memgraph/tests/unit/interpreter.cpp
Mislav Bradac 9c7acf780c Implement expression evaluation
Reviewers: buda

Reviewed By: buda

Differential Revision: https://phabricator.memgraph.io/D179
2017-03-24 17:44:05 +01:00

919 lines
32 KiB
C++

//
// Copyright 2017 Memgraph
// Created by Florijan Stamenkovic on 14.03.17.
//
#include <iterator>
#include <memory>
#include <vector>
#include "gmock/gmock.h"
#include "gtest/gtest.h"
#include "communication/result_stream_faker.hpp"
#include "dbms/dbms.hpp"
#include "query/context.hpp"
#include "query/frontend/interpret/interpret.hpp"
#include "query/frontend/logical/planner.hpp"
#include "query/frontend/opencypher/parser.hpp"
#include "query/frontend/semantic/symbol_generator.hpp"
using namespace query;
/**
* Helper function that collects all the results from the given
* Produce into a ResultStreamFaker and returns that object.
*
* @param produce
* @param symbol_table
* @param db_accessor
* @return
*/
auto CollectProduce(std::shared_ptr<Produce> produce, SymbolTable &symbol_table,
GraphDbAccessor &db_accessor) {
ResultStreamFaker stream;
Frame frame(symbol_table.max_position());
// top level node in the operator tree is a produce (return)
// so stream out results
// generate header
std::vector<std::string> header;
for (auto named_expression : produce->named_expressions())
header.push_back(named_expression->name_);
stream.Header(header);
// collect the symbols from the return clause
std::vector<Symbol> symbols;
for (auto named_expression : produce->named_expressions())
symbols.emplace_back(symbol_table[*named_expression]);
// stream out results
auto cursor = produce->MakeCursor(db_accessor);
while (cursor->Pull(frame, symbol_table)) {
std::vector<TypedValue> values;
for (auto &symbol : symbols) values.emplace_back(frame[symbol]);
stream.Result(values);
}
stream.Summary({{std::string("type"), TypedValue("r")}});
return stream;
}
void ExecuteCreate(std::shared_ptr<LogicalOperator> create, GraphDbAccessor &db,
SymbolTable symbol_table) {
Frame frame(symbol_table.max_position());
auto cursor = create->MakeCursor(db);
while (cursor->Pull(frame, symbol_table)) {
continue;
}
}
template <typename... TNamedExpressions>
auto MakeProduce(std::shared_ptr<LogicalOperator> input,
TNamedExpressions... named_expressions) {
return std::make_shared<Produce>(
input, std::vector<NamedExpression *>{named_expressions...});
}
/**
* Creates and returns a tuple of stuff for a scan-all starting
* from the node with the given name.
*
* Returns (node_atom, scan_all_logical_op, symbol).
*/
auto MakeScanAll(AstTreeStorage &ast_storage, SymbolTable &symbol_table,
const std::string &identifier) {
auto node =
ast_storage.Create<NodeAtom>(ast_storage.Create<Identifier>(identifier));
auto logical_op = std::make_shared<ScanAll>(node);
auto symbol = symbol_table.CreateSymbol(identifier);
symbol_table[*node->identifier_] = symbol;
return std::make_tuple(node, logical_op, symbol);
}
auto MakeExpand(AstTreeStorage &ast_storage, SymbolTable &symbol_table,
std::shared_ptr<LogicalOperator> input, Symbol input_symbol,
const std::string &edge_identifier,
EdgeAtom::Direction direction, bool edge_cycle,
const std::string &node_identifier, bool node_cycle) {
auto edge = ast_storage.Create<EdgeAtom>(
ast_storage.Create<Identifier>(edge_identifier), direction);
auto edge_sym = symbol_table.CreateSymbol(edge_identifier);
symbol_table[*edge->identifier_] = edge_sym;
auto node = ast_storage.Create<NodeAtom>(
ast_storage.Create<Identifier>(node_identifier));
auto node_sym = symbol_table.CreateSymbol(node_identifier);
symbol_table[*node->identifier_] = node_sym;
auto op = std::make_shared<Expand>(node, edge, input, input_symbol,
node_cycle, edge_cycle);
return std::make_tuple(edge, edge_sym, node, node_sym, op);
}
template <typename TIterable>
auto CountIterable(TIterable iterable) {
return std::distance(iterable.begin(), iterable.end());
}
/*
* Actual tests start here.
*/
TEST(Interpreter, MatchReturn) {
Dbms dbms;
auto dba = dbms.active();
// add a few nodes to the database
dba->insert_vertex();
dba->insert_vertex();
dba->advance_command();
AstTreeStorage storage;
SymbolTable symbol_table;
auto scan_all = MakeScanAll(storage, symbol_table, "n");
auto output =
storage.Create<NamedExpression>("n", storage.Create<Identifier>("n"));
auto produce = MakeProduce(std::get<1>(scan_all), output);
symbol_table[*output->expression_] = std::get<2>(scan_all);
symbol_table[*output] = symbol_table.CreateSymbol("named_expression_1");
ResultStreamFaker result = CollectProduce(produce, symbol_table, *dba);
EXPECT_EQ(result.GetResults().size(), 2);
}
TEST(Interpreter, NodeFilterLabelsAndProperties) {
Dbms dbms;
auto dba = dbms.active();
// add a few nodes to the database
GraphDb::Label label = dba->label("Label");
GraphDb::Property property = dba->property("Property");
auto v1 = dba->insert_vertex();
auto v2 = dba->insert_vertex();
auto v3 = dba->insert_vertex();
auto v4 = dba->insert_vertex();
auto v5 = dba->insert_vertex();
dba->insert_vertex();
// test all combination of (label | no_label) * (no_prop | wrong_prop |
// right_prop)
// only v1 will have the right labels
v1.add_label(label);
v2.add_label(label);
v3.add_label(label);
v1.PropsSet(property, 42);
v2.PropsSet(property, 1);
v4.PropsSet(property, 42);
v5.PropsSet(property, 1);
dba->advance_command();
AstTreeStorage storage;
SymbolTable symbol_table;
// make a scan all
auto n = MakeScanAll(storage, symbol_table, "n");
std::get<0>(n)->labels_.emplace_back(label);
std::get<0>(n)->properties_[property] = storage.Create<Literal>(42);
// node filtering
auto node_filter = std::make_shared<NodeFilter>(
std::get<1>(n), std::get<2>(n), std::get<0>(n));
// make a named expression and a produce
auto output =
storage.Create<NamedExpression>("x", storage.Create<Identifier>("n"));
symbol_table[*output->expression_] = std::get<2>(n);
symbol_table[*output] = symbol_table.CreateSymbol("named_expression_1");
auto produce = MakeProduce(node_filter, output);
ResultStreamFaker result = CollectProduce(produce, symbol_table, *dba);
EXPECT_EQ(result.GetResults().size(), 1);
}
TEST(Interpreter, NodeFilterMultipleLabels) {
Dbms dbms;
auto dba = dbms.active();
// add a few nodes to the database
GraphDb::Label label1 = dba->label("label1");
GraphDb::Label label2 = dba->label("label2");
GraphDb::Label label3 = dba->label("label3");
// the test will look for nodes that have label1 and label2
dba->insert_vertex(); // NOT accepted
dba->insert_vertex().add_label(label1); // NOT accepted
dba->insert_vertex().add_label(label2); // NOT accepted
dba->insert_vertex().add_label(label3); // NOT accepted
auto v1 = dba->insert_vertex(); // YES accepted
v1.add_label(label1);
v1.add_label(label2);
auto v2 = dba->insert_vertex(); // NOT accepted
v2.add_label(label1);
v2.add_label(label3);
auto v3 = dba->insert_vertex(); // YES accepted
v3.add_label(label1);
v3.add_label(label2);
v3.add_label(label3);
dba->advance_command();
AstTreeStorage storage;
SymbolTable symbol_table;
// make a scan all
auto n = MakeScanAll(storage, symbol_table, "n");
std::get<0>(n)->labels_.emplace_back(label1);
std::get<0>(n)->labels_.emplace_back(label2);
// node filtering
auto node_filter = std::make_shared<NodeFilter>(
std::get<1>(n), std::get<2>(n), std::get<0>(n));
// make a named expression and a produce
auto output =
storage.Create<NamedExpression>("n", storage.Create<Identifier>("n"));
auto produce = MakeProduce(node_filter, output);
// fill up the symbol table
symbol_table[*output] = symbol_table.CreateSymbol("named_expression_1");
symbol_table[*output->expression_] = std::get<2>(n);
ResultStreamFaker result = CollectProduce(produce, symbol_table, *dba);
EXPECT_EQ(result.GetResults().size(), 2);
}
TEST(Interpreter, CreateNodeWithAttributes) {
Dbms dbms;
auto dba = dbms.active();
GraphDb::Label label = dba->label("Person");
GraphDb::Property property = dba->label("age");
AstTreeStorage storage;
SymbolTable symbol_table;
auto node = storage.Create<NodeAtom>(storage.Create<Identifier>("n"));
symbol_table[*node->identifier_] = symbol_table.CreateSymbol("n");
node->labels_.emplace_back(label);
node->properties_[property] = storage.Create<Literal>(42);
auto create = std::make_shared<CreateNode>(node, nullptr);
ExecuteCreate(create, *dba, symbol_table);
dba->advance_command();
// count the number of vertices
int vertex_count = 0;
for (VertexAccessor vertex : dba->vertices()) {
vertex_count++;
EXPECT_EQ(vertex.labels().size(), 1);
EXPECT_EQ(*vertex.labels().begin(), label);
EXPECT_EQ(vertex.Properties().size(), 1);
auto prop_eq = vertex.PropsAt(property) == TypedValue(42);
ASSERT_EQ(prop_eq.type(), TypedValue::Type::Bool);
EXPECT_TRUE(prop_eq.Value<bool>());
}
EXPECT_EQ(vertex_count, 1);
}
TEST(Interpreter, CreateReturn) {
// test CREATE (n:Person {age: 42}) RETURN n, n.age
Dbms dbms;
auto dba = dbms.active();
GraphDb::Label label = dba->label("Person");
GraphDb::Property property = dba->label("age");
AstTreeStorage storage;
SymbolTable symbol_table;
auto node = storage.Create<NodeAtom>(storage.Create<Identifier>("n"));
auto sym_n = symbol_table.CreateSymbol("n");
symbol_table[*node->identifier_] = sym_n;
node->labels_.emplace_back(label);
node->properties_[property] = storage.Create<Literal>(42);
auto create = std::make_shared<CreateNode>(node, nullptr);
auto named_expr_n =
storage.Create<NamedExpression>("n", storage.Create<Identifier>("n"));
symbol_table[*named_expr_n] = symbol_table.CreateSymbol("named_expr_n");
symbol_table[*named_expr_n->expression_] = sym_n;
auto prop_lookup =
storage.Create<PropertyLookup>(storage.Create<Identifier>("n"), property);
symbol_table[*prop_lookup->expression_] = sym_n;
auto named_expr_n_p = storage.Create<NamedExpression>("n", prop_lookup);
symbol_table[*named_expr_n_p] = symbol_table.CreateSymbol("named_expr_n_p");
symbol_table[*named_expr_n->expression_] = sym_n;
auto produce = MakeProduce(create, named_expr_n, named_expr_n_p);
auto result = CollectProduce(produce, symbol_table, *dba);
EXPECT_EQ(1, result.GetResults().size());
EXPECT_EQ(2, result.GetResults()[0].size());
EXPECT_EQ(TypedValue::Type::Vertex, result.GetResults()[0][0].type());
EXPECT_EQ(1,
result.GetResults()[0][0].Value<VertexAccessor>().labels().size());
EXPECT_EQ(label,
result.GetResults()[0][0].Value<VertexAccessor>().labels()[0]);
EXPECT_EQ(TypedValue::Type::Int, result.GetResults()[0][1].type());
EXPECT_EQ(42, result.GetResults()[0][1].Value<int64_t>());
dba->advance_command();
EXPECT_EQ(1, CountIterable(dba->vertices()));
}
TEST(Interpreter, CreateExpand) {
Dbms dbms;
auto dba = dbms.active();
GraphDb::Label label_node_1 = dba->label("Node1");
GraphDb::Label label_node_2 = dba->label("Node2");
GraphDb::Property property = dba->label("prop");
GraphDb::EdgeType edge_type = dba->label("edge_type");
SymbolTable symbol_table;
AstTreeStorage storage;
auto test_create_path = [&](bool cycle, int expected_nodes_created,
int expected_edges_created) {
int before_v = CountIterable(dba->vertices());
int before_e = CountIterable(dba->edges());
// data for the first node
auto n = storage.Create<NodeAtom>(storage.Create<Identifier>("n"));
n->labels_.emplace_back(label_node_1);
n->properties_[property] = storage.Create<Literal>(1);
auto n_sym = symbol_table.CreateSymbol("n");
symbol_table[*n->identifier_] = n_sym;
// data for the second node
auto m = storage.Create<NodeAtom>(storage.Create<Identifier>("m"));
m->labels_.emplace_back(label_node_2);
m->properties_[property] = storage.Create<Literal>(2);
if (cycle)
symbol_table[*m->identifier_] = n_sym;
else
symbol_table[*m->identifier_] = symbol_table.CreateSymbol("m");
auto r = storage.Create<EdgeAtom>(storage.Create<Identifier>("r"),
EdgeAtom::Direction::RIGHT);
r->edge_types_.emplace_back(edge_type);
r->properties_[property] = storage.Create<Literal>(3);
auto create_op = std::make_shared<CreateNode>(n, nullptr);
auto create_expand =
std::make_shared<CreateExpand>(m, r, create_op, n_sym, cycle);
ExecuteCreate(create_expand, *dba, symbol_table);
dba->advance_command();
EXPECT_EQ(CountIterable(dba->vertices()) - before_v,
expected_nodes_created);
EXPECT_EQ(CountIterable(dba->edges()) - before_e, expected_edges_created);
};
test_create_path(false, 2, 1);
test_create_path(true, 1, 1);
for (VertexAccessor vertex : dba->vertices()) {
EXPECT_EQ(vertex.labels().size(), 1);
GraphDb::Label label = vertex.labels()[0];
if (label == label_node_1) {
// node created by first op
EXPECT_EQ(vertex.PropsAt(property).Value<int64_t>(), 1);
} else if (label == label_node_2) {
// node create by expansion
EXPECT_EQ(vertex.PropsAt(property).Value<int64_t>(), 2);
} else {
// should not happen
FAIL();
}
for (EdgeAccessor edge : dba->edges()) {
EXPECT_EQ(edge.edge_type(), edge_type);
EXPECT_EQ(edge.PropsAt(property).Value<int64_t>(), 3);
}
}
}
TEST(Interpreter, MatchCreateNode) {
Dbms dbms;
auto dba = dbms.active();
// add three nodes we'll match and expand-create from
dba->insert_vertex();
dba->insert_vertex();
dba->insert_vertex();
dba->advance_command();
SymbolTable symbol_table;
AstTreeStorage storage;
// first node
auto n_scan_all = MakeScanAll(storage, symbol_table, "n");
auto n_sym = symbol_table.CreateSymbol("n");
symbol_table[*std::get<0>(n_scan_all)->identifier_] = n_sym;
// second node
auto m = storage.Create<NodeAtom>(storage.Create<Identifier>("m"));
symbol_table[*m->identifier_] = symbol_table.CreateSymbol("m");
// creation op
auto create_node = std::make_shared<CreateNode>(m, std::get<1>(n_scan_all));
EXPECT_EQ(CountIterable(dba->vertices()), 3);
ExecuteCreate(create_node, *dba, symbol_table);
dba->advance_command();
EXPECT_EQ(CountIterable(dba->vertices()), 6);
}
TEST(Interpreter, MatchCreateExpand) {
Dbms dbms;
auto dba = dbms.active();
// add three nodes we'll match and expand-create from
dba->insert_vertex();
dba->insert_vertex();
dba->insert_vertex();
dba->advance_command();
// GraphDb::Label label_node_1 = dba->label("Node1");
// GraphDb::Label label_node_2 = dba->label("Node2");
// GraphDb::Property property = dba->label("prop");
GraphDb::EdgeType edge_type = dba->label("edge_type");
SymbolTable symbol_table;
AstTreeStorage storage;
auto test_create_path = [&](bool cycle, int expected_nodes_created,
int expected_edges_created) {
int before_v = CountIterable(dba->vertices());
int before_e = CountIterable(dba->edges());
// data for the first node
auto n_scan_all = MakeScanAll(storage, symbol_table, "n");
auto n_sym = symbol_table.CreateSymbol("n");
symbol_table[*std::get<0>(n_scan_all)->identifier_] = n_sym;
// data for the second node
auto m = storage.Create<NodeAtom>(storage.Create<Identifier>("m"));
if (cycle)
symbol_table[*m->identifier_] = n_sym;
else
symbol_table[*m->identifier_] = symbol_table.CreateSymbol("m");
auto r = storage.Create<EdgeAtom>(storage.Create<Identifier>("r"),
EdgeAtom::Direction::RIGHT);
r->edge_types_.emplace_back(edge_type);
auto create_expand = std::make_shared<CreateExpand>(
m, r, std::get<1>(n_scan_all), n_sym, cycle);
ExecuteCreate(create_expand, *dba, symbol_table);
dba->advance_command();
EXPECT_EQ(CountIterable(dba->vertices()) - before_v,
expected_nodes_created);
EXPECT_EQ(CountIterable(dba->edges()) - before_e, expected_edges_created);
};
test_create_path(false, 3, 3);
test_create_path(true, 0, 6);
}
TEST(Interpreter, Expand) {
Dbms dbms;
auto dba = dbms.active();
// make a V-graph (v3)<-[r2]-(v1)-[r1]->(v2)
auto v1 = dba->insert_vertex();
v1.add_label((GraphDb::Label)1);
auto v2 = dba->insert_vertex();
v2.add_label((GraphDb::Label)2);
auto v3 = dba->insert_vertex();
v3.add_label((GraphDb::Label)3);
auto edge_type = dba->edge_type("Edge");
dba->insert_edge(v1, v2, edge_type);
dba->insert_edge(v1, v3, edge_type);
dba->advance_command();
AstTreeStorage storage;
SymbolTable symbol_table;
auto test_expand = [&](EdgeAtom::Direction direction,
int expected_result_count) {
auto n = MakeScanAll(storage, symbol_table, "n");
auto r_m = MakeExpand(storage, symbol_table, std::get<1>(n), std::get<2>(n),
"r", direction, false, "m", false);
// make a named expression and a produce
auto output =
storage.Create<NamedExpression>("m", storage.Create<Identifier>("m"));
symbol_table[*output->expression_] = std::get<3>(r_m);
symbol_table[*output] = symbol_table.CreateSymbol("named_expression_1");
auto produce = MakeProduce(std::get<4>(r_m), output);
ResultStreamFaker result = CollectProduce(produce, symbol_table, *dba);
EXPECT_EQ(result.GetResults().size(), expected_result_count);
};
test_expand(EdgeAtom::Direction::RIGHT, 2);
test_expand(EdgeAtom::Direction::LEFT, 2);
test_expand(EdgeAtom::Direction::BOTH, 4);
}
TEST(Interpreter, ExpandNodeCycle) {
Dbms dbms;
auto dba = dbms.active();
// make a graph (v1)->(v2) that
// has a recursive edge (v1)->(v1)
auto v1 = dba->insert_vertex();
auto v2 = dba->insert_vertex();
auto edge_type = dba->edge_type("Edge");
dba->insert_edge(v1, v1, edge_type);
dba->insert_edge(v1, v2, edge_type);
dba->advance_command();
AstTreeStorage storage;
SymbolTable symbol_table;
auto test_cycle = [&](bool with_cycle, int expected_result_count) {
auto n = MakeScanAll(storage, symbol_table, "n");
auto r_n =
MakeExpand(storage, symbol_table, std::get<1>(n), std::get<2>(n), "r",
EdgeAtom::Direction::RIGHT, false, "n", with_cycle);
if (with_cycle)
symbol_table[*std::get<2>(r_n)->identifier_] =
symbol_table[*std::get<0>(n)->identifier_];
// make a named expression and a produce
auto output =
storage.Create<NamedExpression>("n", storage.Create<Identifier>("n"));
symbol_table[*output->expression_] = std::get<2>(n);
symbol_table[*output] = symbol_table.CreateSymbol("named_expression_1");
auto produce = MakeProduce(std::get<4>(r_n), output);
ResultStreamFaker result = CollectProduce(produce, symbol_table, *dba);
EXPECT_EQ(result.GetResults().size(), expected_result_count);
};
test_cycle(true, 1);
test_cycle(false, 2);
}
TEST(Interpreter, ExpandEdgeCycle) {
Dbms dbms;
auto dba = dbms.active();
// make a V-graph (v3)<-[r2]-(v1)-[r1]->(v2)
auto v1 = dba->insert_vertex();
v1.add_label((GraphDb::Label)1);
auto v2 = dba->insert_vertex();
v2.add_label((GraphDb::Label)2);
auto v3 = dba->insert_vertex();
v3.add_label((GraphDb::Label)3);
auto edge_type = dba->edge_type("Edge");
dba->insert_edge(v1, v2, edge_type);
dba->insert_edge(v1, v3, edge_type);
dba->advance_command();
AstTreeStorage storage;
SymbolTable symbol_table;
auto test_cycle = [&](bool with_cycle, int expected_result_count) {
auto i = MakeScanAll(storage, symbol_table, "i");
auto r_j = MakeExpand(storage, symbol_table, std::get<1>(i), std::get<2>(i),
"r", EdgeAtom::Direction::BOTH, false, "j", false);
auto r_k =
MakeExpand(storage, symbol_table, std::get<4>(r_j), std::get<3>(r_j),
"r", EdgeAtom::Direction::BOTH, with_cycle, "k", false);
if (with_cycle)
symbol_table[*std::get<0>(r_k)->identifier_] =
symbol_table[*std::get<0>(r_j)->identifier_];
// make a named expression and a produce
auto output =
storage.Create<NamedExpression>("r", storage.Create<Identifier>("r"));
symbol_table[*output->expression_] = std::get<1>(r_j);
symbol_table[*output] = symbol_table.CreateSymbol("named_expression_1");
auto produce = MakeProduce(std::get<4>(r_k), output);
ResultStreamFaker result = CollectProduce(produce, symbol_table, *dba);
EXPECT_EQ(result.GetResults().size(), expected_result_count);
};
test_cycle(true, 4);
test_cycle(false, 6);
}
TEST(Interpreter, EdgeFilter) {
Dbms dbms;
auto dba = dbms.active();
// make an N-star expanding from (v1)
// where only one edge will qualify
// and there are all combinations of
// (edge_type yes|no) * (property yes|absent|no)
std::vector<GraphDb::EdgeType> edge_types;
for (int j = 0; j < 2; ++j)
edge_types.push_back(dba->edge_type("et" + std::to_string(j)));
std::vector<VertexAccessor> vertices;
for (int i = 0; i < 7; ++i) vertices.push_back(dba->insert_vertex());
GraphDb::Property prop = dba->property("prop");
std::vector<EdgeAccessor> edges;
for (int i = 0; i < 6; ++i) {
edges.push_back(
dba->insert_edge(vertices[0], vertices[i + 1], edge_types[i % 2]));
switch (i % 3) {
case 0:
edges.back().PropsSet(prop, 42);
break;
case 1:
edges.back().PropsSet(prop, 100);
break;
default:
break;
}
}
dba->advance_command();
AstTreeStorage storage;
SymbolTable symbol_table;
// define an operator tree for query
// MATCH (n)-[r]->(m) RETURN m
auto n = MakeScanAll(storage, symbol_table, "n");
auto r_m = MakeExpand(storage, symbol_table, std::get<1>(n), std::get<2>(n),
"r", EdgeAtom::Direction::RIGHT, false, "m", false);
std::get<0>(r_m)->edge_types_.push_back(edge_types[0]);
std::get<0>(r_m)->properties_[prop] = storage.Create<Literal>(42);
auto edge_filter = std::make_shared<EdgeFilter>(
std::get<4>(r_m), std::get<1>(r_m), std::get<0>(r_m));
// make a named expression and a produce
auto output =
storage.Create<NamedExpression>("m", storage.Create<Identifier>("m"));
symbol_table[*output->expression_] = std::get<3>(r_m);
symbol_table[*output] = symbol_table.CreateSymbol("named_expression_1");
auto produce = MakeProduce(edge_filter, output);
ResultStreamFaker result = CollectProduce(produce, symbol_table, *dba);
EXPECT_EQ(result.GetResults().size(), 1);
}
TEST(Interpreter, EdgeFilterMultipleTypes) {
Dbms dbms;
auto dba = dbms.active();
auto v1 = dba->insert_vertex();
auto v2 = dba->insert_vertex();
auto type_1 = dba->edge_type("type_1");
auto type_2 = dba->edge_type("type_2");
auto type_3 = dba->edge_type("type_3");
dba->insert_edge(v1, v2, type_1);
dba->insert_edge(v1, v2, type_2);
dba->insert_edge(v1, v2, type_3);
dba->advance_command();
AstTreeStorage storage;
SymbolTable symbol_table;
// make a scan all
auto n = MakeScanAll(storage, symbol_table, "n");
auto r_m = MakeExpand(storage, symbol_table, std::get<1>(n), std::get<2>(n),
"r", EdgeAtom::Direction::RIGHT, false, "m", false);
// add a property filter
auto edge_filter = std::make_shared<EdgeFilter>(
std::get<4>(r_m), std::get<1>(r_m), std::get<0>(r_m));
std::get<0>(r_m)->edge_types_.push_back(type_1);
std::get<0>(r_m)->edge_types_.push_back(type_2);
// make a named expression and a produce
auto output =
storage.Create<NamedExpression>("m", storage.Create<Identifier>("m"));
auto produce = MakeProduce(edge_filter, output);
// fill up the symbol table
symbol_table[*output] = symbol_table.CreateSymbol("named_expression_1");
symbol_table[*output->expression_] = std::get<3>(r_m);
ResultStreamFaker result = CollectProduce(produce, symbol_table, *dba);
EXPECT_EQ(result.GetResults().size(), 2);
}
struct NoContextExpressionEvaluator {
NoContextExpressionEvaluator() {}
Frame frame{0};
SymbolTable symbol_table;
ExpressionEvaluator eval{frame, symbol_table};
};
TEST(ExpressionEvaluator, OrOperator) {
AstTreeStorage storage;
NoContextExpressionEvaluator eval;
auto *op = storage.Create<OrOperator>(storage.Create<Literal>(true),
storage.Create<Literal>(false));
op->Accept(eval.eval);
ASSERT_EQ(eval.eval.PopBack().Value<bool>(), true);
op = storage.Create<OrOperator>(storage.Create<Literal>(true),
storage.Create<Literal>(true));
op->Accept(eval.eval);
ASSERT_EQ(eval.eval.PopBack().Value<bool>(), true);
}
TEST(ExpressionEvaluator, XorOperator) {
AstTreeStorage storage;
NoContextExpressionEvaluator eval;
auto *op = storage.Create<XorOperator>(storage.Create<Literal>(true),
storage.Create<Literal>(false));
op->Accept(eval.eval);
ASSERT_EQ(eval.eval.PopBack().Value<bool>(), true);
op = storage.Create<XorOperator>(storage.Create<Literal>(true),
storage.Create<Literal>(true));
op->Accept(eval.eval);
ASSERT_EQ(eval.eval.PopBack().Value<bool>(), false);
}
TEST(ExpressionEvaluator, AndOperator) {
AstTreeStorage storage;
NoContextExpressionEvaluator eval;
auto *op = storage.Create<AndOperator>(storage.Create<Literal>(true),
storage.Create<Literal>(true));
op->Accept(eval.eval);
ASSERT_EQ(eval.eval.PopBack().Value<bool>(), true);
op = storage.Create<AndOperator>(storage.Create<Literal>(false),
storage.Create<Literal>(true));
op->Accept(eval.eval);
ASSERT_EQ(eval.eval.PopBack().Value<bool>(), false);
}
TEST(ExpressionEvaluator, AdditionOperator) {
AstTreeStorage storage;
NoContextExpressionEvaluator eval;
auto *op = storage.Create<AdditionOperator>(storage.Create<Literal>(2),
storage.Create<Literal>(3));
op->Accept(eval.eval);
ASSERT_EQ(eval.eval.PopBack().Value<int64_t>(), 5);
}
TEST(ExpressionEvaluator, SubtractionOperator) {
AstTreeStorage storage;
NoContextExpressionEvaluator eval;
auto *op = storage.Create<SubtractionOperator>(storage.Create<Literal>(2),
storage.Create<Literal>(3));
op->Accept(eval.eval);
ASSERT_EQ(eval.eval.PopBack().Value<int64_t>(), -1);
}
TEST(ExpressionEvaluator, MultiplicationOperator) {
AstTreeStorage storage;
NoContextExpressionEvaluator eval;
auto *op = storage.Create<MultiplicationOperator>(storage.Create<Literal>(2),
storage.Create<Literal>(3));
op->Accept(eval.eval);
ASSERT_EQ(eval.eval.PopBack().Value<int64_t>(), 6);
}
TEST(ExpressionEvaluator, DivisionOperator) {
AstTreeStorage storage;
NoContextExpressionEvaluator eval;
auto *op = storage.Create<DivisionOperator>(storage.Create<Literal>(50),
storage.Create<Literal>(10));
op->Accept(eval.eval);
ASSERT_EQ(eval.eval.PopBack().Value<int64_t>(), 5);
}
TEST(ExpressionEvaluator, ModOperator) {
AstTreeStorage storage;
NoContextExpressionEvaluator eval;
auto *op = storage.Create<ModOperator>(storage.Create<Literal>(65),
storage.Create<Literal>(10));
op->Accept(eval.eval);
ASSERT_EQ(eval.eval.PopBack().Value<int64_t>(), 5);
}
TEST(ExpressionEvaluator, EqualOperator) {
AstTreeStorage storage;
NoContextExpressionEvaluator eval;
auto *op = storage.Create<EqualOperator>(storage.Create<Literal>(10),
storage.Create<Literal>(15));
op->Accept(eval.eval);
ASSERT_EQ(eval.eval.PopBack().Value<bool>(), false);
op = storage.Create<EqualOperator>(storage.Create<Literal>(15),
storage.Create<Literal>(15));
op->Accept(eval.eval);
ASSERT_EQ(eval.eval.PopBack().Value<bool>(), true);
op = storage.Create<EqualOperator>(storage.Create<Literal>(20),
storage.Create<Literal>(15));
op->Accept(eval.eval);
ASSERT_EQ(eval.eval.PopBack().Value<bool>(), false);
}
TEST(ExpressionEvaluator, NotEqualOperator) {
AstTreeStorage storage;
NoContextExpressionEvaluator eval;
auto *op = storage.Create<NotEqualOperator>(storage.Create<Literal>(10),
storage.Create<Literal>(15));
op->Accept(eval.eval);
ASSERT_EQ(eval.eval.PopBack().Value<bool>(), true);
op = storage.Create<NotEqualOperator>(storage.Create<Literal>(15),
storage.Create<Literal>(15));
op->Accept(eval.eval);
ASSERT_EQ(eval.eval.PopBack().Value<bool>(), false);
op = storage.Create<NotEqualOperator>(storage.Create<Literal>(20),
storage.Create<Literal>(15));
op->Accept(eval.eval);
ASSERT_EQ(eval.eval.PopBack().Value<bool>(), true);
}
TEST(ExpressionEvaluator, LessOperator) {
AstTreeStorage storage;
NoContextExpressionEvaluator eval;
auto *op = storage.Create<LessOperator>(storage.Create<Literal>(10),
storage.Create<Literal>(15));
op->Accept(eval.eval);
ASSERT_EQ(eval.eval.PopBack().Value<bool>(), true);
op = storage.Create<LessOperator>(storage.Create<Literal>(15),
storage.Create<Literal>(15));
op->Accept(eval.eval);
ASSERT_EQ(eval.eval.PopBack().Value<bool>(), false);
op = storage.Create<LessOperator>(storage.Create<Literal>(20),
storage.Create<Literal>(15));
op->Accept(eval.eval);
ASSERT_EQ(eval.eval.PopBack().Value<bool>(), false);
}
TEST(ExpressionEvaluator, GreaterOperator) {
AstTreeStorage storage;
NoContextExpressionEvaluator eval;
auto *op = storage.Create<GreaterOperator>(storage.Create<Literal>(10),
storage.Create<Literal>(15));
op->Accept(eval.eval);
ASSERT_EQ(eval.eval.PopBack().Value<bool>(), false);
op = storage.Create<GreaterOperator>(storage.Create<Literal>(15),
storage.Create<Literal>(15));
op->Accept(eval.eval);
ASSERT_EQ(eval.eval.PopBack().Value<bool>(), false);
op = storage.Create<GreaterOperator>(storage.Create<Literal>(20),
storage.Create<Literal>(15));
op->Accept(eval.eval);
ASSERT_EQ(eval.eval.PopBack().Value<bool>(), true);
}
TEST(ExpressionEvaluator, LessEqualOperator) {
AstTreeStorage storage;
NoContextExpressionEvaluator eval;
auto *op = storage.Create<LessEqualOperator>(storage.Create<Literal>(10),
storage.Create<Literal>(15));
op->Accept(eval.eval);
ASSERT_EQ(eval.eval.PopBack().Value<bool>(), true);
op = storage.Create<LessEqualOperator>(storage.Create<Literal>(15),
storage.Create<Literal>(15));
op->Accept(eval.eval);
ASSERT_EQ(eval.eval.PopBack().Value<bool>(), true);
op = storage.Create<LessEqualOperator>(storage.Create<Literal>(20),
storage.Create<Literal>(15));
op->Accept(eval.eval);
ASSERT_EQ(eval.eval.PopBack().Value<bool>(), false);
}
TEST(ExpressionEvaluator, GreaterEqualOperator) {
AstTreeStorage storage;
NoContextExpressionEvaluator eval;
auto *op = storage.Create<GreaterEqualOperator>(storage.Create<Literal>(10),
storage.Create<Literal>(15));
op->Accept(eval.eval);
ASSERT_EQ(eval.eval.PopBack().Value<bool>(), false);
op = storage.Create<GreaterEqualOperator>(storage.Create<Literal>(15),
storage.Create<Literal>(15));
op->Accept(eval.eval);
ASSERT_EQ(eval.eval.PopBack().Value<bool>(), true);
op = storage.Create<GreaterEqualOperator>(storage.Create<Literal>(20),
storage.Create<Literal>(15));
op->Accept(eval.eval);
ASSERT_EQ(eval.eval.PopBack().Value<bool>(), true);
}
TEST(ExpressionEvaluator, NotOperator) {
AstTreeStorage storage;
NoContextExpressionEvaluator eval;
auto *op = storage.Create<NotOperator>(storage.Create<Literal>(false));
op->Accept(eval.eval);
ASSERT_EQ(eval.eval.PopBack().Value<bool>(), true);
}
TEST(ExpressionEvaluator, UnaryPlusOperator) {
AstTreeStorage storage;
NoContextExpressionEvaluator eval;
auto *op = storage.Create<UnaryPlusOperator>(storage.Create<Literal>(5));
op->Accept(eval.eval);
ASSERT_EQ(eval.eval.PopBack().Value<int64_t>(), 5);
}
TEST(ExpressionEvaluator, UnaryMinusOperator) {
AstTreeStorage storage;
NoContextExpressionEvaluator eval;
auto *op = storage.Create<UnaryMinusOperator>(storage.Create<Literal>(5));
op->Accept(eval.eval);
ASSERT_EQ(eval.eval.PopBack().Value<int64_t>(), -5);
}