memgraph/tests/unit/query_planner.cpp
Teon Banek 8da6ce67c0 Add planning CreateExpand operator
Summary: Add planning CreateExpand operator. This is quite similar to planning Expand, but I wouldn't abstract the duplicated parts yet. Also, raise semantic error if creating bidirectional edges

Reviewers: buda, mislav.bradac, florijan

Reviewed By: mislav.bradac

Subscribers: pullbot

Differential Revision: https://phabricator.memgraph.io/D155
2017-03-22 15:41:50 +01:00

216 lines
7.9 KiB
C++

#include <list>
#include <typeinfo>
#include "gtest/gtest.h"
#include "query/frontend/ast/ast.hpp"
#include "query/frontend/logical/operator.hpp"
#include "query/frontend/logical/planner.hpp"
#include "query/frontend/semantic/symbol_table.hpp"
#include "query/frontend/semantic/symbol_generator.hpp"
using namespace query;
namespace {
class PlanChecker : public LogicalOperatorVisitor {
public:
using LogicalOperatorVisitor::Visit;
using LogicalOperatorVisitor::PostVisit;
PlanChecker(std::list<size_t> types) : types_(types) {}
void Visit(CreateOp &op) override { AssertType(op); }
void Visit(CreateExpand &op) override { AssertType(op); }
void Visit(ScanAll &op) override { AssertType(op); }
void Visit(Expand &op) override { AssertType(op); }
void Visit(NodeFilter &op) override { AssertType(op); }
void Visit(EdgeFilter &op) override { AssertType(op); }
void Visit(Produce &op) override { AssertType(op); }
private:
void AssertType(const LogicalOperator &op) {
ASSERT_FALSE(types_.empty());
ASSERT_EQ(types_.back(), typeid(op).hash_code());
types_.pop_back();
}
std::list<size_t> types_;
};
// Returns a `(name1) -[name2]- (name3) ...` pattern.
auto GetPattern(AstTreeStorage &storage, std::vector<std::string> names) {
bool is_node{true};
auto pattern = storage.Create<Pattern>();
for (auto &name : names) {
PatternAtom *atom;
auto identifier = storage.Create<Identifier>(name);
if (is_node) {
atom = storage.Create<NodeAtom>(identifier);
} else {
atom = storage.Create<EdgeAtom>(identifier);
}
pattern->atoms_.emplace_back(atom);
is_node = !is_node;
}
return pattern;
}
TEST(TestLogicalPlanner, MatchNodeReturn) {
// Test MATCH (n) RETURN n AS n
AstTreeStorage storage;
auto match = storage.Create<Match>();
match->patterns_.emplace_back(GetPattern(storage, {"n"}));
auto query = storage.query();
query->clauses_.emplace_back(match);
auto named_expr = storage.Create<NamedExpression>();
named_expr->name_ = "n";
named_expr->expression_ = storage.Create<Identifier>("n");
auto ret = storage.Create<Return>();
ret->named_expressions_.emplace_back(named_expr);
query->clauses_.emplace_back(ret);
SymbolTable symbol_table;
SymbolGenerator symbol_generator(symbol_table);
query->Accept(symbol_generator);
auto plan = MakeLogicalPlan(*query, symbol_table);
std::list<size_t> expected_types;
expected_types.emplace_back(typeid(ScanAll).hash_code());
expected_types.emplace_back(typeid(Produce).hash_code());
PlanChecker plan_checker(expected_types);
plan->Accept(plan_checker);
}
TEST(TestLogicalPlanner, CreateNodeReturn) {
// Test CREATE (n) RETURN n AS n
AstTreeStorage storage;
auto create = storage.Create<Create>();
create->patterns_.emplace_back(GetPattern(storage, {"n"}));
auto query = storage.query();
query->clauses_.emplace_back(create);
auto named_expr = storage.Create<NamedExpression>();
named_expr->name_ = "n";
named_expr->expression_ = storage.Create<Identifier>("n");
auto ret = storage.Create<Return>();
ret->named_expressions_.emplace_back(named_expr);
query->clauses_.emplace_back(ret);
SymbolTable symbol_table;
SymbolGenerator symbol_generator(symbol_table);
query->Accept(symbol_generator);
auto plan = MakeLogicalPlan(*query, symbol_table);
std::list<size_t> expected_types;
expected_types.emplace_back(typeid(CreateOp).hash_code());
expected_types.emplace_back(typeid(Produce).hash_code());
PlanChecker plan_checker(expected_types);
plan->Accept(plan_checker);
}
TEST(TestLogicalPlanner, CreateExpand) {
// Test CREATE (n) -[r :rel1]-> (m)
AstTreeStorage storage;
auto create = storage.Create<Create>();
auto pattern = GetPattern(storage, {"n", "r", "m"});
create->patterns_.emplace_back(pattern);
auto edge_atom = dynamic_cast<EdgeAtom*>(pattern->atoms_[1]);
edge_atom->direction_ = EdgeAtom::Direction::RIGHT;
std::string relationship("relationship");
edge_atom->edge_types_.emplace_back(&relationship);
auto query = storage.query();
query->clauses_.emplace_back(create);
SymbolTable symbol_table;
SymbolGenerator symbol_generator(symbol_table);
query->Accept(symbol_generator);
auto plan = MakeLogicalPlan(*query, symbol_table);
std::list<size_t> expected_types;
expected_types.emplace_back(typeid(CreateOp).hash_code());
expected_types.emplace_back(typeid(CreateExpand).hash_code());
PlanChecker plan_checker(expected_types);
plan->Accept(plan_checker);
}
TEST(TestLogicalPlanner, MatchCreateExpand) {
// Test MATCH (n) CREATE (n) -[r :rel1]-> (m)
AstTreeStorage storage;
auto match = storage.Create<Match>();
match->patterns_.emplace_back(GetPattern(storage, {"n"}));
auto query = storage.query();
query->clauses_.emplace_back(match);
auto create = storage.Create<Create>();
auto pattern = GetPattern(storage, {"n", "r", "m"});
create->patterns_.emplace_back(pattern);
auto edge_atom = dynamic_cast<EdgeAtom*>(pattern->atoms_[1]);
edge_atom->direction_ = EdgeAtom::Direction::RIGHT;
std::string relationship("relationship");
edge_atom->edge_types_.emplace_back(&relationship);
query->clauses_.emplace_back(create);
SymbolTable symbol_table;
SymbolGenerator symbol_generator(symbol_table);
query->Accept(symbol_generator);
auto plan = MakeLogicalPlan(*query, symbol_table);
std::list<size_t> expected_types;
expected_types.emplace_back(typeid(ScanAll).hash_code());
expected_types.emplace_back(typeid(CreateExpand).hash_code());
PlanChecker plan_checker(expected_types);
plan->Accept(plan_checker);
}
TEST(TestLogicalPlanner, MatchLabeledNodes) {
// Test MATCH (n :label) RETURN n AS n
AstTreeStorage storage;
auto pattern = storage.Create<Pattern>();
auto node_atom = storage.Create<NodeAtom>(storage.Create<Identifier>("n"));
std::string label("label");
node_atom->labels_.emplace_back(&label);
pattern->atoms_.emplace_back(node_atom);
auto match = storage.Create<Match>();
match->patterns_.emplace_back(pattern);
auto query = storage.query();
query->clauses_.emplace_back(match);
auto named_expr = storage.Create<NamedExpression>();
named_expr->name_ = "n";
named_expr->expression_ = storage.Create<Identifier>("n");
auto ret = storage.Create<Return>();
ret->named_expressions_.emplace_back(named_expr);
query->clauses_.emplace_back(ret);
SymbolTable symbol_table;
SymbolGenerator symbol_generator(symbol_table);
query->Accept(symbol_generator);
auto plan = MakeLogicalPlan(*query, symbol_table);
std::list<size_t> expected_types;
expected_types.emplace_back(typeid(ScanAll).hash_code());
expected_types.emplace_back(typeid(NodeFilter).hash_code());
expected_types.emplace_back(typeid(Produce).hash_code());
PlanChecker plan_checker(expected_types);
plan->Accept(plan_checker);
}
TEST(TestLogicalPlanner, MatchPathReturn) {
// Test MATCH (n) -[r :relationship]- (m) RETURN n AS n
AstTreeStorage storage;
auto match = storage.Create<Match>();
auto pattern = GetPattern(storage, {"n", "r", "m"});
match->patterns_.emplace_back(pattern);
auto edge_atom = dynamic_cast<EdgeAtom*>(pattern->atoms_[1]);
std::string relationship("relationship");
edge_atom->edge_types_.emplace_back(&relationship);
auto query = storage.query();
query->clauses_.emplace_back(match);
auto named_expr = storage.Create<NamedExpression>();
named_expr->name_ = "n";
named_expr->expression_ = storage.Create<Identifier>("n");
auto ret = storage.Create<Return>();
ret->named_expressions_.emplace_back(named_expr);
query->clauses_.emplace_back(ret);
SymbolTable symbol_table;
SymbolGenerator symbol_generator(symbol_table);
query->Accept(symbol_generator);
auto plan = MakeLogicalPlan(*query, symbol_table);
std::list<size_t> expected_types;
expected_types.emplace_back(typeid(ScanAll).hash_code());
expected_types.emplace_back(typeid(Expand).hash_code());
expected_types.emplace_back(typeid(EdgeFilter).hash_code());
expected_types.emplace_back(typeid(Produce).hash_code());
PlanChecker plan_checker(expected_types);
plan->Accept(plan_checker);
}
}