memgraph/src/coordinator/shard_map.cpp
2022-11-21 13:16:35 +00:00

577 lines
20 KiB
C++

// Copyright 2022 Memgraph Ltd.
//
// Use of this software is governed by the Business Source License
// included in the file licenses/BSL.txt; by using this file, you agree to be bound by the terms of the Business Source
// License, and you may not use this file except in compliance with the Business Source License.
//
// As of the Change Date specified in that file, in accordance with
// the Business Source License, use of this software will be governed
// by the Apache License, Version 2.0, included in the file
// licenses/APL.txt.
#include <optional>
#include <unordered_map>
#include <vector>
#include "common/types.hpp"
#include "coordinator/shard_map.hpp"
#include "spdlog/spdlog.h"
#include "storage/v3/schemas.hpp"
#include "storage/v3/temporal.hpp"
#include "utils/cast.hpp"
#include "utils/exceptions.hpp"
#include "utils/string.hpp"
namespace memgraph::coordinator {
using memgraph::common::SchemaType;
using memgraph::storage::v3::TemporalData;
using memgraph::storage::v3::TemporalType;
PrimaryKey SchemaToMinKey(const std::vector<SchemaProperty> &schema) {
PrimaryKey ret{};
const int64_t min_int = std::numeric_limits<int64_t>::min();
const TemporalData date{TemporalType::Date, min_int};
const TemporalData local_time{TemporalType::LocalTime, min_int};
const TemporalData local_date_time{TemporalType::LocalDateTime, min_int};
const TemporalData duration{TemporalType::Duration, min_int};
for (const auto &schema_property : schema) {
switch (schema_property.type) {
case SchemaType::BOOL:
ret.emplace_back(PropertyValue(false));
break;
case SchemaType::INT:
ret.emplace_back(PropertyValue(min_int));
break;
case SchemaType::STRING:
ret.emplace_back(PropertyValue(""));
break;
case SchemaType::DATE:
ret.emplace_back(PropertyValue(date));
break;
case SchemaType::LOCALTIME:
ret.emplace_back(PropertyValue(local_time));
break;
case SchemaType::LOCALDATETIME:
ret.emplace_back(PropertyValue(local_date_time));
break;
case SchemaType::DURATION:
ret.emplace_back(PropertyValue(duration));
break;
}
}
return ret;
}
ShardMap ShardMap::Parse(std::istream &input_stream) {
ShardMap shard_map;
const auto read_size = [&input_stream] {
size_t size{0};
input_stream >> size;
return size;
};
// Reads a string until the next whitespace
const auto read_word = [&input_stream] {
std::string word;
input_stream >> word;
return word;
};
const auto read_names = [&read_size, &read_word] {
const auto number_of_names = read_size();
spdlog::trace("Reading {} names", number_of_names);
std::vector<std::string> names;
names.reserve(number_of_names);
for (auto name_index = 0; name_index < number_of_names; ++name_index) {
names.push_back(read_word());
spdlog::trace("Read '{}'", names.back());
}
return names;
};
const auto read_line = [&input_stream] {
std::string line;
std::getline(input_stream, line);
return line;
};
const auto parse_type = [](const std::string &type) {
static const auto type_map = std::unordered_map<std::string, common::SchemaType>{
{"string", common::SchemaType::STRING}, {"int", common::SchemaType::INT}, {"bool", common::SchemaType::BOOL}};
const auto lower_case_type = utils::ToLowerCase(type);
auto it = type_map.find(lower_case_type);
MG_ASSERT(it != type_map.end(), "Invalid type in split files: {}", type);
return it->second;
};
const auto parse_property_value = [](std::string text, const common::SchemaType type) {
if (type == common::SchemaType::STRING) {
return storage::v3::PropertyValue{std::move(text)};
}
if (type == common::SchemaType::INT) {
size_t processed{0};
int64_t value = std::stoll(text, &processed);
MG_ASSERT(processed == text.size() || text[processed] == ' ', "Invalid integer format: '{}'", text);
return storage::v3::PropertyValue{value};
}
LOG_FATAL("Not supported type: {}", utils::UnderlyingCast(type));
};
spdlog::debug("Reading properties");
const auto properties = read_names();
MG_ASSERT(shard_map.AllocatePropertyIds(properties).size() == properties.size(),
"Unexpected number of properties created!");
spdlog::debug("Reading edge types");
const auto edge_types = read_names();
MG_ASSERT(shard_map.AllocateEdgeTypeIds(edge_types).size() == edge_types.size(),
"Unexpected number of properties created!");
spdlog::debug("Reading primary labels");
const auto number_of_primary_labels = read_size();
spdlog::debug("Reading {} primary labels", number_of_primary_labels);
for (auto label_index = 0; label_index < number_of_primary_labels; ++label_index) {
const auto primary_label = read_word();
spdlog::debug("Reading primary label named '{}'", primary_label);
const auto number_of_primary_properties = read_size();
spdlog::debug("Reading {} primary properties", number_of_primary_properties);
std::vector<std::string> pp_names;
std::vector<common::SchemaType> pp_types;
pp_names.reserve(number_of_primary_properties);
pp_types.reserve(number_of_primary_properties);
for (auto property_index = 0; property_index < number_of_primary_properties; ++property_index) {
pp_names.push_back(read_word());
spdlog::debug("Reading primary property named '{}'", pp_names.back());
pp_types.push_back(parse_type(read_word()));
}
auto pp_mapping = shard_map.AllocatePropertyIds(pp_names);
std::vector<SchemaProperty> schema;
schema.reserve(number_of_primary_properties);
for (auto property_index = 0; property_index < number_of_primary_properties; ++property_index) {
schema.push_back(storage::v3::SchemaProperty{pp_mapping.at(pp_names[property_index]), pp_types[property_index]});
}
const auto hlc = shard_map.GetHlc();
MG_ASSERT(shard_map.InitializeNewLabel(primary_label, schema, 1, hlc).has_value(),
"Cannot initialize new label: {}", primary_label);
const auto number_of_split_points = read_size();
spdlog::debug("Reading {} split points", number_of_split_points);
[[maybe_unused]] const auto remainder_from_last_line = read_line();
for (auto split_point_index = 0; split_point_index < number_of_split_points; ++split_point_index) {
const auto line = read_line();
spdlog::debug("Read split point '{}'", line);
MG_ASSERT(line.front() == '[', "Invalid split file format!");
MG_ASSERT(line.back() == ']', "Invalid split file format!");
std::string_view line_view{line};
line_view.remove_prefix(1);
line_view.remove_suffix(1);
static constexpr std::string_view kDelimiter{","};
auto pk_values_as_text = utils::Split(line_view, kDelimiter);
std::vector<PropertyValue> pk;
pk.reserve(number_of_primary_properties);
MG_ASSERT(pk_values_as_text.size() == number_of_primary_properties,
"Split point contains invalid number of values '{}'", line);
for (auto property_index = 0; property_index < number_of_primary_properties; ++property_index) {
pk.push_back(parse_property_value(std::move(pk_values_as_text[property_index]), schema[property_index].type));
}
shard_map.SplitShard(shard_map.GetHlc(), shard_map.labels.at(primary_label), pk);
}
}
return shard_map;
}
std::ostream &operator<<(std::ostream &in, const ShardMap &shard_map) {
using utils::print_helpers::operator<<;
in << "ShardMap { shard_map_version: " << shard_map.shard_map_version;
in << ", max_property_id: " << shard_map.max_property_id;
in << ", max_edge_type_id: " << shard_map.max_edge_type_id;
in << ", properties: " << shard_map.properties;
in << ", edge_types: " << shard_map.edge_types;
in << ", max_label_id: " << shard_map.max_label_id;
in << ", labels: " << shard_map.labels;
in << ", label_spaces: " << shard_map.label_spaces;
in << ", schemas: " << shard_map.schemas;
in << "}";
return in;
}
Shards ShardMap::GetShardsForLabel(const LabelName &label) const {
const auto id = labels.at(label);
const auto &shards = label_spaces.at(id).shards;
return shards;
}
std::vector<Shards> ShardMap::GetAllShards() const {
std::vector<Shards> all_shards;
all_shards.reserve(label_spaces.size());
std::transform(label_spaces.begin(), label_spaces.end(), std::back_inserter(all_shards),
[](const auto &label_space) { return label_space.second.shards; });
return all_shards;
}
// TODO(gabor) later we will want to update the wallclock time with
// the given Io<impl>'s time as well
Hlc ShardMap::IncrementShardMapVersion() noexcept {
++shard_map_version.logical_id;
return shard_map_version;
}
// TODO(antaljanosbenjamin) use a single map for all name id
// mapping and a single counter to maintain the next id
std::unordered_map<uint64_t, std::string> ShardMap::IdToNames() {
std::unordered_map<uint64_t, std::string> id_to_names;
const auto map_type_ids = [&id_to_names](const auto &name_to_id_type) {
for (const auto &[name, id] : name_to_id_type) {
id_to_names.emplace(id.AsUint(), name);
}
};
map_type_ids(edge_types);
map_type_ids(labels);
map_type_ids(properties);
return id_to_names;
}
Hlc ShardMap::GetHlc() const noexcept { return shard_map_version; }
boost::uuids::uuid NewShardUuid(uint64_t shard_id) {
return boost::uuids::uuid{0,
0,
0,
0,
0,
0,
0,
0,
static_cast<unsigned char>(shard_id >> 56U),
static_cast<unsigned char>(shard_id >> 48U),
static_cast<unsigned char>(shard_id >> 40U),
static_cast<unsigned char>(shard_id >> 32U),
static_cast<unsigned char>(shard_id >> 24U),
static_cast<unsigned char>(shard_id >> 16U),
static_cast<unsigned char>(shard_id >> 8U),
static_cast<unsigned char>(shard_id)};
}
std::vector<ShardToInitialize> ShardMap::AssignShards(Address storage_manager,
std::set<boost::uuids::uuid> initialized) {
std::vector<ShardToInitialize> ret{};
bool mutated = false;
for (auto &[label_id, label_space] : label_spaces) {
for (auto it = label_space.shards.begin(); it != label_space.shards.end(); it++) {
auto &[low_key, shard] = *it;
std::optional<PrimaryKey> high_key;
if (const auto next_it = std::next(it); next_it != label_space.shards.end()) {
high_key = next_it->first;
}
// TODO(tyler) avoid these triple-nested loops by having the heartbeat include better info
bool machine_contains_shard = false;
for (auto &aas : shard) {
if (initialized.contains(aas.address.unique_id)) {
machine_contains_shard = true;
if (aas.status != Status::CONSENSUS_PARTICIPANT) {
mutated = true;
spdlog::info("marking shard as full consensus participant: {}", aas.address.unique_id);
aas.status = Status::CONSENSUS_PARTICIPANT;
}
} else {
const bool same_machine = aas.address.last_known_ip == storage_manager.last_known_ip &&
aas.address.last_known_port == storage_manager.last_known_port;
if (same_machine) {
machine_contains_shard = true;
spdlog::info("reminding shard manager that they should begin participating in shard");
ret.push_back(ShardToInitialize{
.uuid = aas.address.unique_id,
.label_id = label_id,
.min_key = low_key,
.max_key = high_key,
.schema = schemas[label_id],
.config = Config{},
.id_to_names = IdToNames(),
});
}
}
}
if (!machine_contains_shard && shard.size() < label_space.replication_factor) {
// increment version for each new uuid for deterministic creation
IncrementShardMapVersion();
Address address = storage_manager;
// TODO(tyler) use deterministic UUID so that coordinators don't diverge here
address.unique_id = NewShardUuid(shard_map_version.logical_id);
spdlog::info("assigning shard manager to shard");
ret.push_back(ShardToInitialize{
.uuid = address.unique_id,
.label_id = label_id,
.min_key = low_key,
.max_key = high_key,
.schema = schemas[label_id],
.config = Config{},
.id_to_names = IdToNames(),
});
AddressAndStatus aas = {
.address = address,
.status = Status::INITIALIZING,
};
shard.emplace_back(aas);
}
}
}
if (mutated) {
IncrementShardMapVersion();
}
return ret;
}
bool ShardMap::SplitShard(Hlc previous_shard_map_version, LabelId label_id, const PrimaryKey &key) {
if (previous_shard_map_version != shard_map_version) {
return false;
}
auto &label_space = label_spaces.at(label_id);
auto &shards_in_map = label_space.shards;
MG_ASSERT(!shards_in_map.empty());
MG_ASSERT(!shards_in_map.contains(key));
MG_ASSERT(label_spaces.contains(label_id));
// Finding the Shard that the new PrimaryKey should map to.
auto prev = std::prev(shards_in_map.upper_bound(key));
Shard duplicated_shard = prev->second;
// Apply the split
shards_in_map[key] = duplicated_shard;
IncrementShardMapVersion();
return true;
}
std::optional<LabelId> ShardMap::InitializeNewLabel(std::string label_name, std::vector<SchemaProperty> schema,
size_t replication_factor, Hlc last_shard_map_version) {
if (shard_map_version != last_shard_map_version || labels.contains(label_name)) {
return std::nullopt;
}
const LabelId label_id = LabelId::FromUint(++max_label_id);
labels.emplace(std::move(label_name), label_id);
PrimaryKey initial_key = SchemaToMinKey(schema);
Shard empty_shard = {};
Shards shards = {
{initial_key, empty_shard},
};
LabelSpace label_space{
.schema = schema,
.shards = shards,
.replication_factor = replication_factor,
};
schemas[label_id] = std::move(schema);
label_spaces.emplace(label_id, label_space);
IncrementShardMapVersion();
return label_id;
}
void ShardMap::AddServer(Address server_address) {
// Find a random place for the server to plug in
}
std::optional<LabelId> ShardMap::GetLabelId(const std::string &label) const {
if (const auto it = labels.find(label); it != labels.end()) {
return it->second;
}
return std::nullopt;
}
const std::string &ShardMap::GetLabelName(const LabelId label) const {
if (const auto it =
std::ranges::find_if(labels, [label](const auto &name_id_pair) { return name_id_pair.second == label; });
it != labels.end()) {
return it->first;
}
throw utils::BasicException("GetLabelName fails on the given label id!");
}
std::optional<PropertyId> ShardMap::GetPropertyId(const std::string &property_name) const {
if (const auto it = properties.find(property_name); it != properties.end()) {
return it->second;
}
return std::nullopt;
}
const std::string &ShardMap::GetPropertyName(const PropertyId property) const {
if (const auto it = std::ranges::find_if(
properties, [property](const auto &name_id_pair) { return name_id_pair.second == property; });
it != properties.end()) {
return it->first;
}
throw utils::BasicException("PropertyId not found!");
}
std::optional<EdgeTypeId> ShardMap::GetEdgeTypeId(const std::string &edge_type) const {
if (const auto it = edge_types.find(edge_type); it != edge_types.end()) {
return it->second;
}
return std::nullopt;
}
const std::string &ShardMap::GetEdgeTypeName(const EdgeTypeId property) const {
if (const auto it = std::ranges::find_if(
edge_types, [property](const auto &name_id_pair) { return name_id_pair.second == property; });
it != edge_types.end()) {
return it->first;
}
throw utils::BasicException("EdgeTypeId not found!");
}
Shards ShardMap::GetShardsForRange(const LabelName &label_name, const PrimaryKey &start_key,
const PrimaryKey &end_key) const {
MG_ASSERT(start_key <= end_key);
MG_ASSERT(labels.contains(label_name));
LabelId label_id = labels.at(label_name);
const auto &label_space = label_spaces.at(label_id);
const auto &shards_for_label = label_space.shards;
MG_ASSERT(shards_for_label.begin()->first <= start_key,
"the ShardMap must always contain a minimal key that is less than or equal to any requested key");
auto it = std::prev(shards_for_label.upper_bound(start_key));
const auto end_it = shards_for_label.upper_bound(end_key);
Shards shards{};
std::copy(it, end_it, std::inserter(shards, shards.end()));
return shards;
}
Shard ShardMap::GetShardForKey(const LabelName &label_name, const PrimaryKey &key) const {
MG_ASSERT(labels.contains(label_name));
LabelId label_id = labels.at(label_name);
const auto &label_space = label_spaces.at(label_id);
MG_ASSERT(label_space.shards.begin()->first <= key,
"the ShardMap must always contain a minimal key that is less than or equal to any requested key");
return std::prev(label_space.shards.upper_bound(key))->second;
}
Shard ShardMap::GetShardForKey(const LabelId &label_id, const PrimaryKey &key) const {
MG_ASSERT(label_spaces.contains(label_id));
const auto &label_space = label_spaces.at(label_id);
MG_ASSERT(label_space.shards.begin()->first <= key,
"the ShardMap must always contain a minimal key that is less than or equal to any requested key");
return std::prev(label_space.shards.upper_bound(key))->second;
}
PropertyMap ShardMap::AllocatePropertyIds(const std::vector<PropertyName> &new_properties) {
PropertyMap ret{};
bool mutated = false;
for (const auto &property_name : new_properties) {
if (properties.contains(property_name)) {
auto property_id = properties.at(property_name);
ret.emplace(property_name, property_id);
} else {
mutated = true;
const PropertyId property_id = PropertyId::FromUint(++max_property_id);
ret.emplace(property_name, property_id);
properties.emplace(property_name, property_id);
}
}
if (mutated) {
IncrementShardMapVersion();
}
return ret;
}
EdgeTypeIdMap ShardMap::AllocateEdgeTypeIds(const std::vector<EdgeTypeName> &new_edge_types) {
EdgeTypeIdMap ret;
bool mutated = false;
for (const auto &edge_type_name : new_edge_types) {
if (edge_types.contains(edge_type_name)) {
auto edge_type_id = edge_types.at(edge_type_name);
ret.emplace(edge_type_name, edge_type_id);
} else {
mutated = true;
const EdgeTypeId edge_type_id = EdgeTypeId::FromUint(++max_edge_type_id);
ret.emplace(edge_type_name, edge_type_id);
edge_types.emplace(edge_type_name, edge_type_id);
}
}
if (mutated) {
IncrementShardMapVersion();
}
return ret;
}
bool ShardMap::ClusterInitialized() const {
for (const auto &[label_id, label_space] : label_spaces) {
for (const auto &[low_key, shard] : label_space.shards) {
if (shard.size() < label_space.replication_factor) {
spdlog::info("label_space below desired replication factor");
return false;
}
for (const auto &aas : shard) {
if (aas.status != Status::CONSENSUS_PARTICIPANT) {
spdlog::info("shard member not yet a CONSENSUS_PARTICIPANT");
return false;
}
}
}
}
return true;
}
} // namespace memgraph::coordinator