memgraph/tests/manual/query_planner.cpp
Teon Banek 30d2cfb9db Plan PullRemoteOrderBy
Summary:
During distributed execution, OrderBy is split across workers and the
master gets to merge those results via PullRemoteOrderBy. Since this
operator may be an input to almost any other operator, virtual accessors
to `input` have been added in LogicalOperator.

Depends on D1221

Reviewers: florijan, msantl, buda

Reviewed By: msantl

Subscribers: pullbot

Differential Revision: https://phabricator.memgraph.io/D1232
2018-02-26 11:15:46 +01:00

822 lines
26 KiB
C++

#include <chrono>
#include <cstdio>
#include <cstdlib>
#include <experimental/filesystem>
#include <experimental/optional>
#include <fstream>
#include <iostream>
#include <string>
#include "gflags/gflags.h"
#include "glog/logging.h"
#include "database/graph_db.hpp"
#include "database/graph_db_accessor.hpp"
#include "query/context.hpp"
#include "query/frontend/ast/ast.hpp"
#include "query/frontend/ast/cypher_main_visitor.hpp"
#include "query/frontend/opencypher/parser.hpp"
#include "query/frontend/semantic/symbol_generator.hpp"
#include "query/frontend/stripped.hpp"
#include "query/plan/cost_estimator.hpp"
#include "query/plan/distributed.hpp"
#include "query/plan/planner.hpp"
#include "query/typed_value.hpp"
#include "utils/hashing/fnv.hpp"
#include "utils/string.hpp"
DEFINE_string(save_mock_db_file, "",
"File where the mock database should be saved (on exit)");
DEFINE_string(load_mock_db_file, "",
"File from which the mock database should be loaded");
DECLARE_int32(min_log_level);
#ifdef HAS_READLINE
// TODO: This is copied from src/query/console.cpp
// It should probably be moved to some utils file.
#include "readline/history.h"
#include "readline/readline.h"
/**
* Helper function that reads a line from the
* standard input using the 'readline' lib.
* Adds support for history and reverse-search.
*
* @param prompt The prompt to display.
* @return A single command the user entered, or nullopt on EOF.
*/
std::experimental::optional<std::string> ReadLine(const std::string &prompt) {
char *line = readline(prompt.c_str());
if (!line) return std::experimental::nullopt;
if (*line) add_history(line);
std::string r_val(line);
free(line);
return r_val;
}
#else
std::experimental::optional<std::string> ReadLine(const std::string &prompt) {
std::cout << prompt;
std::string line;
std::getline(std::cin, line);
if (std::cin.eof()) return std::experimental::nullopt;
return line;
}
#endif // HAS_READLINE
// Repeats the prompt untile the user inputs an integer.
int64_t ReadInt(const std::string &prompt) {
int64_t val = 0;
std::stringstream ss;
do {
auto line = ReadLine(prompt);
if (!line) continue;
ss.str(*line);
ss.clear();
ss >> val;
} while (ss.fail() || !ss.eof());
return val;
}
bool AskYesNo(const std::string &prompt) {
while (auto line = ReadLine(prompt + " (y/n) ")) {
if (*line == "y" || *line == "Y") return true;
if (*line == "n" || *line == "N") return false;
}
return false;
}
class Timer {
public:
void Start() {
duration_ = duration_.zero();
start_time_ = std::chrono::steady_clock::now();
}
void Pause() {
if (pause_ == 0) {
duration_ += std::chrono::steady_clock::now() - start_time_;
}
++pause_;
}
void Resume() {
if (pause_ == 1) {
start_time_ = std::chrono::steady_clock::now();
}
pause_ = std::max(0, pause_ - 1);
}
template <class TFun>
auto WithPause(const TFun &fun) {
Pause();
auto ret = fun();
Resume();
return std::move(ret);
}
std::chrono::duration<double> Elapsed() {
if (pause_ == 0) {
return duration_ + (std::chrono::steady_clock::now() - start_time_);
}
return duration_;
}
private:
std::chrono::duration<double> duration_;
std::chrono::time_point<std::chrono::steady_clock> start_time_;
int pause_ = 0;
};
// Dummy DbAccessor which forwards user input for various vertex counts.
class InteractiveDbAccessor {
public:
InteractiveDbAccessor(database::GraphDbAccessor &dba, int64_t vertices_count,
Timer &timer)
: dba_(dba), vertices_count_(vertices_count), timer_(timer) {}
int64_t VerticesCount() const { return vertices_count_; }
int64_t VerticesCount(storage::Label label_id) const {
auto label = dba_.LabelName(label_id);
if (label_vertex_count_.find(label) == label_vertex_count_.end()) {
label_vertex_count_[label] = ReadVertexCount("label '" + label + "'");
}
return label_vertex_count_.at(label);
}
int64_t VerticesCount(storage::Label label_id,
storage::Property property_id) const {
auto label = dba_.LabelName(label_id);
auto property = dba_.PropertyName(property_id);
auto key = std::make_pair(label, property);
if (label_property_vertex_count_.find(key) ==
label_property_vertex_count_.end()) {
label_property_vertex_count_[key] = ReadVertexCount(
"label '" + label + "' and property '" + property + "'");
}
return label_property_vertex_count_.at(key);
}
int64_t VerticesCount(storage::Label label_id, storage::Property property_id,
const PropertyValue &value) const {
auto label = dba_.LabelName(label_id);
auto property = dba_.PropertyName(property_id);
auto label_prop = std::make_pair(label, property);
if (label_property_index_.find(label_prop) == label_property_index_.end()) {
return 0;
}
auto &value_vertex_count = property_value_vertex_count_[label_prop];
if (value_vertex_count.find(value) == value_vertex_count.end()) {
std::stringstream ss;
ss << value;
int64_t count = ReadVertexCount("label '" + label + "' and property '" +
property + "' value '" + ss.str() + "'");
value_vertex_count[value] = count;
}
return value_vertex_count.at(value);
}
int64_t VerticesCount(
storage::Label label_id, storage::Property property_id,
const std::experimental::optional<utils::Bound<PropertyValue>> lower,
const std::experimental::optional<utils::Bound<PropertyValue>> upper)
const {
auto label = dba_.LabelName(label_id);
auto property = dba_.PropertyName(property_id);
std::stringstream range_string;
if (lower) {
range_string << (lower->IsInclusive() ? "[" : "(") << lower->value()
<< (upper ? "," : ", inf)");
} else {
range_string << "(-inf, ";
}
if (upper) {
range_string << upper->value() << (upper->IsInclusive() ? "]" : ")");
}
return ReadVertexCount("label '" + label + "' and property '" + property +
"' in range " + range_string.str());
}
bool LabelPropertyIndexExists(storage::Label label_id,
storage::Property property_id) const {
auto label = dba_.LabelName(label_id);
auto property = dba_.PropertyName(property_id);
auto key = std::make_pair(label, property);
if (label_property_index_.find(key) == label_property_index_.end()) {
bool resp = timer_.WithPause([&label, &property]() {
return AskYesNo("Index for ':" + label + "(" + property + ")' exists:");
});
label_property_index_[key] = resp;
}
return label_property_index_.at(key);
}
// Save the cached vertex counts to a stream.
void Save(std::ostream &out) {
out << "vertex-count " << vertices_count_ << std::endl;
out << "label-index-count " << label_vertex_count_.size() << std::endl;
for (const auto &label_count : label_vertex_count_) {
out << " " << label_count.first << " " << label_count.second
<< std::endl;
}
auto save_label_prop_map = [&](const auto &name,
const auto &label_prop_map) {
out << name << " " << label_prop_map.size() << std::endl;
for (const auto &label_prop : label_prop_map) {
out << " " << label_prop.first.first << " " << label_prop.first.second
<< " " << label_prop.second << std::endl;
}
};
save_label_prop_map("label-property-index-exists", label_property_index_);
save_label_prop_map("label-property-index-count",
label_property_vertex_count_);
out << "label-property-value-index-count "
<< property_value_vertex_count_.size() << std::endl;
for (const auto &prop_value_count : property_value_vertex_count_) {
out << " " << prop_value_count.first.first << " "
<< prop_value_count.first.second << " "
<< prop_value_count.second.size() << std::endl;
for (const auto &value_count : prop_value_count.second) {
const auto &value = value_count.first;
out << " " << value.type() << " " << value << " "
<< value_count.second << std::endl;
}
}
}
// Load the cached vertex counts from a stream.
// If loading fails, raises utils::BasicException.
void Load(std::istream &in) {
auto load_named_size = [&](const auto &name) {
int size;
in.ignore(std::numeric_limits<std::streamsize>::max(), ' ') >> size;
if (in.fail()) {
throw utils::BasicException("Unable to load {}", name);
}
DLOG(INFO) << "Load " << name << " " << size;
return size;
};
vertices_count_ = load_named_size("vertex-count");
int label_vertex_size = load_named_size("label-index-count");
for (int i = 0; i < label_vertex_size; ++i) {
std::string label;
int64_t count;
in >> label >> count;
if (in.fail()) {
throw utils::BasicException("Unable to load label count");
}
label_vertex_count_[label] = count;
DLOG(INFO) << "Load " << label << " " << count;
}
auto load_label_prop_map = [&](const auto &name, auto &label_prop_map) {
int size = load_named_size(name);
for (int i = 0; i < size; ++i) {
std::string label;
std::string property;
in >> label >> property;
auto &mapped = label_prop_map[std::make_pair(label, property)];
in >> mapped;
if (in.fail()) {
throw utils::BasicException("Unable to load label property");
}
DLOG(INFO) << "Load " << label << " " << property << " " << mapped;
}
};
load_label_prop_map("label-property-index-exists", label_property_index_);
load_label_prop_map("label-property-index-count",
label_property_vertex_count_);
int label_property_value_index_size =
load_named_size("label-property-value-index-count");
for (int i = 0; i < label_property_value_index_size; ++i) {
std::string label;
std::string property;
int64_t value_count;
in >> label >> property >> value_count;
if (in.fail()) {
throw utils::BasicException("Unable to load label property value");
}
DLOG(INFO) << "Load " << label << " " << property << " " << value_count;
for (int v = 0; v < value_count; ++v) {
auto value = LoadTypedValue(in);
int64_t count;
in >> count;
if (in.fail()) {
throw utils::BasicException("Unable to load label property value");
}
DLOG(INFO) << "Load " << value.type() << " " << value << " " << count;
property_value_vertex_count_[std::make_pair(label, property)][value] =
count;
}
}
}
private:
typedef std::pair<std::string, std::string> LabelPropertyKey;
database::GraphDbAccessor &dba_;
int64_t vertices_count_;
Timer &timer_;
mutable std::map<std::string, int64_t> label_vertex_count_;
mutable std::map<std::pair<std::string, std::string>, int64_t>
label_property_vertex_count_;
mutable std::map<std::pair<std::string, std::string>, bool>
label_property_index_;
mutable std::map<
std::pair<std::string, std::string>,
std::unordered_map<query::TypedValue, int64_t, query::TypedValue::Hash,
query::TypedValue::BoolEqual>>
property_value_vertex_count_;
// TODO: Cache faked index counts by range.
int64_t ReadVertexCount(const std::string &message) const {
return timer_.WithPause(
[&message]() { return ReadInt("Vertices with " + message + ": "); });
}
query::TypedValue LoadTypedValue(std::istream &in) {
std::string type;
in >> type;
if (type == "bool") {
return LoadTypedValue<bool>(in);
} else if (type == "int") {
return LoadTypedValue<int64_t>(in);
} else if (type == "double") {
return LoadTypedValue<double>(in);
} else if (type == "string") {
return LoadTypedValue<std::string>(in);
} else {
throw utils::BasicException("Unable to read type '{}'", type);
}
}
template <typename T>
query::TypedValue LoadTypedValue(std::istream &in) {
T val;
in >> val;
return query::TypedValue(val);
}
};
class PlanPrinter : public query::plan::HierarchicalLogicalOperatorVisitor {
public:
using HierarchicalLogicalOperatorVisitor::PostVisit;
using HierarchicalLogicalOperatorVisitor::PreVisit;
using HierarchicalLogicalOperatorVisitor::Visit;
explicit PlanPrinter(database::GraphDbAccessor &dba) : dba_(dba) {}
#define PRE_VISIT(TOp) \
bool PreVisit(query::plan::TOp &) override { \
WithPrintLn([](auto &out) { out << "* " << #TOp; }); \
return true; \
}
PRE_VISIT(CreateNode);
PRE_VISIT(CreateExpand);
PRE_VISIT(Delete);
bool PreVisit(query::plan::ScanAll &op) override {
WithPrintLn([&](auto &out) {
out << "* ScanAll"
<< " (" << op.output_symbol().name() << ")";
});
return true;
}
bool PreVisit(query::plan::ScanAllByLabel &op) override {
WithPrintLn([&](auto &out) {
out << "* ScanAllByLabel"
<< " (" << op.output_symbol().name() << " :"
<< dba_.LabelName(op.label()) << ")";
});
return true;
}
bool PreVisit(query::plan::ScanAllByLabelPropertyValue &op) override {
WithPrintLn([&](auto &out) {
out << "* ScanAllByLabelPropertyValue"
<< " (" << op.output_symbol().name() << " :"
<< dba_.LabelName(op.label()) << " {"
<< dba_.PropertyName(op.property()) << "})";
});
return true;
}
bool PreVisit(query::plan::ScanAllByLabelPropertyRange &op) override {
WithPrintLn([&](auto &out) {
out << "* ScanAllByLabelPropertyRange"
<< " (" << op.output_symbol().name() << " :"
<< dba_.LabelName(op.label()) << " {"
<< dba_.PropertyName(op.property()) << "})";
});
return true;
}
bool PreVisit(query::plan::Expand &op) override {
WithPrintLn([&](auto &out) {
out << "* Expand";
PrintExpand(out, op);
});
return true;
}
bool PreVisit(query::plan::ExpandVariable &op) override {
WithPrintLn([&](auto &out) {
out << "* ExpandVariable";
PrintExpand(out, op);
});
return true;
}
bool PreVisit(query::plan::Produce &op) override {
WithPrintLn([&](auto &out) {
out << "* Produce {";
utils::PrintIterable(
out, op.named_expressions(), ", ",
[](auto &out, const auto &nexpr) { out << nexpr->name_; });
out << "}";
});
return true;
}
PRE_VISIT(ConstructNamedPath);
PRE_VISIT(Filter);
PRE_VISIT(SetProperty);
PRE_VISIT(SetProperties);
PRE_VISIT(SetLabels);
PRE_VISIT(RemoveProperty);
PRE_VISIT(RemoveLabels);
PRE_VISIT(ExpandUniquenessFilter<VertexAccessor>);
PRE_VISIT(ExpandUniquenessFilter<EdgeAccessor>);
PRE_VISIT(Accumulate);
bool PreVisit(query::plan::Aggregate &op) override {
WithPrintLn([&](auto &out) {
out << "* Aggregate {";
utils::PrintIterable(
out, op.aggregations(), ", ",
[](auto &out, const auto &aggr) { out << aggr.output_sym.name(); });
out << "} {";
utils::PrintIterable(
out, op.remember(), ", ",
[](auto &out, const auto &sym) { out << sym.name(); });
out << "}";
});
return true;
}
PRE_VISIT(Skip);
PRE_VISIT(Limit);
bool PreVisit(query::plan::OrderBy &op) override {
WithPrintLn([&op](auto &out) {
out << "* OrderBy {";
utils::PrintIterable(
out, op.output_symbols(), ", ",
[](auto &out, const auto &sym) { out << sym.name(); });
out << "}";
});
return true;
}
bool PreVisit(query::plan::Merge &op) override {
WithPrintLn([](auto &out) { out << "* Merge"; });
Branch(*op.merge_match(), "On Match");
Branch(*op.merge_create(), "On Create");
op.input()->Accept(*this);
return false;
}
bool PreVisit(query::plan::Optional &op) override {
WithPrintLn([](auto &out) { out << "* Optional"; });
Branch(*op.optional());
op.input()->Accept(*this);
return false;
}
PRE_VISIT(Unwind);
PRE_VISIT(Distinct);
bool Visit(query::plan::Once &op) override {
// Ignore checking Once, it is implicitly at the end.
return true;
}
bool Visit(query::plan::CreateIndex &op) override {
WithPrintLn([](auto &out) { out << "* CreateIndex"; });
return true;
}
bool PreVisit(query::plan::PullRemote &op) override {
WithPrintLn([&op](auto &out) {
out << "* PullRemote [" << op.plan_id() << "] {";
utils::PrintIterable(
out, op.symbols(), ", ",
[](auto &out, const auto &sym) { out << sym.name(); });
out << "}";
});
WithPrintLn([](auto &out) { out << "|\\"; });
++depth_;
WithPrintLn([](auto &out) { out << "* workers"; });
--depth_;
return true;
}
bool PreVisit(query::plan::Synchronize &op) override {
WithPrintLn([&op](auto &out) {
out << "* Synchronize";
if (op.advance_command()) out << " (ADV CMD)";
});
if (op.pull_remote()) Branch(*op.pull_remote());
op.input()->Accept(*this);
return false;
}
bool PreVisit(query::plan::Cartesian &op) override {
WithPrintLn([](auto &out) { out << "* Cartesian"; });
Branch(*op.right_op());
op.left_op()->Accept(*this);
return false;
}
bool PreVisit(query::plan::PullRemoteOrderBy &op) override {
WithPrintLn([&op](auto &out) {
out << "* PullRemoteOrderBy {";
utils::PrintIterable(
out, op.symbols(), ", ",
[](auto &out, const auto &sym) { out << sym.name(); });
out << "}";
});
WithPrintLn([](auto &out) { out << "|\\"; });
++depth_;
WithPrintLn([](auto &out) { out << "* workers"; });
--depth_;
return true;
}
#undef PRE_VISIT
private:
// Call fun with output stream. The stream is prefixed with amount of spaces
// corresponding to the current depth_.
template <class TFun>
void WithPrintLn(TFun fun) {
std::cout << " ";
for (int i = 0; i < depth_; ++i) {
std::cout << "| ";
}
fun(std::cout);
std::cout << std::endl;
}
// Forward this printer to another operator branch by incrementing the depth
// and printing the branch name.
void Branch(query::plan::LogicalOperator &op,
const std::string &branch_name = "") {
WithPrintLn([&](auto &out) { out << "|\\ " << branch_name; });
++depth_;
op.Accept(*this);
--depth_;
}
void PrintExpand(std::ostream &out, const query::plan::ExpandCommon &op) {
out << " (" << op.input_symbol().name() << ")"
<< (op.direction() == query::EdgeAtom::Direction::IN ? "<-" : "-")
<< "[" << op.edge_symbol().name() << "]"
<< (op.direction() == query::EdgeAtom::Direction::OUT ? "->" : "-")
<< "(" << op.node_symbol().name() << ")";
}
int depth_ = 0;
database::GraphDbAccessor &dba_;
};
// Shorthand for a vector of pairs (logical_plan, cost).
typedef std::vector<
std::pair<std::unique_ptr<query::plan::LogicalOperator>, double>>
PlansWithCost;
// Encapsulates a consoles command function.
struct Command {
typedef std::vector<std::string> Args;
// Function of this command
std::function<void(database::GraphDbAccessor &, const query::SymbolTable &,
PlansWithCost &, const Args &)>
function;
// Number of arguments the function works with.
int arg_count;
// Explanation of the command.
std::string documentation;
};
#define DEFCOMMAND(Name) \
void Name##Command(database::GraphDbAccessor &dba, \
const query::SymbolTable &symbol_table, \
PlansWithCost &plans, const Command::Args &args)
DEFCOMMAND(Top) {
int64_t n_plans = 0;
std::stringstream ss(args[0]);
ss >> n_plans;
if (ss.fail() || !ss.eof()) return;
PlanPrinter printer(dba);
n_plans = std::min(static_cast<int64_t>(plans.size()), n_plans);
for (int64_t i = 0; i < n_plans; ++i) {
auto &plan_pair = plans[i];
std::cout << "---- Plan #" << i << " ---- " << std::endl;
std::cout << "cost: " << plan_pair.second << std::endl;
plan_pair.first->Accept(printer);
std::cout << std::endl;
}
}
DEFCOMMAND(Show) {
int64_t plan_ix = 0;
std::stringstream ss(args[0]);
ss >> plan_ix;
if (ss.fail() || !ss.eof() || plan_ix >= plans.size()) return;
const auto &plan = plans[plan_ix].first;
auto cost = plans[plan_ix].second;
std::cout << "Plan cost: " << cost << std::endl;
PlanPrinter printer(dba);
plan->Accept(printer);
}
DEFCOMMAND(ShowDistributed) {
int64_t plan_ix = 0;
std::stringstream ss(args[0]);
ss >> plan_ix;
if (ss.fail() || !ss.eof() || plan_ix >= plans.size()) return;
const auto &plan = plans[plan_ix].first;
std::atomic<int64_t> plan_id{0};
auto distributed_plan = MakeDistributedPlan(*plan, symbol_table, plan_id);
{
std::cout << "---- Master Plan ---- " << std::endl;
PlanPrinter printer(dba);
distributed_plan.master_plan->Accept(printer);
std::cout << std::endl;
}
for (size_t i = 0; i < distributed_plan.worker_plans.size(); ++i) {
int64_t id;
std::shared_ptr<query::plan::LogicalOperator> worker_plan;
std::tie(id, worker_plan) = distributed_plan.worker_plans[i];
std::cout << "---- Worker Plan #" << id << " ---- " << std::endl;
PlanPrinter printer(dba);
worker_plan->Accept(printer);
std::cout << std::endl;
}
}
DEFCOMMAND(Help);
std::map<std::string, Command> commands = {
{"top", {TopCommand, 1, "Show top N plans"}},
{"show", {ShowCommand, 1, "Show the Nth plan"}},
{"show-distributed",
{ShowDistributedCommand, 1,
"Show the Nth plan as for distributed execution"}},
{"help", {HelpCommand, 0, "Show available commands"}},
};
DEFCOMMAND(Help) {
std::cout << "Available commands:" << std::endl;
for (const auto &command : commands) {
std::cout << command.first;
for (int i = 1; i <= command.second.arg_count; ++i) {
std::cout << " arg" << i;
}
std::cout << " -- " << command.second.documentation << std::endl;
}
}
#undef DEFCOMMAND
void ExaminePlans(
database::GraphDbAccessor &dba, const query::SymbolTable &symbol_table,
std::vector<std::pair<std::unique_ptr<query::plan::LogicalOperator>,
double>> &plans) {
while (true) {
auto line = ReadLine("plan? ");
if (!line || *line == "quit") break;
auto words = utils::Split(utils::ToLowerCase(*line));
if (words.empty()) continue;
auto command_name = words[0];
std::vector<std::string> args(words.begin() + 1, words.end());
auto command_it = commands.find(command_name);
if (command_it == commands.end()) {
std::cout << "Undefined command: '" << command_name << "'. Try 'help'."
<< std::endl;
continue;
}
const auto &command = command_it->second;
if (args.size() < command.arg_count) {
std::cout << command_name << " expects " << command.arg_count
<< " arguments" << std::endl;
continue;
}
command.function(dba, symbol_table, plans, args);
}
}
query::AstTreeStorage MakeAst(const std::string &query,
database::GraphDbAccessor &dba) {
query::Context ctx(dba);
// query -> AST
auto parser = std::make_unique<query::frontend::opencypher::Parser>(query);
// AST -> high level tree
query::frontend::CypherMainVisitor visitor(ctx);
visitor.visit(parser->tree());
return std::move(visitor.storage());
}
query::SymbolTable MakeSymbolTable(const query::AstTreeStorage &ast) {
query::SymbolTable symbol_table;
query::SymbolGenerator symbol_generator(symbol_table);
ast.query()->Accept(symbol_generator);
return symbol_table;
}
// Returns a list of pairs (plan, estimated cost), sorted in the ascending
// order by cost.
auto MakeLogicalPlans(query::AstTreeStorage &ast,
query::SymbolTable &symbol_table,
InteractiveDbAccessor &dba) {
auto query_parts = query::plan::CollectQueryParts(symbol_table, ast);
std::vector<std::pair<std::unique_ptr<query::plan::LogicalOperator>, double>>
plans_with_cost;
auto ctx = query::plan::MakePlanningContext(ast, symbol_table, dba);
if (query_parts.query_parts.size() <= 0) {
std::cerr << "Failed to extract query parts" << std::endl;
std::exit(EXIT_FAILURE);
}
auto plans = query::plan::MakeLogicalPlanForSingleQuery<
query::plan::VariableStartPlanner>(
query_parts.query_parts.at(0).single_query_parts, ctx);
Parameters parameters;
for (auto plan : plans) {
query::plan::CostEstimator<InteractiveDbAccessor> estimator(dba,
parameters);
plan->Accept(estimator);
plans_with_cost.emplace_back(std::move(plan), estimator.cost());
}
std::stable_sort(
plans_with_cost.begin(), plans_with_cost.end(),
[](const auto &a, const auto &b) { return a.second < b.second; });
return plans_with_cost;
}
int main(int argc, char *argv[]) {
gflags::ParseCommandLineFlags(&argc, &argv, true);
FLAGS_min_log_level = google::ERROR;
google::InitGoogleLogging(argv[0]);
auto in_db_filename = utils::Trim(FLAGS_load_mock_db_file);
if (!in_db_filename.empty() &&
!std::experimental::filesystem::exists(in_db_filename)) {
std::cerr << "File '" << in_db_filename << "' does not exist!" << std::endl;
std::exit(EXIT_FAILURE);
}
database::SingleNode db;
database::GraphDbAccessor dba(db);
Timer planning_timer;
InteractiveDbAccessor interactive_db(
dba, in_db_filename.empty() ? ReadInt("Vertices in DB: ") : 0,
planning_timer);
if (!in_db_filename.empty()) {
std::ifstream db_file(in_db_filename);
interactive_db.Load(db_file);
}
while (true) {
auto line = ReadLine("query? ");
if (!line || *line == "quit") break;
if (line->empty()) continue;
try {
auto ast = MakeAst(*line, dba);
auto symbol_table = MakeSymbolTable(ast);
planning_timer.Start();
auto plans = MakeLogicalPlans(ast, symbol_table, interactive_db);
auto planning_time = planning_timer.Elapsed();
std::cout
<< "Planning took "
<< std::chrono::duration<double, std::milli>(planning_time).count()
<< "ms" << std::endl;
std::cout << "Generated " << plans.size() << " plans" << std::endl;
ExaminePlans(dba, symbol_table, plans);
} catch (const utils::BasicException &e) {
std::cout << "Error: " << e.what() << std::endl;
}
}
auto db_filename = utils::Trim(FLAGS_save_mock_db_file);
if (!db_filename.empty()) {
std::ofstream db_file(db_filename);
interactive_db.Save(db_file);
}
return 0;
}