenses/BSL.txt; by using this file, you agree to be bound by the terms of the Business Source
|
|
# License, and you may not use this file except in compliance with the Business Source License.
|
|
#
|
|
# As of the Change Date specified in that file, in accordance with
|
|
# the Business Source License, use of this software will be governed
|
|
# by the Apache License, Version 2.0, included in the file
|
|
# licenses/APL.txt.
|
|
|
|
import argparse
|
|
import json
|
|
|
|
|
|
def load_results(fname):
|
|
with open(fname) as f:
|
|
return json.load(f)
|
|
|
|
|
|
def compute_diff(value_from, value_to):
|
|
if value_from is None:
|
|
return {"value": value_to}
|
|
diff = (value_to - value_from) / value_from
|
|
return {"value": value_to, "diff": diff}
|
|
|
|
|
|
def recursive_get(data, *args, value=None):
|
|
for arg in args:
|
|
if arg not in data:
|
|
return value
|
|
data = data[arg]
|
|
return data
|
|
|
|
|
|
def compare_results(results_from, results_to, fields, ignored, different_vendors):
|
|
ret = {}
|
|
for dataset, variants in results_to.items():
|
|
if dataset == "__run_configuration__":
|
|
continue
|
|
for variant, groups in variants.items():
|
|
for group, scenarios in groups.items():
|
|
if group == "__import__":
|
|
continue
|
|
for scenario, summary_to in scenarios.items():
|
|
if scenario in ignored:
|
|
continue
|
|
|
|
summary_from = recursive_get(results_from, dataset, variant, group, scenario, value={})
|
|
summary_from = summary_from["without_fine_grained_authorization"]
|
|
summary_to = summary_to["without_fine_grained_authorization"]
|
|
if (
|
|
len(summary_from) > 0
|
|
and (summary_to["count"] != summary_from["count"] and not different_vendors)
|
|
or summary_to["num_workers"] != summary_from["num_workers"]
|
|
):
|
|
raise Exception("Incompatible results!")
|
|
testcode = "/".join(
|
|
[
|
|
dataset,
|
|
variant,
|
|
group,
|
|
scenario,
|
|
"{:02d}".format(summary_to["num_workers"]),
|
|
]
|
|
)
|
|
row = {}
|
|
performance_changed = False
|
|
for field in fields:
|
|
key = field["name"]
|
|
if key in summary_to:
|
|
row[key] = compute_diff(summary_from.get(key, None), summary_to[key])
|
|
elif key in summary_to["database"]:
|
|
row[key] = compute_diff(
|
|
recursive_get(summary_from, "database", key, value=None),
|
|
summary_to["database"][key],
|
|
)
|
|
elif summary_to.get("latency_stats") != None and key in summary_to["latency_stats"]:
|
|
row[key] = compute_diff(
|
|
recursive_get(summary_from, "latency_stats", key, value=None),
|
|
summary_to["latency_stats"][key],
|
|
)
|
|
elif not different_vendors:
|
|
row[key] = compute_diff(
|
|
recursive_get(summary_from, "metadata", key, "average", value=None),
|
|
summary_to["metadata"][key]["average"],
|
|
)
|
|
if row.get(key) != None and (
|
|
"diff" not in row[key]
|
|
or ("diff_treshold" in field and abs(row[key]["diff"]) >= field["diff_treshold"])
|
|
):
|
|
performance_changed = True
|
|
if performance_changed:
|
|
ret[testcode] = row
|
|
return ret
|
|
|
|
|
|
def generate_remarkup(fields, data):
|
|
ret = "==== Benchmark summary: ====\n\n"
|
|
if len(data) > 0:
|
|
ret += "<table>\n"
|
|
ret += " <tr>\n"
|
|
ret += " <th>Testcode</th>\n"
|
|
ret += (
|
|
"\n".join(
|
|
map(
|
|
lambda x: " <th>{}</th>".format(x["name"].replace("_", " ").capitalize()),
|
|
fields,
|
|
)
|
|
)
|
|
+ "\n"
|
|
)
|
|
ret += " </tr>\n"
|
|
for testcode in sorted(data.keys()):
|
|
ret += " <tr>\n"
|
|
ret += " <td>{}</td>\n".format(testcode)
|
|
for field in fields:
|
|
result = data[testcode].get(field["name"])
|
|
if result != None:
|
|
value = result["value"] * field["scaling"]
|
|
if "diff" in result:
|
|
diff = result["diff"]
|
|
arrow = "arrow-up" if diff >= 0 else "arrow-down"
|
|
if not (field["positive_diff_better"] ^ (diff >= 0)):
|
|
color = "green"
|
|
else:
|
|
color = "red"
|
|
sign = "{{icon {} color={}}}".format(arrow, color)
|
|
ret += ' <td bgcolor="{}">{:.3f}{} ({:+.2%})</td>\n'.format(
|
|
color, value, field["unit"], diff
|
|
)
|
|
else:
|
|
ret += '<td bgcolor="blue">{:.3f}{} //(new)// </td>\n'.format(value, field["unit"])
|
|
ret += " </tr>\n"
|
|
ret += "</table>\n"
|
|
else:
|
|
ret += "No performance change detected.\n"
|
|
return ret
|
|
|
|
|
|
if __name__ == "__main__":
|
|
parser = argparse.ArgumentParser(description="Compare results of multiple benchmark runs.")
|
|
parser.add_argument(
|
|
"--compare",
|
|
action="append",
|
|
nargs=2,
|
|
metavar=("from", "to"),
|
|
help="compare results between `from` and `to` files",
|
|
)
|
|
parser.add_argument("--output", default="", help="output file name")
|
|
# file is read line by line, each representing one test name
|
|
parser.add_argument("--exclude_tests_file", help="file listing test names to be excluded")
|
|
|
|
parser.add_argument(
|
|
"--different-vendors",
|
|
action="store_true",
|
|
default=False,
|
|
help="Comparing different vendors, there is no need for metadata, duration, count check.",
|
|
)
|
|
parser.add_argument(
|
|
"--difference-threshold",
|
|
type=float,
|
|
default=0.02,
|
|
help="Difference threshold for memory and throughput, 0.02 = 2% ",
|
|
)
|
|
|
|
args = parser.parse_args()
|
|
|
|
fields = [
|
|
{
|
|
"name": "throughput",
|
|
"positive_diff_better": True,
|
|
"scaling": 1,
|
|
"unit": "QPS",
|
|
"diff_treshold": 0.05, # 5%
|
|
},
|
|
{
|
|
"name": "duration",
|
|
"positive_diff_better": False,
|
|
"scaling": 1,
|
|
"unit": "s",
|
|
},
|
|
{
|
|
"name": "parsing_time",
|
|
"positive_diff_better": False,
|
|
"scaling": 1000,
|
|
"unit": "ms",
|
|
},
|
|
{
|
|
"name": "planning_time",
|
|
"positive_diff_better": False,
|
|
"scaling": 1000,
|
|
"unit": "ms",
|
|
},
|
|
{
|
|
"name": "plan_execution_time",
|
|
"positive_diff_better": False,
|
|
"scaling": 1000,
|
|
"unit": "ms",
|
|
},
|
|
{
|
|
"name": "memory",
|
|
"positive_diff_better": False,
|
|
"scaling": 1 / 1024 / 1024,
|
|
"unit": "MiB",
|
|
"diff_treshold": 0.02, # 2%
|
|
},
|
|
{
|
|
"name": "max",
|
|
"positive_diff_better": False,
|
|
"scaling": 1000,
|
|
"unit": "ms",
|
|
},
|
|
{
|
|
"name": "p99",
|
|
"positive_diff_better": False,
|
|
"scaling": 1000,
|
|
"unit": "ms",
|
|
},
|
|
{
|
|
"name": "p90",
|
|
"positive_diff_better": False,
|
|
"scaling": 1000,
|
|
"unit": "ms",
|
|
},
|
|
{
|
|
"name": "p75",
|
|
"positive_diff_better": False,
|
|
"scaling": 1000,
|
|
"unit": "ms",
|
|
},
|
|
{
|
|
"name": "p50",
|
|
"positive_diff_better": False,
|
|
"scaling": 1000,
|
|
"unit": "ms",
|
|
},
|
|
{
|
|
"name": "mean",
|
|
"positive_diff_better": False,
|
|
"scaling": 1000,
|
|
"unit": "ms",
|
|
},
|
|
]
|
|
|
|
if args.compare is None or len(args.compare) == 0:
|
|
raise Exception("You must specify at least one pair of files!")
|
|
|
|
if args.exclude_tests_file:
|
|
with open(args.exclude_tests_file, "r") as f:
|
|
ignored = [line.rstrip("\n") for line in f]
|
|
else:
|
|
ignored = []
|
|
|
|
cleaned = []
|
|
if args.different_vendors:
|
|
ignore_on_different_vendors = {"duration", "parsing_time", "planning_time", "plan_execution_time"}
|
|
for field in fields:
|
|
key = field["name"]
|
|
if key in ignore_on_different_vendors:
|
|
continue
|
|
else:
|
|
cleaned.append(field)
|
|
fields = cleaned
|
|
|
|
if args.difference_threshold > 0.01:
|
|
for field in fields:
|
|
if "diff_treshold" in field.keys():
|
|
field["diff_treshold"] = args.difference_threshold
|
|
|
|
data = {}
|
|
for file_from, file_to in args.compare:
|
|
results_from = load_results(file_from)
|
|
results_to = load_results(file_to)
|
|
data.update(compare_results(results_from, results_to, fields, ignored, args.different_vendors))
|
|
|
|
remarkup = generate_remarkup(fields, data)
|
|
if args.output:
|
|
with open(args.output, "w") as f:
|
|
f.write(remarkup)
|
|
else:
|
|
print(remarkup, end="")
|