memgraph/tests/unit/query_variable_start_planner.cpp
florijan 6fc6a27288 Refactor GraphDb
Summary:
GraphDb is refactored to become an API exposing different parts
necessary for the database to function. These different parts can have
different implementations in SingleNode or distributed Master/Server
GraphDb implementations.

Interally GraphDb is implemented using two class heirarchies. One
contains all the members and correct wiring for each situation. The
other takes care of initialization and shutdown. This architecture is
practical because it can guarantee that the initialization of the
object structure is complete, before initializing state.

Reviewers: buda, mislav.bradac, dgleich, teon.banek

Reviewed By: teon.banek

Subscribers: pullbot

Differential Revision: https://phabricator.memgraph.io/D1093
2018-01-12 16:47:24 +01:00

323 lines
12 KiB
C++

#include <algorithm>
#include "gtest/gtest.h"
#include "query/frontend/semantic/symbol_generator.hpp"
#include "query/frontend/semantic/symbol_table.hpp"
#include "query/plan/planner.hpp"
#include "utils/algorithm.hpp"
#include "query_plan_common.hpp"
using namespace query::plan;
using query::AstTreeStorage;
using Direction = query::EdgeAtom::Direction;
namespace std {
// Overloads for printing resulting rows from a query.
std::ostream &operator<<(std::ostream &stream,
const std::vector<TypedValue> &row) {
utils::PrintIterable(stream, row);
return stream;
}
std::ostream &operator<<(std::ostream &stream,
const std::vector<std::vector<TypedValue>> &rows) {
utils::PrintIterable(stream, rows, "\n");
return stream;
}
} // namespace std
namespace {
auto MakeSymbolTable(query::Query &query) {
query::SymbolTable symbol_table;
query::SymbolGenerator symbol_generator(symbol_table);
query.Accept(symbol_generator);
return symbol_table;
}
void AssertRows(const std::vector<std::vector<TypedValue>> &datum,
std::vector<std::vector<TypedValue>> expected) {
auto row_equal = [](const auto &row1, const auto &row2) {
if (row1.size() != row2.size()) {
return false;
}
TypedValue::BoolEqual value_eq;
auto row1_it = row1.begin();
for (auto row2_it = row2.begin(); row2_it != row2.end();
++row1_it, ++row2_it) {
if (!value_eq(*row1_it, *row2_it)) {
return false;
}
}
return true;
};
ASSERT_TRUE(std::is_permutation(datum.begin(), datum.end(), expected.begin(),
expected.end(), row_equal))
<< "Actual rows:" << std::endl
<< datum << std::endl
<< "Expected rows:" << std::endl
<< expected;
};
void CheckPlansProduce(
size_t expected_plan_count, AstTreeStorage &storage,
database::GraphDbAccessor &dba,
std::function<void(const std::vector<std::vector<TypedValue>> &)> check) {
auto symbol_table = MakeSymbolTable(*storage.query());
auto planning_context = MakePlanningContext(storage, symbol_table, dba);
auto query_parts = CollectQueryParts(symbol_table, storage);
EXPECT_TRUE(query_parts.query_parts.size() > 0);
auto single_query_parts = query_parts.query_parts.at(0).single_query_parts;
auto plans = MakeLogicalPlanForSingleQuery<VariableStartPlanner>(
single_query_parts, planning_context);
EXPECT_EQ(std::distance(plans.begin(), plans.end()), expected_plan_count);
for (const auto &plan : plans) {
auto *produce = dynamic_cast<Produce *>(plan.get());
ASSERT_TRUE(produce);
auto results = CollectProduce(produce, symbol_table, dba);
check(results);
}
}
TEST(TestVariableStartPlanner, MatchReturn) {
database::SingleNode db;
database::GraphDbAccessor dba(db);
// Make a graph (v1) -[:r]-> (v2)
auto v1 = dba.InsertVertex();
auto v2 = dba.InsertVertex();
dba.InsertEdge(v1, v2, dba.EdgeType("r"));
dba.AdvanceCommand();
// Test MATCH (n) -[r]-> (m) RETURN n
AstTreeStorage storage;
QUERY(SINGLE_QUERY(
MATCH(PATTERN(NODE("n"), EDGE("r", Direction::OUT), NODE("m"))),
RETURN("n")));
// We have 2 nodes `n` and `m` from which we could start, so expect 2 plans.
CheckPlansProduce(2, storage, dba, [&](const auto &results) {
// We expect to produce only a single (v1) node.
AssertRows(results, {{v1}});
});
}
TEST(TestVariableStartPlanner, MatchTripletPatternReturn) {
database::SingleNode db;
database::GraphDbAccessor dba(db);
// Make a graph (v1) -[:r]-> (v2) -[:r]-> (v3)
auto v1 = dba.InsertVertex();
auto v2 = dba.InsertVertex();
auto v3 = dba.InsertVertex();
dba.InsertEdge(v1, v2, dba.EdgeType("r"));
dba.InsertEdge(v2, v3, dba.EdgeType("r"));
dba.AdvanceCommand();
{
// Test `MATCH (n) -[r]-> (m) -[e]-> (l) RETURN n`
AstTreeStorage storage;
QUERY(SINGLE_QUERY(
MATCH(PATTERN(NODE("n"), EDGE("r", Direction::OUT), NODE("m"),
EDGE("e", Direction::OUT), NODE("l"))),
RETURN("n")));
// We have 3 nodes: `n`, `m` and `l` from which we could start.
CheckPlansProduce(3, storage, dba, [&](const auto &results) {
// We expect to produce only a single (v1) node.
AssertRows(results, {{v1}});
});
}
{
// Equivalent to `MATCH (n) -[r]-> (m), (m) -[e]-> (l) RETURN n`.
AstTreeStorage storage;
QUERY(SINGLE_QUERY(
MATCH(PATTERN(NODE("n"), EDGE("r", Direction::OUT), NODE("m")),
PATTERN(NODE("m"), EDGE("e", Direction::OUT), NODE("l"))),
RETURN("n")));
CheckPlansProduce(3, storage, dba, [&](const auto &results) {
AssertRows(results, {{v1}});
});
}
}
TEST(TestVariableStartPlanner, MatchOptionalMatchReturn) {
database::SingleNode db;
database::GraphDbAccessor dba(db);
// Make a graph (v1) -[:r]-> (v2) -[:r]-> (v3)
auto v1 = dba.InsertVertex();
auto v2 = dba.InsertVertex();
auto v3 = dba.InsertVertex();
dba.InsertEdge(v1, v2, dba.EdgeType("r"));
dba.InsertEdge(v2, v3, dba.EdgeType("r"));
dba.AdvanceCommand();
// Test MATCH (n) -[r]-> (m) OPTIONAL MATCH (m) -[e]-> (l) RETURN n, l
AstTreeStorage storage;
QUERY(SINGLE_QUERY(
MATCH(PATTERN(NODE("n"), EDGE("r", Direction::OUT), NODE("m"))),
OPTIONAL_MATCH(PATTERN(NODE("m"), EDGE("e", Direction::OUT), NODE("l"))),
RETURN("n", "l")));
// We have 2 nodes `n` and `m` from which we could start the MATCH, and 2
// nodes for OPTIONAL MATCH. This should produce 2 * 2 plans.
CheckPlansProduce(4, storage, dba, [&](const auto &results) {
// We expect to produce 2 rows:
// * (v1), (v3)
// * (v2), null
AssertRows(results, {{v1, v3}, {v2, TypedValue::Null}});
});
}
TEST(TestVariableStartPlanner, MatchOptionalMatchMergeReturn) {
database::SingleNode db;
database::GraphDbAccessor dba(db);
// Graph (v1) -[:r]-> (v2)
auto v1 = dba.InsertVertex();
auto v2 = dba.InsertVertex();
auto r_type = dba.EdgeType("r");
dba.InsertEdge(v1, v2, r_type);
dba.AdvanceCommand();
// Test MATCH (n) -[r]-> (m) OPTIONAL MATCH (m) -[e]-> (l)
// MERGE (u) -[q:r]-> (v) RETURN n, m, l, u, v
AstTreeStorage storage;
QUERY(SINGLE_QUERY(
MATCH(PATTERN(NODE("n"), EDGE("r", Direction::OUT), NODE("m"))),
OPTIONAL_MATCH(PATTERN(NODE("m"), EDGE("e", Direction::OUT), NODE("l"))),
MERGE(PATTERN(NODE("u"), EDGE("q", Direction::OUT, {r_type}), NODE("v"))),
RETURN("n", "m", "l", "u", "v")));
// Since MATCH, OPTIONAL MATCH and MERGE each have 2 nodes from which we can
// start, we generate 2 * 2 * 2 plans.
CheckPlansProduce(8, storage, dba, [&](const auto &results) {
// We expect to produce a single row: (v1), (v2), null, (v1), (v2)
AssertRows(results, {{v1, v2, TypedValue::Null, v1, v2}});
});
}
TEST(TestVariableStartPlanner, MatchWithMatchReturn) {
database::SingleNode db;
database::GraphDbAccessor dba(db);
// Graph (v1) -[:r]-> (v2)
auto v1 = dba.InsertVertex();
auto v2 = dba.InsertVertex();
dba.InsertEdge(v1, v2, dba.EdgeType("r"));
dba.AdvanceCommand();
// Test MATCH (n) -[r]-> (m) WITH n MATCH (m) -[r]-> (l) RETURN n, m, l
AstTreeStorage storage;
QUERY(SINGLE_QUERY(
MATCH(PATTERN(NODE("n"), EDGE("r", Direction::OUT), NODE("m"))),
WITH("n"),
MATCH(PATTERN(NODE("m"), EDGE("r", Direction::OUT), NODE("l"))),
RETURN("n", "m", "l")));
// We can start from 2 nodes in each match. Since WITH separates query parts,
// we expect to get 2 plans for each, which totals 2 * 2.
CheckPlansProduce(4, storage, dba, [&](const auto &results) {
// We expect to produce a single row: (v1), (v1), (v2)
AssertRows(results, {{v1, v1, v2}});
});
}
TEST(TestVariableStartPlanner, MatchVariableExpand) {
database::SingleNode db;
database::GraphDbAccessor dba(db);
// Graph (v1) -[:r1]-> (v2) -[:r2]-> (v3)
auto v1 = dba.InsertVertex();
auto v2 = dba.InsertVertex();
auto v3 = dba.InsertVertex();
auto r1 = dba.InsertEdge(v1, v2, dba.EdgeType("r1"));
auto r2 = dba.InsertEdge(v2, v3, dba.EdgeType("r2"));
dba.AdvanceCommand();
// Test MATCH (n) -[r*]-> (m) RETURN r
AstTreeStorage storage;
auto edge = EDGE_VARIABLE("r", Direction::OUT);
QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("n"), edge, NODE("m"))), RETURN("r")));
// We expect to get a single column with the following rows:
TypedValue r1_list(std::vector<TypedValue>{r1}); // [r1]
TypedValue r2_list(std::vector<TypedValue>{r2}); // [r2]
TypedValue r1_r2_list(std::vector<TypedValue>{r1, r2}); // [r1, r2]
CheckPlansProduce(2, storage, dba, [&](const auto &results) {
AssertRows(results, {{r1_list}, {r2_list}, {r1_r2_list}});
});
}
TEST(TestVariableStartPlanner, MatchVariableExpandReferenceNode) {
database::SingleNode db;
database::GraphDbAccessor dba(db);
auto id = dba.Property("id");
// Graph (v1 {id:1}) -[:r1]-> (v2 {id: 2}) -[:r2]-> (v3 {id: 3})
auto v1 = dba.InsertVertex();
v1.PropsSet(id, 1);
auto v2 = dba.InsertVertex();
v2.PropsSet(id, 2);
auto v3 = dba.InsertVertex();
v3.PropsSet(id, 3);
auto r1 = dba.InsertEdge(v1, v2, dba.EdgeType("r1"));
auto r2 = dba.InsertEdge(v2, v3, dba.EdgeType("r2"));
dba.AdvanceCommand();
// Test MATCH (n) -[r*..n.id]-> (m) RETURN r
AstTreeStorage storage;
auto edge = EDGE_VARIABLE("r", Direction::OUT);
edge->upper_bound_ = PROPERTY_LOOKUP("n", id);
QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("n"), edge, NODE("m"))), RETURN("r")));
// We expect to get a single column with the following rows:
TypedValue r1_list(std::vector<TypedValue>{r1}); // [r1] (v1 -[*..1]-> v2)
TypedValue r2_list(std::vector<TypedValue>{r2}); // [r2] (v2 -[*..2]-> v3)
CheckPlansProduce(2, storage, dba, [&](const auto &results) {
AssertRows(results, {{r1_list}, {r2_list}});
});
}
TEST(TestVariableStartPlanner, MatchVariableExpandBoth) {
database::SingleNode db;
database::GraphDbAccessor dba(db);
auto id = dba.Property("id");
// Graph (v1 {id:1}) -[:r1]-> (v2) -[:r2]-> (v3)
auto v1 = dba.InsertVertex();
v1.PropsSet(id, 1);
auto v2 = dba.InsertVertex();
auto v3 = dba.InsertVertex();
auto r1 = dba.InsertEdge(v1, v2, dba.EdgeType("r1"));
auto r2 = dba.InsertEdge(v2, v3, dba.EdgeType("r2"));
dba.AdvanceCommand();
// Test MATCH (n {id:1}) -[r*]- (m) RETURN r
AstTreeStorage storage;
auto edge = EDGE_VARIABLE("r", Direction::BOTH);
auto node_n = NODE("n");
node_n->properties_[std::make_pair("id", id)] = LITERAL(1);
QUERY(SINGLE_QUERY(MATCH(PATTERN(node_n, edge, NODE("m"))), RETURN("r")));
// We expect to get a single column with the following rows:
TypedValue r1_list(std::vector<TypedValue>{r1}); // [r1]
TypedValue r1_r2_list(std::vector<TypedValue>{r1, r2}); // [r1, r2]
CheckPlansProduce(2, storage, dba, [&](const auto &results) {
AssertRows(results, {{r1_list}, {r1_r2_list}});
});
}
TEST(TestVariableStartPlanner, MatchBfs) {
database::SingleNode db;
database::GraphDbAccessor dba(db);
auto id = dba.Property("id");
// Graph (v1 {id:1}) -[:r1]-> (v2 {id: 2}) -[:r2]-> (v3 {id: 3})
auto v1 = dba.InsertVertex();
v1.PropsSet(id, 1);
auto v2 = dba.InsertVertex();
v2.PropsSet(id, 2);
auto v3 = dba.InsertVertex();
v3.PropsSet(id, 3);
auto r1 = dba.InsertEdge(v1, v2, dba.EdgeType("r1"));
dba.InsertEdge(v2, v3, dba.EdgeType("r2"));
dba.AdvanceCommand();
// Test MATCH (n) -[r *bfs..10](r, n | n.id <> 3)]-> (m) RETURN r
AstTreeStorage storage;
auto *bfs = storage.Create<query::EdgeAtom>(
IDENT("r"), EdgeAtom::Type::BREADTH_FIRST, Direction::OUT,
std::vector<database::EdgeType>{});
bfs->inner_edge_ = IDENT("r");
bfs->inner_node_ = IDENT("n");
bfs->filter_expression_ = NEQ(PROPERTY_LOOKUP("n", id), LITERAL(3));
bfs->upper_bound_ = LITERAL(10);
QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("n"), bfs, NODE("m"))), RETURN("r")));
// We expect to get a single column with the following rows:
TypedValue r1_list(std::vector<TypedValue>{r1}); // [r1]
CheckPlansProduce(2, storage, dba, [&](const auto &results) {
AssertRows(results, {{r1_list}});
});
}
} // namespace