memgraph/tests/concurrent/common.hpp
florijan a01c26439b Clean SkipList up
Summary:
- Removed a lot of stuff that was incorrect and/or unnecessary
- Fixed const-correctness in the skiplist family

Reviewers: dgleich, teon.banek, buda

Reviewed By: dgleich

Subscribers: pullbot

Differential Revision: https://phabricator.memgraph.io/D1351
2018-04-11 10:08:20 +02:00

174 lines
5.4 KiB
C++

#include <chrono>
#include <future>
#include <iostream>
#include <random>
#include <thread>
#include <glog/logging.h>
#include "data_structures/bitset/dynamic_bitset.hpp"
#include "data_structures/concurrent/concurrent_map.hpp"
#include "data_structures/concurrent/skiplist.hpp"
// NOTE: this file is highly coupled to data_structures
// TODO: REFACTOR
// Sets max number of threads that will be used in concurrent tests.
constexpr int max_no_threads = 8;
using std::cout;
using std::endl;
using map_t = ConcurrentMap<int, int>;
using namespace std::chrono_literals;
// Returns uniform random size_t generator from range [0,n>
auto rand_gen(size_t n) {
std::default_random_engine generator;
std::uniform_int_distribution<size_t> distribution(0, n - 1);
return std::bind(distribution, generator);
}
// Returns random bool generator with distribution of 1 true for n false.
auto rand_gen_bool(size_t n = 1) {
auto gen = rand_gen(n + 1);
return [=]() mutable { return gen() == 0; };
}
// Checks for all owned keys if their data is data.
template <typename TAccessor>
void check_present_same(TAccessor &acc, size_t data,
std::vector<size_t> &owned) {
for (auto num : owned) {
CHECK(acc.find(num)->second == data) << "My data is present and my";
}
}
// Checks for all owned.second keys if their data is owned.first.
template <typename TAccessor>
void check_present_same(TAccessor &acc,
std::pair<size_t, std::vector<size_t>> &owned) {
check_present_same(acc, owned.first, owned.second);
}
// Checks if reported size and traversed size are equal to given size.
template <typename TAccessor>
void check_size_list(TAccessor &acc, long long size) {
// check size
CHECK(acc.size() == size) << "Size should be " << size << ", but size is "
<< acc.size();
// check count
size_t iterator_counter = 0;
for ([[gnu::unused]] auto elem : acc) {
++iterator_counter;
}
CHECK(static_cast<int64_t>(iterator_counter) == size)
<< "Iterator count should be " << size << ", but size is "
<< iterator_counter;
}
template <typename TAccessor>
void check_size(TAccessor &acc, long long size) {
// check size
CHECK(acc.size() == size) << "Size should be " << size << ", but size is "
<< acc.size();
// check count
size_t iterator_counter = 0;
for ([[gnu::unused]] auto elem : acc) {
++iterator_counter;
}
CHECK(static_cast<int64_t>(iterator_counter) == size)
<< "Iterator count should be " << size << ", but size is "
<< iterator_counter;
}
// Checks if order in list is maintened. It expects map
template <typename TAccessor>
void check_order(TAccessor &acc) {
if (acc.begin() != acc.end()) {
auto last = acc.begin()->first;
for (auto elem : acc) {
if (!(last <= elem))
std::cout << "Order isn't maintained. Before was: " << last
<< " next is " << elem.first << "\n";
last = elem.first;
}
}
}
void check_zero(size_t key_range, long array[], const char *str) {
for (int i = 0; i < static_cast<int>(key_range); i++) {
CHECK(array[i] == 0) << str << " doesn't hold it's guarantees. It has "
<< array[i] << " extra elements.";
}
}
void check_set(DynamicBitset<> &db, std::vector<bool> &set) {
for (int i = 0; i < static_cast<int>(set.size()); i++) {
CHECK(!(set[i] ^ db.at(i))) << "Set constraints aren't fullfilled.";
}
}
// Runs given function in threads_no threads and returns vector of futures for
// their results.
template <class R, typename S, class FunT>
std::vector<std::future<std::pair<size_t, R>>> run(size_t threads_no,
S &skiplist, FunT f) {
std::vector<std::future<std::pair<size_t, R>>> futures;
for (size_t thread_i = 0; thread_i < threads_no; ++thread_i) {
std::packaged_task<std::pair<size_t, R>()> task([&skiplist, f, thread_i]() {
return std::pair<size_t, R>(thread_i, f(skiplist.access(), thread_i));
}); // wrap the function
futures.push_back(task.get_future()); // get a future
std::thread(std::move(task)).detach();
}
return futures;
}
// Runs given function in threads_no threads and returns vector of futures for
// their results.
template <class R>
std::vector<std::future<std::pair<size_t, R>>> run(size_t threads_no,
std::function<R(size_t)> f) {
std::vector<std::future<std::pair<size_t, R>>> futures;
for (size_t thread_i = 0; thread_i < threads_no; ++thread_i) {
std::packaged_task<std::pair<size_t, R>()> task([f, thread_i]() {
return std::pair<size_t, R>(thread_i, f(thread_i));
}); // wrap the function
futures.push_back(task.get_future()); // get a future
std::thread(std::move(task)).detach();
}
return futures;
}
// Collects all data from futures.
template <class R>
auto collect(std::vector<std::future<R>> &collect) {
std::vector<R> collection;
for (auto &fut : collect) {
collection.push_back(fut.get());
}
return collection;
}
std::vector<bool> collect_set(
std::vector<std::future<std::pair<size_t, std::vector<bool>>>> &&futures) {
std::vector<bool> set;
for (auto &data : collect(futures)) {
set.resize(data.second.size());
for (int i = 0; i < static_cast<int>(data.second.size()); i++) {
set[i] = set[i] | data.second[i];
}
}
return set;
}