memgraph/tests/unit/query_plan.cpp
gvolfing 619b01f3f8
Implement edge type indices (#1542)
Implement edge type indices (#1542 )
2024-03-08 08:44:48 +01:00

2067 lines
99 KiB
C++

// Copyright 2024 Memgraph Ltd.
//
// Use of this software is governed by the Business Source License
// included in the file licenses/BSL.txt; by using this file, you agree to be bound by the terms of the Business Source
// License, and you may not use this file except in compliance with the Business Source License.
//
// As of the Change Date specified in that file, in accordance with
// the Business Source License, use of this software will be governed
// by the Apache License, Version 2.0, included in the file
// licenses/APL.txt.
#include "query_plan_checker.hpp"
#include <iostream>
#include <list>
#include <sstream>
#include <tuple>
#include <typeinfo>
#include <unordered_map>
#include <unordered_set>
#include <variant>
#include <gmock/gmock.h>
#include <gtest/gtest.h>
#include "query/frontend/ast/ast.hpp"
#include "query/frontend/semantic/symbol_generator.hpp"
#include "query/frontend/semantic/symbol_table.hpp"
#include "query/plan/operator.hpp"
#include "query/plan/planner.hpp"
#include "query_common.hpp"
namespace memgraph::query {
::std::ostream &operator<<(::std::ostream &os, const Symbol &sym) {
return os << "Symbol{\"" << sym.name() << "\" [" << sym.position() << "] " << Symbol::TypeToString(sym.type()) << "}";
}
} // namespace memgraph::query
using namespace memgraph::query::plan;
using memgraph::query::AstStorage;
using memgraph::query::CypherUnion;
using memgraph::query::SingleQuery;
using memgraph::query::Symbol;
using memgraph::query::SymbolGenerator;
using memgraph::query::SymbolTable;
using Type = memgraph::query::EdgeAtom::Type;
using Direction = memgraph::query::EdgeAtom::Direction;
using Bound = ScanAllByLabelPropertyRange::Bound;
namespace {
class Planner {
public:
template <class TDbAccessor>
Planner(QueryParts query_parts, PlanningContext<TDbAccessor> context) {
memgraph::query::Parameters parameters;
PostProcessor post_processor(parameters);
plan_ = MakeLogicalPlanForSingleQuery<RuleBasedPlanner>(query_parts, &context);
plan_ = post_processor.Rewrite(std::move(plan_), &context);
}
auto &plan() { return *plan_; }
private:
std::unique_ptr<LogicalOperator> plan_;
};
template <class... TChecker>
auto CheckPlan(LogicalOperator &plan, const SymbolTable &symbol_table, TChecker... checker) {
std::list<BaseOpChecker *> checkers{&checker...};
PlanChecker plan_checker(checkers, symbol_table);
plan.Accept(plan_checker);
EXPECT_TRUE(plan_checker.checkers_.empty());
}
template <class TPlanner, class... TChecker>
auto CheckPlan(memgraph::query::CypherQuery *query, AstStorage &storage, TChecker... checker) {
auto symbol_table = memgraph::query::MakeSymbolTable(query);
FakeDbAccessor dba;
auto planner = MakePlanner<TPlanner>(&dba, storage, symbol_table, query);
CheckPlan(planner.plan(), symbol_table, checker...);
}
template <class T>
class TestPlanner : public ::testing::Test {
public:
AstStorage storage;
};
using PlannerTypes = ::testing::Types<Planner>;
void DeleteListContent(std::list<BaseOpChecker *> *list) {
for (BaseOpChecker *ptr : *list) {
delete ptr;
}
}
TYPED_TEST_CASE(TestPlanner, PlannerTypes);
TYPED_TEST(TestPlanner, MatchNodeReturn) {
// Test MATCH (n) RETURN n
FakeDbAccessor dba;
auto *as_n = NEXPR("n", IDENT("n"));
auto *query = QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("n"))), RETURN(as_n)));
auto symbol_table = memgraph::query::MakeSymbolTable(query);
auto planner = MakePlanner<TypeParam>(&dba, this->storage, symbol_table, query);
CheckPlan(planner.plan(), symbol_table, ExpectScanAll(), ExpectProduce());
}
TYPED_TEST(TestPlanner, CreateNodeReturn) {
// Test CREATE (n) RETURN n AS n
FakeDbAccessor dba;
auto ident_n = IDENT("n");
auto query = QUERY(SINGLE_QUERY(CREATE(PATTERN(NODE("n"))), RETURN(ident_n, AS("n"))));
auto symbol_table = memgraph::query::MakeSymbolTable(query);
auto acc = ExpectAccumulate({symbol_table.at(*ident_n)});
auto planner = MakePlanner<TypeParam>(&dba, this->storage, symbol_table, query);
CheckPlan(planner.plan(), symbol_table, ExpectCreateNode(), acc, ExpectProduce());
}
TYPED_TEST(TestPlanner, CreateExpand) {
// Test CREATE (n) -[r :rel1]-> (m)
auto relationship = "relationship";
auto *query = QUERY(SINGLE_QUERY(CREATE(PATTERN(NODE("n"), EDGE("r", Direction::OUT, {relationship}), NODE("m")))));
CheckPlan<TypeParam>(query, this->storage, ExpectCreateNode(), ExpectCreateExpand(), ExpectEmptyResult());
}
TYPED_TEST(TestPlanner, CreateMultipleNode) {
// Test CREATE (n), (m)
auto *query = QUERY(SINGLE_QUERY(CREATE(PATTERN(NODE("n")), PATTERN(NODE("m")))));
CheckPlan<TypeParam>(query, this->storage, ExpectCreateNode(), ExpectCreateNode(), ExpectEmptyResult());
}
TYPED_TEST(TestPlanner, CreateNodeExpandNode) {
// Test CREATE (n) -[r :rel]-> (m), (l)
auto relationship = "rel";
auto *query = QUERY(SINGLE_QUERY(
CREATE(PATTERN(NODE("n"), EDGE("r", Direction::OUT, {relationship}), NODE("m")), PATTERN(NODE("l")))));
CheckPlan<TypeParam>(query, this->storage, ExpectCreateNode(), ExpectCreateExpand(), ExpectCreateNode(),
ExpectEmptyResult());
}
TYPED_TEST(TestPlanner, CreateNamedPattern) {
// Test CREATE p = (n) -[r :rel]-> (m)
auto relationship = "rel";
auto *query =
QUERY(SINGLE_QUERY(CREATE(NAMED_PATTERN("p", NODE("n"), EDGE("r", Direction::OUT, {relationship}), NODE("m")))));
CheckPlan<TypeParam>(query, this->storage, ExpectCreateNode(), ExpectCreateExpand(), ExpectConstructNamedPath(),
ExpectEmptyResult());
}
TYPED_TEST(TestPlanner, MatchCreateExpand) {
// Test MATCH (n) CREATE (n) -[r :rel1]-> (m)
auto relationship = "relationship";
auto *query = QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("n"))),
CREATE(PATTERN(NODE("n"), EDGE("r", Direction::OUT, {relationship}), NODE("m")))));
CheckPlan<TypeParam>(query, this->storage, ExpectScanAll(), ExpectCreateExpand(), ExpectEmptyResult());
}
TYPED_TEST(TestPlanner, MatchLabeledNodes) {
// Test MATCH (n :label) RETURN n
FakeDbAccessor dba;
auto label = "label";
auto *as_n = NEXPR("n", IDENT("n"));
auto *query = QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("n", label))), RETURN(as_n)));
{
// Without created label index
auto symbol_table = memgraph::query::MakeSymbolTable(query);
auto planner = MakePlanner<TypeParam>(&dba, this->storage, symbol_table, query);
CheckPlan(planner.plan(), symbol_table, ExpectScanAll(), ExpectFilter(), ExpectProduce());
}
{
// With created label index
dba.SetIndexCount(dba.Label(label), 0);
auto symbol_table = memgraph::query::MakeSymbolTable(query);
auto planner = MakePlanner<TypeParam>(&dba, this->storage, symbol_table, query);
CheckPlan(planner.plan(), symbol_table, ExpectScanAllByLabel(), ExpectProduce());
}
}
TYPED_TEST(TestPlanner, MatchPathReturn) {
// Test MATCH (n) -[r :relationship]- (m) RETURN n
FakeDbAccessor dba;
auto relationship = "relationship";
auto *as_n = NEXPR("n", IDENT("n"));
auto *query = QUERY(
SINGLE_QUERY(MATCH(PATTERN(NODE("n"), EDGE("r", Direction::BOTH, {relationship}), NODE("m"))), RETURN(as_n)));
auto symbol_table = memgraph::query::MakeSymbolTable(query);
auto planner = MakePlanner<TypeParam>(&dba, this->storage, symbol_table, query);
CheckPlan(planner.plan(), symbol_table, ExpectScanAll(), ExpectExpand(), ExpectProduce());
}
TYPED_TEST(TestPlanner, MatchNamedPatternReturn) {
// Test MATCH p = (n) -[r :relationship]- (m) RETURN p
FakeDbAccessor dba;
auto relationship = "relationship";
auto *as_p = NEXPR("p", IDENT("p"));
auto *query = QUERY(SINGLE_QUERY(
MATCH(NAMED_PATTERN("p", NODE("n"), EDGE("r", Direction::BOTH, {relationship}), NODE("m"))), RETURN(as_p)));
auto symbol_table = memgraph::query::MakeSymbolTable(query);
auto planner = MakePlanner<TypeParam>(&dba, this->storage, symbol_table, query);
CheckPlan(planner.plan(), symbol_table, ExpectScanAll(), ExpectExpand(), ExpectConstructNamedPath(), ExpectProduce());
}
TYPED_TEST(TestPlanner, MatchNamedPatternWithPredicateReturn) {
// Test MATCH p = (n) -[r :relationship]- (m) WHERE 2 = p RETURN p
FakeDbAccessor dba;
auto relationship = "relationship";
auto *as_p = NEXPR("p", IDENT("p"));
auto *query =
QUERY(SINGLE_QUERY(MATCH(NAMED_PATTERN("p", NODE("n"), EDGE("r", Direction::BOTH, {relationship}), NODE("m"))),
WHERE(EQ(LITERAL(2), IDENT("p"))), RETURN(as_p)));
auto symbol_table = memgraph::query::MakeSymbolTable(query);
auto planner = MakePlanner<TypeParam>(&dba, this->storage, symbol_table, query);
CheckPlan(planner.plan(), symbol_table, ExpectScanAll(), ExpectExpand(), ExpectConstructNamedPath(), ExpectFilter(),
ExpectProduce());
}
TYPED_TEST(TestPlanner, OptionalMatchNamedPatternReturn) {
// Test OPTIONAL MATCH p = (n) -[r]- (m) RETURN p
FakeDbAccessor dba;
auto node_n = NODE("n");
auto edge = EDGE("r");
auto node_m = NODE("m");
auto pattern = NAMED_PATTERN("p", node_n, edge, node_m);
auto as_p = AS("p");
auto *query = QUERY(SINGLE_QUERY(OPTIONAL_MATCH(pattern), RETURN("p", as_p)));
auto symbol_table = memgraph::query::MakeSymbolTable(query);
auto get_symbol = [&symbol_table](const auto *ast_node) { return symbol_table.at(*ast_node->identifier_); };
std::vector<Symbol> optional_symbols{get_symbol(pattern), get_symbol(node_n), get_symbol(edge), get_symbol(node_m)};
auto planner = MakePlanner<TypeParam>(&dba, this->storage, symbol_table, query);
std::list<BaseOpChecker *> optional{new ExpectScanAll(), new ExpectExpand(), new ExpectConstructNamedPath()};
CheckPlan(planner.plan(), symbol_table, ExpectOptional(optional_symbols, optional), ExpectProduce());
DeleteListContent(&optional);
}
TYPED_TEST(TestPlanner, MatchWhereReturn) {
// Test MATCH (n) WHERE n.property < 42 RETURN n
FakeDbAccessor dba;
auto property = dba.Property("property");
auto *as_n = NEXPR("n", IDENT("n"));
auto *query = QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("n"))),
WHERE(LESS(PROPERTY_LOOKUP(dba, "n", property), LITERAL(42))), RETURN(as_n)));
auto symbol_table = memgraph::query::MakeSymbolTable(query);
auto planner = MakePlanner<TypeParam>(&dba, this->storage, symbol_table, query);
CheckPlan(planner.plan(), symbol_table, ExpectScanAll(), ExpectFilter(), ExpectProduce());
}
TYPED_TEST(TestPlanner, MatchDelete) {
// Test MATCH (n) DELETE n
auto *query = QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("n"))), DELETE(IDENT("n"))));
CheckPlan<TypeParam>(query, this->storage, ExpectScanAll(), ExpectDelete(), ExpectEmptyResult());
}
TYPED_TEST(TestPlanner, MatchNodeSet) {
// Test MATCH (n) SET n.prop = 42, n = n, n :label
FakeDbAccessor dba;
auto prop = dba.Property("prop");
auto label = "label";
auto *query = QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("n"))), SET(PROPERTY_LOOKUP(dba, "n", prop), LITERAL(42)),
SET("n", IDENT("n")), SET("n", {label})));
CheckPlan<TypeParam>(query, this->storage, ExpectScanAll(), ExpectSetProperty(), ExpectSetProperties(),
ExpectSetLabels(), ExpectEmptyResult());
}
TYPED_TEST(TestPlanner, MatchRemove) {
// Test MATCH (n) REMOVE n.prop REMOVE n :label
FakeDbAccessor dba;
auto prop = dba.Property("prop");
auto label = "label";
auto *query =
QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("n"))), REMOVE(PROPERTY_LOOKUP(dba, "n", prop)), REMOVE("n", {label})));
CheckPlan<TypeParam>(query, this->storage, ExpectScanAll(), ExpectRemoveProperty(), ExpectRemoveLabels(),
ExpectEmptyResult());
}
TYPED_TEST(TestPlanner, MatchMultiPattern) {
// Test MATCH (n) -[r]- (m), (j) -[e]- (i) RETURN n
auto *query = QUERY(SINGLE_QUERY(
MATCH(PATTERN(NODE("n"), EDGE("r"), NODE("m")), PATTERN(NODE("j"), EDGE("e"), NODE("i"))), RETURN("n")));
// We expect the expansions after the first to have a uniqueness filter in a
// single MATCH clause.
std::list<BaseOpChecker *> left_cartesian_ops{new ExpectScanAll(), new ExpectExpand()};
std::list<BaseOpChecker *> right_cartesian_ops{new ExpectScanAll(), new ExpectExpand()};
CheckPlan<TypeParam>(query, this->storage, ExpectCartesian(left_cartesian_ops, right_cartesian_ops),
ExpectEdgeUniquenessFilter(), ExpectProduce());
DeleteListContent(&left_cartesian_ops);
DeleteListContent(&right_cartesian_ops);
}
TYPED_TEST(TestPlanner, MatchMultiPatternWithHashJoin) {
// Test MATCH (a:label)-[r1]->(b), (c:label)-[r2]->(d) WHERE c.id = a.id return a, b, c, d;
FakeDbAccessor dba;
const auto label_name = "label";
const auto property = PROPERTY_PAIR(dba, "id");
auto *query = QUERY(
SINGLE_QUERY(MATCH(PATTERN(NODE("a", label_name), EDGE("r1"), NODE("b")),
PATTERN(NODE("c", label_name), EDGE("r2"), NODE("d"))),
WHERE(EQ(PROPERTY_LOOKUP(dba, "c", property.second), PROPERTY_LOOKUP(dba, "a", property.second))),
RETURN("a", "b", "c", "d")));
std::list<BaseOpChecker *> left_indexed_join_ops{new ExpectScanAll(), new ExpectFilter(), new ExpectExpand()};
std::list<BaseOpChecker *> right_indexed_join_ops{new ExpectScanAll(), new ExpectFilter(), new ExpectExpand()};
auto symbol_table = memgraph::query::MakeSymbolTable(query);
auto planner = MakePlanner<TypeParam>(&dba, this->storage, symbol_table, query);
CheckPlan(planner.plan(), symbol_table, ExpectHashJoin(left_indexed_join_ops, right_indexed_join_ops),
ExpectEdgeUniquenessFilter(), ExpectProduce());
DeleteListContent(&left_indexed_join_ops);
DeleteListContent(&right_indexed_join_ops);
}
TYPED_TEST(TestPlanner, MatchMultiPatternWithAsymmetricHashJoin) {
// Test MATCH (a:label)-[r1]->(b), (c:label)-[r2]->(d) WHERE c.id = a.id2 return a, b, c, d;
FakeDbAccessor dba;
const auto label_name = "label";
const auto property_1 = PROPERTY_PAIR(dba, "id");
const auto property_2 = PROPERTY_PAIR(dba, "id2");
auto *query = QUERY(SINGLE_QUERY(
MATCH(PATTERN(NODE("a", label_name), EDGE("r1"), NODE("b")),
PATTERN(NODE("c", label_name), EDGE("r2"), NODE("d"))),
WHERE(EQ(PROPERTY_LOOKUP(dba, "c", property_1.second), PROPERTY_LOOKUP(dba, "a", property_2.second))),
RETURN("a", "b", "c", "d")));
std::list<BaseOpChecker *> left_indexed_join_ops{new ExpectScanAll(), new ExpectFilter(), new ExpectExpand()};
std::list<BaseOpChecker *> right_indexed_join_ops{new ExpectScanAll(), new ExpectFilter(), new ExpectExpand()};
auto symbol_table = memgraph::query::MakeSymbolTable(query);
auto planner = MakePlanner<TypeParam>(&dba, this->storage, symbol_table, query);
CheckPlan(planner.plan(), symbol_table, ExpectHashJoin(left_indexed_join_ops, right_indexed_join_ops),
ExpectEdgeUniquenessFilter(), ExpectProduce());
DeleteListContent(&left_indexed_join_ops);
DeleteListContent(&right_indexed_join_ops);
}
TYPED_TEST(TestPlanner, MatchMultiPatternWithIndexJoin) {
// Test MATCH (a:label)-[r1]->(b), (c:label)-[r2]->(d) WHERE c.id = a.id return a, b, c, d;
FakeDbAccessor dba;
const auto label_name = "label";
const auto label = dba.Label(label_name);
const auto property = PROPERTY_PAIR(dba, "id");
dba.SetIndexCount(label, 1);
dba.SetIndexCount(label, property.second, 1);
auto *query = QUERY(
SINGLE_QUERY(MATCH(PATTERN(NODE("a", label_name), EDGE("r1"), NODE("b")),
PATTERN(NODE("c", label_name), EDGE("r2"), NODE("d"))),
WHERE(EQ(PROPERTY_LOOKUP(dba, "c", property.second), PROPERTY_LOOKUP(dba, "a", property.second))),
RETURN("a", "b", "c", "d")));
auto c_prop = PROPERTY_LOOKUP(dba, "c", property);
std::list<BaseOpChecker *> left_indexed_join_ops{new ExpectScanAllByLabel(), new ExpectExpand()};
std::list<BaseOpChecker *> right_indexed_join_ops{new ExpectScanAllByLabelPropertyValue(label, property, c_prop),
new ExpectExpand()};
auto symbol_table = memgraph::query::MakeSymbolTable(query);
auto planner = MakePlanner<TypeParam>(&dba, this->storage, symbol_table, query);
CheckPlan(planner.plan(), symbol_table, ExpectIndexedJoin(left_indexed_join_ops, right_indexed_join_ops),
ExpectEdgeUniquenessFilter(), ExpectProduce());
DeleteListContent(&left_indexed_join_ops);
DeleteListContent(&right_indexed_join_ops);
}
TYPED_TEST(TestPlanner, MatchMultiPatternSameStart) {
// Test MATCH (n), (n) -[e]- (m) RETURN n
auto *query = QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("n")), PATTERN(NODE("n"), EDGE("e"), NODE("m"))), RETURN("n")));
// We expect the second pattern to generate only an Expand, since another
// ScanAll would be redundant.
CheckPlan<TypeParam>(query, this->storage, ExpectScanAll(), ExpectExpand(), ExpectProduce());
}
TYPED_TEST(TestPlanner, MatchMultiPatternSameExpandStart) {
// Test MATCH (n) -[r]- (m), (m) -[e]- (l) RETURN n
auto *query = QUERY(SINGLE_QUERY(
MATCH(PATTERN(NODE("n"), EDGE("r"), NODE("m")), PATTERN(NODE("m"), EDGE("e"), NODE("l"))), RETURN("n")));
// We expect the second pattern to generate only an Expand. Another
// ScanAll would be redundant, as it would generate the nodes obtained from
// expansion. Additionally, a uniqueness filter is expected.
CheckPlan<TypeParam>(query, this->storage, ExpectScanAll(), ExpectExpand(), ExpectExpand(),
ExpectEdgeUniquenessFilter(), ExpectProduce());
}
TYPED_TEST(TestPlanner, MultiMatch) {
// Test MATCH (n) -[r]- (m) MATCH (j) -[e]- (i) -[f]- (h) RETURN n
FakeDbAccessor dba;
auto *node_n = NODE("n");
auto *edge_r = EDGE("r");
auto *node_m = NODE("m");
auto *node_j = NODE("j");
auto *edge_e = EDGE("e");
auto *node_i = NODE("i");
auto *edge_f = EDGE("f");
auto *node_h = NODE("h");
auto *query = QUERY(SINGLE_QUERY(MATCH(PATTERN(node_n, edge_r, node_m)),
MATCH(PATTERN(node_j, edge_e, node_i, edge_f, node_h)), RETURN("n")));
auto symbol_table = memgraph::query::MakeSymbolTable(query);
auto planner = MakePlanner<TypeParam>(&dba, this->storage, symbol_table, query);
// Multiple MATCH clauses form a Cartesian product, so the uniqueness should
// not cross MATCH boundaries.
std::list<BaseOpChecker *> left_cartesian_ops{new ExpectScanAll(), new ExpectExpand()};
std::list<BaseOpChecker *> right_cartesian_ops{new ExpectScanAll(), new ExpectExpand(), new ExpectExpand(),
new ExpectEdgeUniquenessFilter()};
CheckPlan(planner.plan(), symbol_table, ExpectCartesian(left_cartesian_ops, right_cartesian_ops), ExpectProduce());
DeleteListContent(&left_cartesian_ops);
DeleteListContent(&right_cartesian_ops);
}
TYPED_TEST(TestPlanner, MultiMatchSameStart) {
// Test MATCH (n) MATCH (n) -[r]- (m) RETURN n
FakeDbAccessor dba;
auto *as_n = NEXPR("n", IDENT("n"));
auto *query =
QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("n"))), MATCH(PATTERN(NODE("n"), EDGE("r"), NODE("m"))), RETURN(as_n)));
// Similar to MatchMultiPatternSameStart, we expect only Expand from second
// MATCH clause.
auto symbol_table = memgraph::query::MakeSymbolTable(query);
auto planner = MakePlanner<TypeParam>(&dba, this->storage, symbol_table, query);
CheckPlan(planner.plan(), symbol_table, ExpectScanAll(), ExpectExpand(), ExpectProduce());
}
TYPED_TEST(TestPlanner, MatchWithReturn) {
// Test MATCH (old) WITH old AS new RETURN new
FakeDbAccessor dba;
auto *as_new = NEXPR("new", IDENT("new"));
auto *query = QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("old"))), WITH("old", AS("new")), RETURN(as_new)));
// No accumulation since we only do reads.
auto symbol_table = memgraph::query::MakeSymbolTable(query);
auto planner = MakePlanner<TypeParam>(&dba, this->storage, symbol_table, query);
CheckPlan(planner.plan(), symbol_table, ExpectScanAll(), ExpectProduce(), ExpectProduce());
}
TYPED_TEST(TestPlanner, MatchWithWhereReturn) {
// Test MATCH (old) WITH old AS new WHERE new.prop < 42 RETURN new
FakeDbAccessor dba;
auto prop = dba.Property("prop");
auto *as_new = NEXPR("new", IDENT("new"));
auto *query = QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("old"))), WITH("old", AS("new")),
WHERE(LESS(PROPERTY_LOOKUP(dba, "new", prop), LITERAL(42))), RETURN(as_new)));
// No accumulation since we only do reads.
auto symbol_table = memgraph::query::MakeSymbolTable(query);
auto planner = MakePlanner<TypeParam>(&dba, this->storage, symbol_table, query);
CheckPlan(planner.plan(), symbol_table, ExpectScanAll(), ExpectProduce(), ExpectFilter(), ExpectProduce());
}
TYPED_TEST(TestPlanner, CreateMultiExpand) {
// Test CREATE (n) -[r :r]-> (m), (n) - [p :p]-> (l)
auto r = "r";
auto p = "p";
auto *query = QUERY(SINGLE_QUERY(CREATE(PATTERN(NODE("n"), EDGE("r", Direction::OUT, {r}), NODE("m")),
PATTERN(NODE("n"), EDGE("p", Direction::OUT, {p}), NODE("l")))));
CheckPlan<TypeParam>(query, this->storage, ExpectCreateNode(), ExpectCreateExpand(), ExpectCreateExpand(),
ExpectEmptyResult());
}
TYPED_TEST(TestPlanner, MatchWithSumWhereReturn) {
// Test MATCH (n) WITH SUM(n.prop) + 42 AS sum WHERE sum < 42
// RETURN sum AS result
FakeDbAccessor dba;
auto prop = dba.Property("prop");
auto sum = SUM(PROPERTY_LOOKUP(dba, "n", prop), false);
auto literal = LITERAL(42);
auto *query = QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("n"))), WITH(ADD(sum, literal), AS("sum")),
WHERE(LESS(IDENT("sum"), LITERAL(42))), RETURN("sum", AS("result"))));
auto aggr = ExpectAggregate({sum}, {literal});
CheckPlan<TypeParam>(query, this->storage, ExpectScanAll(), aggr, ExpectProduce(), ExpectFilter(), ExpectProduce());
}
TYPED_TEST(TestPlanner, MatchReturnSum) {
// Test MATCH (n) RETURN SUM(n.prop1) AS sum, n.prop2 AS group
FakeDbAccessor dba;
auto prop1 = dba.Property("prop1");
auto prop2 = dba.Property("prop2");
auto sum = SUM(PROPERTY_LOOKUP(dba, "n", prop1), false);
auto n_prop2 = PROPERTY_LOOKUP(dba, "n", prop2);
auto *query = QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("n"))), RETURN(sum, AS("sum"), n_prop2, AS("group"))));
auto aggr = ExpectAggregate({sum}, {n_prop2});
auto symbol_table = memgraph::query::MakeSymbolTable(query);
auto planner = MakePlanner<TypeParam>(&dba, this->storage, symbol_table, query);
CheckPlan(planner.plan(), symbol_table, ExpectScanAll(), aggr, ExpectProduce());
}
TYPED_TEST(TestPlanner, CreateWithSum) {
// Test CREATE (n) WITH SUM(n.prop) AS sum
FakeDbAccessor dba;
auto prop = dba.Property("prop");
auto ident_n = IDENT("n");
auto n_prop = PROPERTY_LOOKUP(dba, ident_n, prop);
auto sum = SUM(n_prop, false);
auto query = QUERY(SINGLE_QUERY(CREATE(PATTERN(NODE("n"))), WITH(sum, AS("sum"))));
auto symbol_table = memgraph::query::MakeSymbolTable(query);
auto acc = ExpectAccumulate({symbol_table.at(*ident_n)});
auto aggr = ExpectAggregate({sum}, {});
auto planner = MakePlanner<TypeParam>(&dba, this->storage, symbol_table, query);
// We expect both the accumulation and aggregation because the part before
// WITH updates the database.
CheckPlan(planner.plan(), symbol_table, ExpectCreateNode(), acc, aggr, ExpectProduce());
}
TYPED_TEST(TestPlanner, MatchWithSumWithDistinctWhereReturn) {
// Test MATCH (n) WITH SUM(DISTINCT n.prop) + 42 AS sum WHERE sum < 42
// RETURN sum AS result
FakeDbAccessor dba;
auto prop = dba.Property("prop");
auto sum = SUM(PROPERTY_LOOKUP(dba, "n", prop), true);
auto literal = LITERAL(42);
auto *query = QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("n"))), WITH(ADD(sum, literal), AS("sum")),
WHERE(LESS(IDENT("sum"), LITERAL(42))), RETURN("sum", AS("result"))));
auto aggr = ExpectAggregate({sum}, {literal});
CheckPlan<TypeParam>(query, this->storage, ExpectScanAll(), aggr, ExpectProduce(), ExpectFilter(), ExpectProduce());
}
TYPED_TEST(TestPlanner, MatchReturnSumWithDistinct) {
// Test MATCH (n) RETURN SUM(DISTINCT n.prop1) AS sum, n.prop2 AS group
FakeDbAccessor dba;
auto prop1 = dba.Property("prop1");
auto prop2 = dba.Property("prop2");
auto sum = SUM(PROPERTY_LOOKUP(dba, "n", prop1), true);
auto n_prop2 = PROPERTY_LOOKUP(dba, "n", prop2);
auto *query = QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("n"))), RETURN(sum, AS("sum"), n_prop2, AS("group"))));
auto aggr = ExpectAggregate({sum}, {n_prop2});
auto symbol_table = memgraph::query::MakeSymbolTable(query);
auto planner = MakePlanner<TypeParam>(&dba, this->storage, symbol_table, query);
CheckPlan(planner.plan(), symbol_table, ExpectScanAll(), aggr, ExpectProduce());
}
TYPED_TEST(TestPlanner, CreateWithSumWithDistinct) {
// Test CREATE (n) WITH SUM(DISTINCT n.prop) AS sum
FakeDbAccessor dba;
auto prop = dba.Property("prop");
auto ident_n = IDENT("n");
auto n_prop = PROPERTY_LOOKUP(dba, ident_n, prop);
auto sum = SUM(n_prop, true);
auto query = QUERY(SINGLE_QUERY(CREATE(PATTERN(NODE("n"))), WITH(sum, AS("sum"))));
auto symbol_table = memgraph::query::MakeSymbolTable(query);
auto acc = ExpectAccumulate({symbol_table.at(*ident_n)});
auto aggr = ExpectAggregate({sum}, {});
auto planner = MakePlanner<TypeParam>(&dba, this->storage, symbol_table, query);
// We expect both the accumulation and aggregation because the part before
// WITH updates the database.
CheckPlan(planner.plan(), symbol_table, ExpectCreateNode(), acc, aggr, ExpectProduce());
}
TYPED_TEST(TestPlanner, MatchWithCreate) {
// Test MATCH (n) WITH n AS a CREATE (a) -[r :r]-> (b)
auto r_type = "r";
auto *query = QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("n"))), WITH("n", AS("a")),
CREATE(PATTERN(NODE("a"), EDGE("r", Direction::OUT, {r_type}), NODE("b")))));
CheckPlan<TypeParam>(query, this->storage, ExpectScanAll(), ExpectProduce(), ExpectCreateExpand(),
ExpectEmptyResult());
}
TYPED_TEST(TestPlanner, MatchReturnSkipLimit) {
// Test MATCH (n) RETURN n SKIP 2 LIMIT 1
FakeDbAccessor dba;
auto *as_n = NEXPR("n", IDENT("n"));
auto *query = QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("n"))), RETURN(as_n, SKIP(LITERAL(2)), LIMIT(LITERAL(1)))));
auto symbol_table = memgraph::query::MakeSymbolTable(query);
auto planner = MakePlanner<TypeParam>(&dba, this->storage, symbol_table, query);
CheckPlan(planner.plan(), symbol_table, ExpectScanAll(), ExpectProduce(), ExpectSkip(), ExpectLimit());
}
TYPED_TEST(TestPlanner, CreateWithSkipReturnLimit) {
// Test CREATE (n) WITH n AS m SKIP 2 RETURN m LIMIT 1
FakeDbAccessor dba;
auto ident_n = IDENT("n");
auto query = QUERY(SINGLE_QUERY(CREATE(PATTERN(NODE("n"))), WITH(ident_n, AS("m"), SKIP(LITERAL(2))),
RETURN("m", LIMIT(LITERAL(1)))));
auto symbol_table = memgraph::query::MakeSymbolTable(query);
auto acc = ExpectAccumulate({symbol_table.at(*ident_n)});
auto planner = MakePlanner<TypeParam>(&dba, this->storage, symbol_table, query);
// Since we have a write query, we need to have Accumulate. This is a bit
// different than Neo4j 3.0, which optimizes WITH followed by RETURN as a
// single RETURN clause and then moves Skip and Limit before Accumulate.
// This causes different behaviour. A newer version of Neo4j does the same
// thing as us here (but who knows if they change it again).
CheckPlan(planner.plan(), symbol_table, ExpectCreateNode(), acc, ExpectProduce(), ExpectSkip(), ExpectProduce(),
ExpectLimit());
}
TYPED_TEST(TestPlanner, CreateReturnSumSkipLimit) {
// Test CREATE (n) RETURN SUM(n.prop) AS s SKIP 2 LIMIT 1
FakeDbAccessor dba;
auto prop = dba.Property("prop");
auto ident_n = IDENT("n");
auto n_prop = PROPERTY_LOOKUP(dba, ident_n, prop);
auto sum = SUM(n_prop, false);
auto query =
QUERY(SINGLE_QUERY(CREATE(PATTERN(NODE("n"))), RETURN(sum, AS("s"), SKIP(LITERAL(2)), LIMIT(LITERAL(1)))));
auto symbol_table = memgraph::query::MakeSymbolTable(query);
auto acc = ExpectAccumulate({symbol_table.at(*ident_n)});
auto aggr = ExpectAggregate({sum}, {});
auto planner = MakePlanner<TypeParam>(&dba, this->storage, symbol_table, query);
CheckPlan(planner.plan(), symbol_table, ExpectCreateNode(), acc, aggr, ExpectProduce(), ExpectSkip(), ExpectLimit());
}
TYPED_TEST(TestPlanner, CreateReturnSumWithDistinctSkipLimit) {
// Test CREATE (n) RETURN SUM(n.prop) AS s SKIP 2 LIMIT 1
FakeDbAccessor dba;
auto prop = dba.Property("prop");
auto ident_n = IDENT("n");
auto n_prop = PROPERTY_LOOKUP(dba, ident_n, prop);
auto sum = SUM(n_prop, true);
auto query =
QUERY(SINGLE_QUERY(CREATE(PATTERN(NODE("n"))), RETURN(sum, AS("s"), SKIP(LITERAL(2)), LIMIT(LITERAL(1)))));
auto symbol_table = memgraph::query::MakeSymbolTable(query);
auto acc = ExpectAccumulate({symbol_table.at(*ident_n)});
auto aggr = ExpectAggregate({sum}, {});
auto planner = MakePlanner<TypeParam>(&dba, this->storage, symbol_table, query);
CheckPlan(planner.plan(), symbol_table, ExpectCreateNode(), acc, aggr, ExpectProduce(), ExpectSkip(), ExpectLimit());
}
TYPED_TEST(TestPlanner, MatchReturnOrderBy) {
// Test MATCH (n) RETURN n AS m ORDER BY n.prop
FakeDbAccessor dba;
auto prop = dba.Property("prop");
auto *as_m = NEXPR("m", IDENT("n"));
auto *node_n = NODE("n");
auto ret = RETURN(as_m, ORDER_BY(PROPERTY_LOOKUP(dba, "n", prop)));
auto *query = QUERY(SINGLE_QUERY(MATCH(PATTERN(node_n)), ret));
auto symbol_table = memgraph::query::MakeSymbolTable(query);
auto planner = MakePlanner<TypeParam>(&dba, this->storage, symbol_table, query);
CheckPlan(planner.plan(), symbol_table, ExpectScanAll(), ExpectProduce(), ExpectOrderBy());
}
TYPED_TEST(TestPlanner, CreateWithOrderByWhere) {
// Test CREATE (n) -[r :r]-> (m)
// WITH n AS new ORDER BY new.prop, r.prop WHERE m.prop < 42
FakeDbAccessor dba;
auto prop = dba.Property("prop");
auto r_type = "r";
auto ident_n = IDENT("n");
auto ident_r = IDENT("r");
auto ident_m = IDENT("m");
auto new_prop = PROPERTY_LOOKUP(dba, "new", prop);
auto r_prop = PROPERTY_LOOKUP(dba, ident_r, prop);
auto m_prop = PROPERTY_LOOKUP(dba, ident_m, prop);
auto query =
QUERY(SINGLE_QUERY(CREATE(PATTERN(NODE("n"), EDGE("r", Direction::OUT, {r_type}), NODE("m"))),
WITH(ident_n, AS("new"), ORDER_BY(new_prop, r_prop)), WHERE(LESS(m_prop, LITERAL(42)))));
auto symbol_table = memgraph::query::MakeSymbolTable(query);
// Since this is a write query, we expect to accumulate to old used symbols.
auto acc = ExpectAccumulate({
symbol_table.at(*ident_n), // `n` in WITH
symbol_table.at(*ident_r), // `r` in ORDER BY
symbol_table.at(*ident_m), // `m` in WHERE
});
auto planner = MakePlanner<TypeParam>(&dba, this->storage, symbol_table, query);
CheckPlan(planner.plan(), symbol_table, ExpectCreateNode(), ExpectCreateExpand(), acc, ExpectProduce(),
ExpectOrderBy(), ExpectFilter(), ExpectEmptyResult());
}
TYPED_TEST(TestPlanner, ReturnAddSumCountOrderBy) {
// Test RETURN SUM(1) + COUNT(2) AS result ORDER BY result
auto sum = SUM(LITERAL(1), false);
auto count = COUNT(LITERAL(2), false);
auto *query = QUERY(SINGLE_QUERY(RETURN(ADD(sum, count), AS("result"), ORDER_BY(IDENT("result")))));
auto aggr = ExpectAggregate({sum, count}, {});
CheckPlan<TypeParam>(query, this->storage, aggr, ExpectProduce(), ExpectOrderBy());
}
TYPED_TEST(TestPlanner, ReturnAddSumCountWithDistinctOrderBy) {
// Test RETURN SUM(1) + COUNT(2) AS result ORDER BY result
auto sum = SUM(LITERAL(1), true);
auto count = COUNT(LITERAL(2), true);
auto *query = QUERY(SINGLE_QUERY(RETURN(ADD(sum, count), AS("result"), ORDER_BY(IDENT("result")))));
auto aggr = ExpectAggregate({sum, count}, {});
CheckPlan<TypeParam>(query, this->storage, aggr, ExpectProduce(), ExpectOrderBy());
}
TYPED_TEST(TestPlanner, MatchMerge) {
// Test MATCH (n) MERGE (n) -[r :r]- (m)
// ON MATCH SET n.prop = 42 ON CREATE SET m = n
// RETURN n AS n
FakeDbAccessor dba;
auto r_type = "r";
auto prop = dba.Property("prop");
auto ident_n = IDENT("n");
auto query = QUERY(
SINGLE_QUERY(MATCH(PATTERN(NODE("n"))),
MERGE(PATTERN(NODE("n"), EDGE("r", Direction::BOTH, {r_type}), NODE("m")),
ON_MATCH(SET(PROPERTY_LOOKUP(dba, "n", prop), LITERAL(42))), ON_CREATE(SET("m", IDENT("n")))),
RETURN(ident_n, AS("n"))));
std::list<BaseOpChecker *> on_match{new ExpectExpand(), new ExpectSetProperty()};
std::list<BaseOpChecker *> on_create{new ExpectCreateExpand(), new ExpectSetProperties()};
auto symbol_table = memgraph::query::MakeSymbolTable(query);
// We expect Accumulate after Merge, because it is considered as a write.
auto acc = ExpectAccumulate({symbol_table.at(*ident_n)});
auto planner = MakePlanner<TypeParam>(&dba, this->storage, symbol_table, query);
CheckPlan(planner.plan(), symbol_table, ExpectScanAll(), ExpectMerge(on_match, on_create), acc, ExpectProduce());
DeleteListContent(&on_match);
DeleteListContent(&on_create);
}
TYPED_TEST(TestPlanner, MatchOptionalMatchWhereReturn) {
// Test MATCH (n) OPTIONAL MATCH (n) -[r]- (m) WHERE m.prop < 42 RETURN r
FakeDbAccessor dba;
auto prop = dba.Property("prop");
auto *query = QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("n"))), OPTIONAL_MATCH(PATTERN(NODE("n"), EDGE("r"), NODE("m"))),
WHERE(LESS(PROPERTY_LOOKUP(dba, "m", prop), LITERAL(42))), RETURN("r")));
std::list<BaseOpChecker *> optional{new ExpectScanAll(), new ExpectExpand(), new ExpectFilter()};
CheckPlan<TypeParam>(query, this->storage, ExpectScanAll(), ExpectOptional(optional), ExpectProduce());
DeleteListContent(&optional);
}
TYPED_TEST(TestPlanner, MatchOptionalMatchNodePropertyWithIndex) {
// Test MATCH (n:Label) OPTIONAL MATCH (m:Label) WHERE n.prop = m.prop RETURN n
FakeDbAccessor dba;
const auto label_name = "label";
const auto label = dba.Label(label_name);
const auto property = PROPERTY_PAIR(dba, "prop");
dba.SetIndexCount(label, property.second, 0);
auto *query = QUERY(SINGLE_QUERY(
MATCH(PATTERN(NODE("n", label_name))), OPTIONAL_MATCH(PATTERN(NODE("m", label_name))),
WHERE(EQ(PROPERTY_LOOKUP(dba, "n", property.second), PROPERTY_LOOKUP(dba, "m", property.second))), RETURN("n")));
auto symbol_table = memgraph::query::MakeSymbolTable(query);
auto planner = MakePlanner<TypeParam>(&dba, this->storage, symbol_table, query);
auto m_prop = PROPERTY_LOOKUP(dba, "m", property);
std::list<BaseOpChecker *> optional{new ExpectScanAllByLabelPropertyValue(label, property, m_prop)};
CheckPlan(planner.plan(), symbol_table, ExpectScanAll(), ExpectFilter(), ExpectOptional(optional), ExpectProduce());
DeleteListContent(&optional);
}
TYPED_TEST(TestPlanner, MatchUnwindReturn) {
// Test MATCH (n) UNWIND [1,2,3] AS x RETURN n, x
FakeDbAccessor dba;
auto *as_n = NEXPR("n", IDENT("n"));
auto *as_x = NEXPR("x", IDENT("x"));
auto *query = QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("n"))), UNWIND(LIST(LITERAL(1), LITERAL(2), LITERAL(3)), AS("x")),
RETURN(as_n, as_x)));
auto symbol_table = memgraph::query::MakeSymbolTable(query);
auto planner = MakePlanner<TypeParam>(&dba, this->storage, symbol_table, query);
CheckPlan(planner.plan(), symbol_table, ExpectScanAll(), ExpectUnwind(), ExpectProduce());
}
TYPED_TEST(TestPlanner, ReturnDistinctOrderBySkipLimit) {
// Test RETURN DISTINCT 1 ORDER BY 1 SKIP 1 LIMIT 1
auto *query = QUERY(
SINGLE_QUERY(RETURN_DISTINCT(LITERAL(1), AS("1"), ORDER_BY(LITERAL(1)), SKIP(LITERAL(1)), LIMIT(LITERAL(1)))));
CheckPlan<TypeParam>(query, this->storage, ExpectProduce(), ExpectDistinct(), ExpectOrderBy(), ExpectSkip(),
ExpectLimit());
}
TYPED_TEST(TestPlanner, CreateWithDistinctSumWhereReturn) {
// Test CREATE (n) WITH DISTINCT SUM(n.prop) AS s WHERE s < 42 RETURN s
FakeDbAccessor dba;
auto prop = dba.Property("prop");
auto node_n = NODE("n");
auto sum = SUM(PROPERTY_LOOKUP(dba, "n", prop), false);
auto query = QUERY(SINGLE_QUERY(CREATE(PATTERN(node_n)), WITH_DISTINCT(sum, AS("s")),
WHERE(LESS(IDENT("s"), LITERAL(42))), RETURN("s")));
auto symbol_table = memgraph::query::MakeSymbolTable(query);
auto acc = ExpectAccumulate({symbol_table.at(*node_n->identifier_)});
auto aggr = ExpectAggregate({sum}, {});
auto planner = MakePlanner<TypeParam>(&dba, this->storage, symbol_table, query);
CheckPlan(planner.plan(), symbol_table, ExpectCreateNode(), acc, aggr, ExpectProduce(), ExpectDistinct(),
ExpectFilter(), ExpectProduce());
}
TYPED_TEST(TestPlanner, MatchCrossReferenceVariable) {
// Test MATCH (n {prop: m.prop}), (m {prop: n.prop}) RETURN n
FakeDbAccessor dba;
auto prop = PROPERTY_PAIR(dba, "prop");
auto node_n = NODE("n");
auto m_prop = PROPERTY_LOOKUP(dba, "m", prop.second);
std::get<0>(node_n->properties_)[this->storage.GetPropertyIx(prop.first)] = m_prop;
auto node_m = NODE("m");
auto n_prop = PROPERTY_LOOKUP(dba, "n", prop.second);
std::get<0>(node_m->properties_)[this->storage.GetPropertyIx(prop.first)] = n_prop;
auto *query = QUERY(SINGLE_QUERY(MATCH(PATTERN(node_n), PATTERN(node_m)), RETURN("n")));
// We expect both ScanAll to come before filters (2 are joined into one),
// because they need to populate the symbol values.
// They are combined in a Cartesian (rewritten to HashJoin) to generate values from both symbols respectively and
// independently
std::list<BaseOpChecker *> left_hash_join_ops{new ExpectScanAll()};
std::list<BaseOpChecker *> right_hash_join_ops{new ExpectScanAll()};
CheckPlan<TypeParam>(query, this->storage, ExpectHashJoin(left_hash_join_ops, right_hash_join_ops), ExpectFilter(),
ExpectProduce());
DeleteListContent(&left_hash_join_ops);
DeleteListContent(&right_hash_join_ops);
}
TYPED_TEST(TestPlanner, MatchWhereBeforeExpand) {
// Test MATCH (n) -[r]- (m) WHERE n.prop < 42 RETURN n
FakeDbAccessor dba;
auto prop = dba.Property("prop");
auto *as_n = NEXPR("n", IDENT("n"));
auto *query = QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("n"), EDGE("r"), NODE("m"))),
WHERE(LESS(PROPERTY_LOOKUP(dba, "n", prop), LITERAL(42))), RETURN(as_n)));
// We expect Filter to come immediately after ScanAll, since it only uses `n`.
auto symbol_table = memgraph::query::MakeSymbolTable(query);
auto planner = MakePlanner<TypeParam>(&dba, this->storage, symbol_table, query);
CheckPlan(planner.plan(), symbol_table, ExpectScanAll(), ExpectFilter(), ExpectExpand(), ExpectProduce());
}
TYPED_TEST(TestPlanner, MatchEdgeTypeIndex) {
FakeDbAccessor dba;
auto indexed_edge_type = dba.EdgeType("indexed_edgetype");
dba.SetIndexCount(indexed_edge_type, 1);
{
// Test MATCH ()-[r:indexed_edgetype]->() RETURN r;
auto *query = QUERY(SINGLE_QUERY(
MATCH(PATTERN(NODE("anon1"), EDGE("r", memgraph::query::EdgeAtom::Direction::OUT, {"indexed_edgetype"}),
NODE("anon2"))),
RETURN("r")));
auto symbol_table = memgraph::query::MakeSymbolTable(query);
auto planner = MakePlanner<TypeParam>(&dba, this->storage, symbol_table, query);
CheckPlan(planner.plan(), symbol_table, ExpectScanAllByEdgeType(), ExpectProduce());
}
{
// Test MATCH (a)-[r:indexed_edgetype]->() RETURN r;
auto *query = QUERY(SINGLE_QUERY(
MATCH(PATTERN(NODE("a"), EDGE("r", memgraph::query::EdgeAtom::Direction::OUT, {"indexed_edgetype"}),
NODE("anon2"))),
RETURN("r")));
auto symbol_table = memgraph::query::MakeSymbolTable(query);
auto planner = MakePlanner<TypeParam>(&dba, this->storage, symbol_table, query);
CheckPlan(planner.plan(), symbol_table, ExpectScanAll(), ExpectExpand(), ExpectProduce());
}
{
// Test MATCH ()-[r:indexed_edgetype]->(b) RETURN r;
auto *query = QUERY(SINGLE_QUERY(
MATCH(PATTERN(NODE("anon1"), EDGE("r", memgraph::query::EdgeAtom::Direction::OUT, {"indexed_edgetype"}),
NODE("b"))),
RETURN("r")));
auto symbol_table = memgraph::query::MakeSymbolTable(query);
auto planner = MakePlanner<TypeParam>(&dba, this->storage, symbol_table, query);
CheckPlan(planner.plan(), symbol_table, ExpectScanAll(), ExpectExpand(), ExpectProduce());
}
{
// Test MATCH (a)-[r:indexed_edgetype]->(b) RETURN r;
auto *query = QUERY(SINGLE_QUERY(
MATCH(
PATTERN(NODE("a"), EDGE("r", memgraph::query::EdgeAtom::Direction::OUT, {"indexed_edgetype"}), NODE("b"))),
RETURN("r")));
auto symbol_table = memgraph::query::MakeSymbolTable(query);
auto planner = MakePlanner<TypeParam>(&dba, this->storage, symbol_table, query);
CheckPlan(planner.plan(), symbol_table, ExpectScanAll(), ExpectExpand(), ExpectProduce());
}
{
// Test MATCH ()-[r:not_indexed_edgetype]->() RETURN r;
auto *query = QUERY(SINGLE_QUERY(
MATCH(PATTERN(NODE("anon1"), EDGE("r", memgraph::query::EdgeAtom::Direction::OUT, {"not_indexed_edgetype"}),
NODE("anon2"))),
RETURN("r")));
auto symbol_table = memgraph::query::MakeSymbolTable(query);
auto planner = MakePlanner<TypeParam>(&dba, this->storage, symbol_table, query);
CheckPlan(planner.plan(), symbol_table, ExpectScanAll(), ExpectExpand(), ExpectProduce());
}
}
TYPED_TEST(TestPlanner, MatchFilterPropIsNotNull) {
FakeDbAccessor dba;
auto label = dba.Label("label");
auto prop = PROPERTY_PAIR(dba, "prop");
dba.SetIndexCount(label, 1);
dba.SetIndexCount(label, prop.second, 1);
{
// Test MATCH (n :label) -[r]- (m) WHERE n.prop IS NOT NULL RETURN n
auto *query = QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("n", "label"), EDGE("r"), NODE("m"))),
WHERE(NOT(IS_NULL(PROPERTY_LOOKUP(dba, "n", prop)))), RETURN("n")));
auto symbol_table = memgraph::query::MakeSymbolTable(query);
auto planner = MakePlanner<TypeParam>(&dba, this->storage, symbol_table, query);
// We expect ScanAllByLabelProperty to come instead of ScanAll > Filter.
CheckPlan(planner.plan(), symbol_table, ExpectScanAllByLabelProperty(label, prop), ExpectExpand(), ExpectProduce());
}
{
// Test MATCH (n :label) -[r]- (m) WHERE n.prop IS NOT NULL OR true RETURN n
auto *query =
QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("n", "label"), EDGE("r"), NODE("m"))),
WHERE(OR(NOT(IS_NULL(PROPERTY_LOOKUP(dba, "n", prop))), LITERAL(true))), RETURN("n")));
auto symbol_table = memgraph::query::MakeSymbolTable(query);
auto planner = MakePlanner<TypeParam>(&dba, this->storage, symbol_table, query);
// We expect ScanAllBy > Filter because of the "or true" condition.
CheckPlan(planner.plan(), symbol_table, ExpectScanAll(), ExpectFilter(), ExpectExpand(), ExpectProduce());
}
{
// Test MATCH (n :label) -[r]- (m)
// WHERE n.prop IS NOT NULL AND n.x = 2 RETURN n
auto prop_x = PROPERTY_PAIR(dba, "x");
auto *query = QUERY(SINGLE_QUERY(
MATCH(PATTERN(NODE("n", "label"), EDGE("r"), NODE("m"))),
WHERE(AND(NOT(IS_NULL(PROPERTY_LOOKUP(dba, "n", prop))), EQ(PROPERTY_LOOKUP(dba, "n", prop_x), LITERAL(2)))),
RETURN("n")));
auto symbol_table = memgraph::query::MakeSymbolTable(query);
auto planner = MakePlanner<TypeParam>(&dba, this->storage, symbol_table, query);
// We expect ScanAllByLabelProperty > Filter
// to come instead of ScanAll > Filter.
CheckPlan(planner.plan(), symbol_table, ExpectScanAllByLabelProperty(label, prop), ExpectFilter(), ExpectExpand(),
ExpectProduce());
}
}
TYPED_TEST(TestPlanner, MatchFilterWhere) {
// Test MATCH (n)-[r]-(m) WHERE exists((n)-[]-()) and n!=n and 7!=8 RETURN n
auto *query = QUERY(SINGLE_QUERY(
MATCH(PATTERN(NODE("n"), EDGE("r"), NODE("m"))),
WHERE(AND(EXISTS(PATTERN(NODE("n"), EDGE("edge2", memgraph::query::EdgeAtom::Direction::BOTH, {}, false),
NODE("node3", std::nullopt, false))),
AND(NEQ(IDENT("n"), IDENT("n")), NEQ(LITERAL(7), LITERAL(8))))),
RETURN("n")));
std::list<BaseOpChecker *> pattern_filter{new ExpectScanAll(), new ExpectExpand(), new ExpectLimit(),
new ExpectEvaluatePatternFilter()};
CheckPlan<TypeParam>(
query, this->storage,
ExpectFilter(), // 7!=8
ExpectScanAll(),
ExpectFilter(std::vector<std::list<BaseOpChecker *>>{pattern_filter}), // filter pulls from expand
ExpectExpand(), ExpectProduce());
DeleteListContent(&pattern_filter);
}
TYPED_TEST(TestPlanner, MultiMatchWhere) {
// Test MATCH (n) -[r]- (m) MATCH (l) WHERE n.prop < 42 RETURN n
FakeDbAccessor dba;
auto prop = dba.Property("prop");
auto *query = QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("n"), EDGE("r"), NODE("m"))), MATCH(PATTERN(NODE("l"))),
WHERE(LESS(PROPERTY_LOOKUP(dba, "n", prop), LITERAL(42))), RETURN("n")));
// The 2 match expansions need to be separated with a cartesian so they can be generated independently
std::list<BaseOpChecker *> left_cartesian_ops{new ExpectScanAll(), new ExpectFilter(), new ExpectExpand()};
std::list<BaseOpChecker *> right_cartesian_ops{new ExpectScanAll()};
CheckPlan<TypeParam>(query, this->storage, ExpectCartesian(left_cartesian_ops, right_cartesian_ops), ExpectProduce());
DeleteListContent(&left_cartesian_ops);
DeleteListContent(&right_cartesian_ops);
}
TYPED_TEST(TestPlanner, MatchOptionalMatchWhere) {
// Test MATCH (n) -[r]- (m) OPTIONAL MATCH (l) WHERE n.prop < 42 RETURN n
FakeDbAccessor dba;
auto prop = dba.Property("prop");
auto *query = QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("n"), EDGE("r"), NODE("m"))), OPTIONAL_MATCH(PATTERN(NODE("l"))),
WHERE(LESS(PROPERTY_LOOKUP(dba, "n", prop), LITERAL(42))), RETURN("n")));
// Even though WHERE is in the second MATCH clause, and it uses the value from
// first ScanAll, it must remain part of the Optional. It should come before
// optional ScanAll.
std::list<BaseOpChecker *> optional{new ExpectFilter(), new ExpectScanAll()};
CheckPlan<TypeParam>(query, this->storage, ExpectScanAll(), ExpectExpand(), ExpectOptional(optional),
ExpectProduce());
DeleteListContent(&optional);
}
TYPED_TEST(TestPlanner, MatchReturnAsterisk) {
// Test MATCH (n) -[e]- (m) RETURN *, m.prop
FakeDbAccessor dba;
auto prop = dba.Property("prop");
auto ret = RETURN(PROPERTY_LOOKUP(dba, "m", prop), AS("m.prop"));
ret->body_.all_identifiers = true;
auto query = QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("n"), EDGE("e"), NODE("m"))), ret));
auto symbol_table = memgraph::query::MakeSymbolTable(query);
auto planner = MakePlanner<TypeParam>(&dba, this->storage, symbol_table, query);
CheckPlan(planner.plan(), symbol_table, ExpectScanAll(), ExpectExpand(), ExpectProduce());
std::vector<std::string> output_names;
for (const auto &output_symbol : planner.plan().OutputSymbols(symbol_table)) {
output_names.emplace_back(output_symbol.name());
}
std::vector<std::string> expected_names{"e", "m", "n", "m.prop"};
EXPECT_EQ(output_names, expected_names);
}
TYPED_TEST(TestPlanner, MatchReturnAsteriskSum) {
// Test MATCH (n) RETURN *, SUM(n.prop) AS s
FakeDbAccessor dba;
auto prop = dba.Property("prop");
auto sum = SUM(PROPERTY_LOOKUP(dba, "n", prop), false);
auto ret = RETURN(sum, AS("s"));
ret->body_.all_identifiers = true;
auto query = QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("n"))), ret));
auto symbol_table = memgraph::query::MakeSymbolTable(query);
auto planner = MakePlanner<TypeParam>(&dba, this->storage, symbol_table, query);
auto *produce = dynamic_cast<Produce *>(&planner.plan());
ASSERT_TRUE(produce);
const auto &named_expressions = produce->named_expressions_;
ASSERT_EQ(named_expressions.size(), 2);
auto *expanded_ident = dynamic_cast<memgraph::query::Identifier *>(named_expressions[0]->expression_);
ASSERT_TRUE(expanded_ident);
auto aggr = ExpectAggregate({sum}, {expanded_ident});
CheckPlan(planner.plan(), symbol_table, ExpectScanAll(), aggr, ExpectProduce());
std::vector<std::string> output_names;
for (const auto &output_symbol : planner.plan().OutputSymbols(symbol_table)) {
output_names.emplace_back(output_symbol.name());
}
std::vector<std::string> expected_names{"n", "s"};
EXPECT_EQ(output_names, expected_names);
}
TYPED_TEST(TestPlanner, UnwindMergeNodeProperty) {
// Test UNWIND [1] AS i MERGE (n {prop: i})
auto node_n = NODE("n");
std::get<0>(node_n->properties_)[this->storage.GetPropertyIx("prop")] = IDENT("i");
auto *query = QUERY(SINGLE_QUERY(UNWIND(LIST(LITERAL(1)), AS("i")), MERGE(PATTERN(node_n))));
std::list<BaseOpChecker *> on_match{new ExpectScanAll(), new ExpectFilter()};
std::list<BaseOpChecker *> on_create{new ExpectCreateNode()};
CheckPlan<TypeParam>(query, this->storage, ExpectUnwind(), ExpectMerge(on_match, on_create), ExpectEmptyResult());
DeleteListContent(&on_match);
DeleteListContent(&on_create);
}
TYPED_TEST(TestPlanner, UnwindMergeNodePropertyWithIndex) {
// Test UNWIND [1] AS i MERGE (n :label {prop: i}) with label-property index
FakeDbAccessor dba;
const auto label_name = "label";
const auto label = dba.Label(label_name);
const auto property = PROPERTY_PAIR(dba, "prop");
dba.SetIndexCount(label, property.second, 1);
auto node_n = NODE("n", label_name);
std::get<0>(node_n->properties_)[this->storage.GetPropertyIx(property.first)] = IDENT("i");
auto *query = QUERY(SINGLE_QUERY(UNWIND(LIST(LITERAL(1)), AS("i")), MERGE(PATTERN(node_n))));
std::list<BaseOpChecker *> on_match{new ExpectScanAllByLabelPropertyValue(label, property, IDENT("i"))};
std::list<BaseOpChecker *> on_create{new ExpectCreateNode()};
auto symbol_table = memgraph::query::MakeSymbolTable(query);
auto planner = MakePlanner<TypeParam>(&dba, this->storage, symbol_table, query);
CheckPlan(planner.plan(), symbol_table, ExpectUnwind(), ExpectMerge(on_match, on_create), ExpectEmptyResult());
DeleteListContent(&on_match);
DeleteListContent(&on_create);
}
TYPED_TEST(TestPlanner, MultipleOptionalMatchReturn) {
// Test OPTIONAL MATCH (n) OPTIONAL MATCH (m) RETURN n
auto *query =
QUERY(SINGLE_QUERY(OPTIONAL_MATCH(PATTERN(NODE("n"))), OPTIONAL_MATCH(PATTERN(NODE("m"))), RETURN("n")));
std::list<BaseOpChecker *> optional{new ExpectScanAll()};
CheckPlan<TypeParam>(query, this->storage, ExpectOptional(optional), ExpectOptional(optional), ExpectProduce());
DeleteListContent(&optional);
}
TYPED_TEST(TestPlanner, FunctionAggregationReturn) {
// Test RETURN sqrt(SUM(2)) AS result, 42 AS group_by
auto sum = SUM(LITERAL(2), false);
auto group_by_literal = LITERAL(42);
auto *query = QUERY(SINGLE_QUERY(RETURN(FN("sqrt", sum), AS("result"), group_by_literal, AS("group_by"))));
auto aggr = ExpectAggregate({sum}, {group_by_literal});
CheckPlan<TypeParam>(query, this->storage, aggr, ExpectProduce());
}
TYPED_TEST(TestPlanner, FunctionWithoutArguments) {
// Test RETURN pi() AS pi
auto *query = QUERY(SINGLE_QUERY(RETURN(FN("pi"), AS("pi"))));
CheckPlan<TypeParam>(query, this->storage, ExpectProduce());
}
TYPED_TEST(TestPlanner, ListLiteralAggregationReturn) {
// Test RETURN [SUM(2)] AS result, 42 AS group_by
auto sum = SUM(LITERAL(2), false);
auto group_by_literal = LITERAL(42);
auto *query = QUERY(SINGLE_QUERY(RETURN(LIST(sum), AS("result"), group_by_literal, AS("group_by"))));
auto aggr = ExpectAggregate({sum}, {group_by_literal});
CheckPlan<TypeParam>(query, this->storage, aggr, ExpectProduce());
}
TYPED_TEST(TestPlanner, MapLiteralAggregationReturn) {
// Test RETURN {sum: SUM(2)} AS result, 42 AS group_by
auto sum = SUM(LITERAL(2), false);
auto group_by_literal = LITERAL(42);
auto *query = QUERY(SINGLE_QUERY(
RETURN(MAP({this->storage.GetPropertyIx("sum"), sum}), AS("result"), group_by_literal, AS("group_by"))));
auto aggr = ExpectAggregate({sum}, {group_by_literal});
CheckPlan<TypeParam>(query, this->storage, aggr, ExpectProduce());
}
TYPED_TEST(TestPlanner, MapProjectionLiteralAggregationReturn) {
// Test WITH {} as map RETURN map {sum: SUM(2)} AS result, 42 AS group_by
AstStorage storage;
FakeDbAccessor dba;
auto sum = SUM(LITERAL(2), false);
auto group_by_literal = LITERAL(42);
auto elements = std::unordered_map<memgraph::query::PropertyIx, memgraph::query::Expression *>{
{storage.GetPropertyIx("sum"), sum}};
auto *query = QUERY(SINGLE_QUERY(WITH(MAP(), AS("map")), RETURN(MAP_PROJECTION(IDENT("map"), elements), AS("result"),
group_by_literal, AS("group_by"))));
auto aggr = ExpectAggregate({sum}, {group_by_literal});
CheckPlan<TypeParam>(query, storage, ExpectProduce(), aggr, ExpectProduce());
}
TYPED_TEST(TestPlanner, EmptyListIndexAggregation) {
// Test RETURN [][SUM(2)] AS result, 42 AS group_by
auto sum = SUM(LITERAL(2), false);
auto empty_list = LIST();
auto group_by_literal = LITERAL(42);
auto *query =
QUERY(SINGLE_QUERY(RETURN(this->storage.template Create<memgraph::query::SubscriptOperator>(empty_list, sum),
AS("result"), group_by_literal, AS("group_by"))));
// We expect to group by '42' and the empty list, because it is a
// sub-expression of a binary operator which contains an aggregation. This is
// similar to grouping by '1' in `RETURN 1 + SUM(2)`.
auto aggr = ExpectAggregate({sum}, {empty_list, group_by_literal});
CheckPlan<TypeParam>(query, this->storage, aggr, ExpectProduce());
}
TYPED_TEST(TestPlanner, ListSliceAggregationReturn) {
// Test RETURN [1, 2][0..SUM(2)] AS result, 42 AS group_by
auto sum = SUM(LITERAL(2), false);
auto list = LIST(LITERAL(1), LITERAL(2));
auto group_by_literal = LITERAL(42);
auto *query =
QUERY(SINGLE_QUERY(RETURN(SLICE(list, LITERAL(0), sum), AS("result"), group_by_literal, AS("group_by"))));
// Similarly to EmptyListIndexAggregation test, we expect grouping by list and
// '42', because slicing is an operator.
auto aggr = ExpectAggregate({sum}, {list, group_by_literal});
CheckPlan<TypeParam>(query, this->storage, aggr, ExpectProduce());
}
TYPED_TEST(TestPlanner, ListWithAggregationAndGroupBy) {
// Test RETURN [sum(2), 42]
auto sum = SUM(LITERAL(2), false);
auto group_by_literal = LITERAL(42);
auto *query = QUERY(SINGLE_QUERY(RETURN(LIST(sum, group_by_literal), AS("result"))));
auto aggr = ExpectAggregate({sum}, {group_by_literal});
CheckPlan<TypeParam>(query, this->storage, aggr, ExpectProduce());
}
TYPED_TEST(TestPlanner, AggregationWithListWithAggregationAndGroupBy) {
// Test RETURN sum(2), [sum(3), 42]
auto sum2 = SUM(LITERAL(2), false);
auto sum3 = SUM(LITERAL(3), false);
auto group_by_literal = LITERAL(42);
auto *query = QUERY(SINGLE_QUERY(RETURN(sum2, AS("sum2"), LIST(sum3, group_by_literal), AS("list"))));
auto aggr = ExpectAggregate({sum2, sum3}, {group_by_literal});
CheckPlan<TypeParam>(query, this->storage, aggr, ExpectProduce());
}
TYPED_TEST(TestPlanner, MapWithAggregationAndGroupBy) {
// Test RETURN {lit: 42, sum: sum(2)}
auto sum = SUM(LITERAL(2), false);
auto group_by_literal = LITERAL(42);
auto *query = QUERY(SINGLE_QUERY(
RETURN(MAP({this->storage.GetPropertyIx("sum"), sum}, {this->storage.GetPropertyIx("lit"), group_by_literal}),
AS("result"))));
auto aggr = ExpectAggregate({sum}, {group_by_literal});
CheckPlan<TypeParam>(query, this->storage, aggr, ExpectProduce());
}
TYPED_TEST(TestPlanner, MapProjectionWithAggregationAndGroupBy) {
// Test WITH {} as map RETURN map {lit: 42, sum: SUM(2)} AS result
AstStorage storage;
FakeDbAccessor dba;
auto sum = SUM(LITERAL(2), false);
auto group_by_literal = LITERAL(42);
auto projection = std::unordered_map<memgraph::query::PropertyIx, memgraph::query::Expression *>{
{storage.GetPropertyIx("lit"), group_by_literal}, {storage.GetPropertyIx("sum"), sum}};
auto *query =
QUERY(SINGLE_QUERY(WITH(MAP(), AS("map")), RETURN(MAP_PROJECTION(IDENT("map"), projection), AS("result"))));
auto aggr = ExpectAggregate({sum}, {group_by_literal});
CheckPlan<TypeParam>(query, storage, ExpectProduce(), aggr, ExpectProduce());
}
TYPED_TEST(TestPlanner, AtomIndexedLabelProperty) {
// Test MATCH (n :label {property: 42, not_indexed: 0}) RETURN n
FakeDbAccessor dba;
auto label = dba.Label("label");
auto property = PROPERTY_PAIR(dba, "property");
auto not_indexed = PROPERTY_PAIR(dba, "not_indexed");
dba.SetIndexCount(label, 1);
dba.SetIndexCount(label, property.second, 1);
auto node = NODE("n", "label");
auto lit_42 = LITERAL(42);
std::get<0>(node->properties_)[this->storage.GetPropertyIx(property.first)] = lit_42;
std::get<0>(node->properties_)[this->storage.GetPropertyIx(not_indexed.first)] = LITERAL(0);
auto *query = QUERY(SINGLE_QUERY(MATCH(PATTERN(node)), RETURN("n")));
auto symbol_table = memgraph::query::MakeSymbolTable(query);
auto planner = MakePlanner<TypeParam>(&dba, this->storage, symbol_table, query);
CheckPlan(planner.plan(), symbol_table, ExpectScanAllByLabelPropertyValue(label, property, lit_42), ExpectFilter(),
ExpectProduce());
}
TYPED_TEST(TestPlanner, AtomPropertyWhereLabelIndexing) {
// Test MATCH (n {property: 42}) WHERE n.not_indexed AND n:label RETURN n
FakeDbAccessor dba;
auto label = dba.Label("label");
auto property = PROPERTY_PAIR(dba, "property");
auto not_indexed = PROPERTY_PAIR(dba, "not_indexed");
dba.SetIndexCount(label, property.second, 0);
auto node = NODE("n");
auto lit_42 = LITERAL(42);
std::get<0>(node->properties_)[this->storage.GetPropertyIx(property.first)] = lit_42;
auto *query = QUERY(SINGLE_QUERY(
MATCH(PATTERN(node)),
WHERE(AND(PROPERTY_LOOKUP(dba, "n", not_indexed),
this->storage.template Create<memgraph::query::LabelsTest>(
IDENT("n"), std::vector<memgraph::query::LabelIx>{this->storage.GetLabelIx("label")}))),
RETURN("n")));
auto symbol_table = memgraph::query::MakeSymbolTable(query);
auto planner = MakePlanner<TypeParam>(&dba, this->storage, symbol_table, query);
CheckPlan(planner.plan(), symbol_table, ExpectScanAllByLabelPropertyValue(label, property, lit_42), ExpectFilter(),
ExpectProduce());
}
TYPED_TEST(TestPlanner, WhereIndexedLabelProperty) {
// Test MATCH (n :label) WHERE n.property = 42 RETURN n
FakeDbAccessor dba;
auto label = dba.Label("label");
auto property = PROPERTY_PAIR(dba, "property");
dba.SetIndexCount(label, property.second, 0);
auto lit_42 = LITERAL(42);
auto *query = QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("n", "label"))),
WHERE(EQ(PROPERTY_LOOKUP(dba, "n", property), lit_42)), RETURN("n")));
auto symbol_table = memgraph::query::MakeSymbolTable(query);
auto planner = MakePlanner<TypeParam>(&dba, this->storage, symbol_table, query);
CheckPlan(planner.plan(), symbol_table, ExpectScanAllByLabelPropertyValue(label, property, lit_42), ExpectProduce());
}
TYPED_TEST(TestPlanner, BestPropertyIndexed) {
// Test MATCH (n :label) WHERE n.property = 1 AND n.better = 42 RETURN n
FakeDbAccessor dba;
auto label = dba.Label("label");
auto property = dba.Property("property");
// Add a vertex with :label+property combination, so that the best
// :label+better remains empty and thus better choice.
dba.SetIndexCount(label, property, 1);
auto better = PROPERTY_PAIR(dba, "better");
dba.SetIndexCount(label, better.second, 0);
auto lit_42 = LITERAL(42);
auto *query = QUERY(SINGLE_QUERY(
MATCH(PATTERN(NODE("n", "label"))),
WHERE(AND(EQ(PROPERTY_LOOKUP(dba, "n", property), LITERAL(1)), EQ(PROPERTY_LOOKUP(dba, "n", better), lit_42))),
RETURN("n")));
auto symbol_table = memgraph::query::MakeSymbolTable(query);
auto planner = MakePlanner<TypeParam>(&dba, this->storage, symbol_table, query);
CheckPlan(planner.plan(), symbol_table, ExpectScanAllByLabelPropertyValue(label, better, lit_42), ExpectFilter(),
ExpectProduce());
}
TYPED_TEST(TestPlanner, MultiPropertyIndexScan) {
// Test MATCH (n :label1), (m :label2) WHERE n.prop1 = 1 AND m.prop2 = 2
// RETURN n, m
FakeDbAccessor dba;
auto label1 = dba.Label("label1");
auto label2 = dba.Label("label2");
auto prop1 = PROPERTY_PAIR(dba, "prop1");
auto prop2 = PROPERTY_PAIR(dba, "prop2");
dba.SetIndexCount(label1, prop1.second, 0);
dba.SetIndexCount(label2, prop2.second, 0);
auto lit_1 = LITERAL(1);
auto lit_2 = LITERAL(2);
auto *query = QUERY(
SINGLE_QUERY(MATCH(PATTERN(NODE("n", "label1")), PATTERN(NODE("m", "label2"))),
WHERE(AND(EQ(PROPERTY_LOOKUP(dba, "n", prop1), lit_1), EQ(PROPERTY_LOOKUP(dba, "m", prop2), lit_2))),
RETURN("n", "m")));
auto symbol_table = memgraph::query::MakeSymbolTable(query);
auto planner = MakePlanner<TypeParam>(&dba, this->storage, symbol_table, query);
std::list<BaseOpChecker *> left_cartesian_ops{new ExpectScanAllByLabelPropertyValue(label1, prop1, lit_1)};
std::list<BaseOpChecker *> right_cartesian_ops{new ExpectScanAllByLabelPropertyValue(label2, prop2, lit_2)};
CheckPlan(planner.plan(), symbol_table, ExpectCartesian(left_cartesian_ops, right_cartesian_ops), ExpectProduce());
DeleteListContent(&left_cartesian_ops);
DeleteListContent(&right_cartesian_ops);
}
TYPED_TEST(TestPlanner, WhereIndexedLabelPropertyRange) {
// Test MATCH (n :label) WHERE n.property REL_OP 42 RETURN n
// REL_OP is one of: `<`, `<=`, `>`, `>=`
FakeDbAccessor dba;
auto label = dba.Label("label");
auto property = dba.Property("property");
dba.SetIndexCount(label, property, 0);
auto lit_42 = LITERAL(42);
auto n_prop = PROPERTY_LOOKUP(dba, "n", property);
auto check_planned_range = [&, this](const auto &rel_expr, auto lower_bound, auto upper_bound) {
// Shadow the first this->storage, so that the query is created in this one.
this->storage.GetLabelIx("label");
this->storage.GetPropertyIx("property");
auto *query = QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("n", "label"))), WHERE(rel_expr), RETURN("n")));
auto symbol_table = memgraph::query::MakeSymbolTable(query);
auto planner = MakePlanner<TypeParam>(&dba, this->storage, symbol_table, query);
CheckPlan(planner.plan(), symbol_table,
ExpectScanAllByLabelPropertyRange(label, property, lower_bound, upper_bound), ExpectProduce());
};
{
// Test relation operators which form an upper bound for range.
std::vector<std::pair<memgraph::query::Expression *, Bound::Type>> upper_bound_rel_op{
std::make_pair(LESS(n_prop, lit_42), Bound::Type::EXCLUSIVE),
std::make_pair(LESS_EQ(n_prop, lit_42), Bound::Type::INCLUSIVE),
std::make_pair(GREATER(lit_42, n_prop), Bound::Type::EXCLUSIVE),
std::make_pair(GREATER_EQ(lit_42, n_prop), Bound::Type::INCLUSIVE)};
for (const auto &rel_op : upper_bound_rel_op) {
check_planned_range(rel_op.first, std::nullopt, Bound(lit_42, rel_op.second));
}
}
{
// Test relation operators which form a lower bound for range.
std::vector<std::pair<memgraph::query::Expression *, Bound::Type>> lower_bound_rel_op{
std::make_pair(LESS(lit_42, n_prop), Bound::Type::EXCLUSIVE),
std::make_pair(LESS_EQ(lit_42, n_prop), Bound::Type::INCLUSIVE),
std::make_pair(GREATER(n_prop, lit_42), Bound::Type::EXCLUSIVE),
std::make_pair(GREATER_EQ(n_prop, lit_42), Bound::Type::INCLUSIVE)};
for (const auto &rel_op : lower_bound_rel_op) {
check_planned_range(rel_op.first, Bound(lit_42, rel_op.second), std::nullopt);
}
}
}
TYPED_TEST(TestPlanner, WherePreferEqualityIndexOverRange) {
// Test MATCH (n :label) WHERE n.property = 42 AND n.property > 0 RETURN n
FakeDbAccessor dba;
auto label = dba.Label("label");
auto property = PROPERTY_PAIR(dba, "property");
dba.SetIndexCount(label, property.second, 0);
auto lit_42 = LITERAL(42);
auto *query = QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("n", "label"))),
WHERE(AND(EQ(PROPERTY_LOOKUP(dba, "n", property), lit_42),
GREATER(PROPERTY_LOOKUP(dba, "n", property), LITERAL(0)))),
RETURN("n")));
auto symbol_table = memgraph::query::MakeSymbolTable(query);
auto planner = MakePlanner<TypeParam>(&dba, this->storage, symbol_table, query);
CheckPlan(planner.plan(), symbol_table, ExpectScanAllByLabelPropertyValue(label, property, lit_42), ExpectFilter(),
ExpectProduce());
}
TYPED_TEST(TestPlanner, UnableToUsePropertyIndex) {
// Test MATCH (n: label) WHERE n.property = n.property RETURN n
FakeDbAccessor dba;
auto label = dba.Label("label");
auto property = dba.Property("property");
dba.SetIndexCount(label, 0);
dba.SetIndexCount(label, property, 0);
auto *query = QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("n", "label"))),
WHERE(EQ(PROPERTY_LOOKUP(dba, "n", property), PROPERTY_LOOKUP(dba, "n", property))),
RETURN("n")));
auto symbol_table = memgraph::query::MakeSymbolTable(query);
auto planner = MakePlanner<TypeParam>(&dba, this->storage, symbol_table, query);
// We can only get ScanAllByLabelIndex, because we are comparing properties
// with those on the same node.
CheckPlan(planner.plan(), symbol_table, ExpectScanAllByLabel(), ExpectFilter(), ExpectProduce());
}
TYPED_TEST(TestPlanner, SecondPropertyIndex) {
// Test MATCH (n :label), (m :label) WHERE m.property = n.property RETURN n
FakeDbAccessor dba;
auto label = dba.Label("label");
auto property = PROPERTY_PAIR(dba, "property");
dba.SetIndexCount(label, 0);
dba.SetIndexCount(label, dba.Property("property"), 0);
auto n_prop = PROPERTY_LOOKUP(dba, "n", property);
auto m_prop = PROPERTY_LOOKUP(dba, "m", property);
auto *query = QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("n", "label")), PATTERN(NODE("m", "label"))),
WHERE(EQ(m_prop, n_prop)), RETURN("n")));
auto symbol_table = memgraph::query::MakeSymbolTable(query);
auto planner = MakePlanner<TypeParam>(&dba, this->storage, symbol_table, query);
// Note: We are scanning for m, therefore property should equal n_prop.
std::list<BaseOpChecker *> left_index_join_ops{new ExpectScanAllByLabel()};
std::list<BaseOpChecker *> right_index_join_ops{new ExpectScanAllByLabelPropertyValue(label, property, n_prop)};
CheckPlan(planner.plan(), symbol_table, ExpectIndexedJoin(left_index_join_ops, right_index_join_ops),
ExpectProduce());
DeleteListContent(&left_index_join_ops);
DeleteListContent(&right_index_join_ops);
}
TYPED_TEST(TestPlanner, UnableToUseSecondPropertyIndex) {
// Test MATCH (n :label), (m :label) WHERE m.property = n.property RETURN n
FakeDbAccessor dba;
auto property = PROPERTY_PAIR(dba, "property");
auto n_prop = PROPERTY_LOOKUP(dba, "n", property);
auto m_prop = PROPERTY_LOOKUP(dba, "m", property);
auto *query = QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("n", "label")), PATTERN(NODE("m", "label"))),
WHERE(EQ(m_prop, n_prop)), RETURN("n")));
auto symbol_table = memgraph::query::MakeSymbolTable(query);
auto planner = MakePlanner<TypeParam>(&dba, this->storage, symbol_table, query);
std::list<BaseOpChecker *> left_index_join_ops{new ExpectScanAll(), new ExpectFilter()};
std::list<BaseOpChecker *> right_index_join_ops{new ExpectScanAll(), new ExpectFilter()};
CheckPlan(planner.plan(), symbol_table, ExpectHashJoin(left_index_join_ops, right_index_join_ops), ExpectProduce());
DeleteListContent(&left_index_join_ops);
DeleteListContent(&right_index_join_ops);
}
TYPED_TEST(TestPlanner, ReturnSumGroupByAll) {
// Test RETURN sum([1,2,3]), all(x in [1] where x = 1)
auto sum = SUM(LIST(LITERAL(1), LITERAL(2), LITERAL(3)), false);
auto *all = ALL("x", LIST(LITERAL(1)), WHERE(EQ(IDENT("x"), LITERAL(1))));
auto *query = QUERY(SINGLE_QUERY(RETURN(sum, AS("sum"), all, AS("all"))));
auto aggr = ExpectAggregate({sum}, {all});
CheckPlan<TypeParam>(query, this->storage, aggr, ExpectProduce());
}
TYPED_TEST(TestPlanner, MatchExpandVariable) {
// Test MATCH (n) -[r *..3]-> (m) RETURN r
auto edge = EDGE_VARIABLE("r");
edge->upper_bound_ = LITERAL(3);
auto *query = QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("n"), edge, NODE("m"))), RETURN("r")));
CheckPlan<TypeParam>(query, this->storage, ExpectScanAll(), ExpectExpandVariable(), ExpectProduce());
}
TYPED_TEST(TestPlanner, MatchExpandVariableNoBounds) {
// Test MATCH (n) -[r *]-> (m) RETURN r
auto edge = EDGE_VARIABLE("r");
auto *query = QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("n"), edge, NODE("m"))), RETURN("r")));
CheckPlan<TypeParam>(query, this->storage, ExpectScanAll(), ExpectExpandVariable(), ExpectProduce());
}
TYPED_TEST(TestPlanner, MatchExpandVariableInlinedFilter) {
// Test MATCH (n) -[r :type * {prop: 42}]-> (m) RETURN r
FakeDbAccessor dba;
auto type = "type";
auto prop = PROPERTY_PAIR(dba, "prop");
auto edge = EDGE_VARIABLE("r", Type::DEPTH_FIRST, Direction::BOTH, {type});
std::get<0>(edge->properties_)[this->storage.GetPropertyIx(prop.first)] = LITERAL(42);
auto *query = QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("n"), edge, NODE("m"))), RETURN("r")));
CheckPlan<TypeParam>(query, this->storage, ExpectScanAll(),
ExpectExpandVariable(), // Filter is both inlined and post-expand
ExpectFilter(), ExpectProduce());
}
TYPED_TEST(TestPlanner, MatchExpandVariableNotInlinedFilter) {
// Test MATCH (n) -[r :type * {prop: m.prop}]-> (m) RETURN r
FakeDbAccessor dba;
auto type = "type";
auto prop = PROPERTY_PAIR(dba, "prop");
auto edge = EDGE_VARIABLE("r", Type::DEPTH_FIRST, Direction::BOTH, {type});
std::get<0>(edge->properties_)[this->storage.GetPropertyIx(prop.first)] =
EQ(PROPERTY_LOOKUP(dba, "m", prop), LITERAL(42));
auto *query = QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("n"), edge, NODE("m"))), RETURN("r")));
CheckPlan<TypeParam>(query, this->storage, ExpectScanAll(), ExpectExpandVariable(), ExpectFilter(), ExpectProduce());
}
TYPED_TEST(TestPlanner, MatchExpandVariableTotalWeightSymbol) {
// Test MATCH p = (a {id: 0})-[r* wShortest (e, v | 1) total_weight]->(b)
// RETURN *
FakeDbAccessor dba;
auto edge = EDGE_VARIABLE("r", Type::WEIGHTED_SHORTEST_PATH, Direction::BOTH, {}, nullptr, nullptr, nullptr, nullptr,
nullptr, IDENT("total_weight"));
auto *query = QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("n"), edge, NODE("m"))), RETURN("*")));
auto symbol_table = memgraph::query::MakeSymbolTable(query);
auto planner = MakePlanner<TypeParam>(&dba, this->storage, symbol_table, query);
auto *root = dynamic_cast<Produce *>(&planner.plan());
ASSERT_TRUE(root);
const auto &nes = root->named_expressions_;
EXPECT_TRUE(nes.size() == 4);
std::vector<std::string> names(nes.size());
std::transform(nes.begin(), nes.end(), names.begin(), [](const auto *ne) { return ne->name_; });
EXPECT_TRUE(root->named_expressions_.size() == 4);
EXPECT_TRUE(memgraph::utils::Contains(names, "m"));
EXPECT_TRUE(memgraph::utils::Contains(names, "n"));
EXPECT_TRUE(memgraph::utils::Contains(names, "r"));
EXPECT_TRUE(memgraph::utils::Contains(names, "total_weight"));
}
TYPED_TEST(TestPlanner, UnwindMatchVariable) {
// Test UNWIND [1,2,3] AS depth MATCH (n) -[r*d]-> (m) RETURN r
auto edge = EDGE_VARIABLE("r", Type::DEPTH_FIRST, Direction::OUT);
edge->lower_bound_ = IDENT("d");
edge->upper_bound_ = IDENT("d");
auto *query = QUERY(SINGLE_QUERY(UNWIND(LIST(LITERAL(1), LITERAL(2), LITERAL(3)), AS("d")),
MATCH(PATTERN(NODE("n"), edge, NODE("m"))), RETURN("r")));
CheckPlan<TypeParam>(query, this->storage, ExpectUnwind(), ExpectScanAll(), ExpectExpandVariable(), ExpectProduce());
}
TYPED_TEST(TestPlanner, MatchBfs) {
// Test MATCH (n) -[r:type *..10 (r, n|n)]-> (m) RETURN r
FakeDbAccessor dba;
auto edge_type = this->storage.GetEdgeTypeIx("type");
auto *bfs = this->storage.template Create<memgraph::query::EdgeAtom>(
IDENT("r"), memgraph::query::EdgeAtom::Type::BREADTH_FIRST, Direction::OUT,
std::vector<memgraph::query::EdgeTypeIx>{edge_type});
bfs->filter_lambda_.inner_edge = IDENT("r");
bfs->filter_lambda_.inner_node = IDENT("n");
bfs->filter_lambda_.expression = IDENT("n");
bfs->upper_bound_ = LITERAL(10);
auto *as_r = NEXPR("r", IDENT("r"));
auto *query = QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("n"), bfs, NODE("m"))), RETURN(as_r)));
auto symbol_table = memgraph::query::MakeSymbolTable(query);
auto planner = MakePlanner<TypeParam>(&dba, this->storage, symbol_table, query);
CheckPlan(planner.plan(), symbol_table, ExpectScanAll(), ExpectExpandBfs(), ExpectProduce());
}
TYPED_TEST(TestPlanner, MatchScanToExpand) {
// Test MATCH (n) -[r]- (m :label {property: 1}) RETURN r
FakeDbAccessor dba;
auto label = dba.Label("label");
auto property = dba.Property("property");
// Fill vertices to the max + 1.
dba.SetIndexCount(label, property, FLAGS_query_vertex_count_to_expand_existing + 1);
dba.SetIndexCount(label, FLAGS_query_vertex_count_to_expand_existing + 1);
auto node_m = NODE("m", "label");
std::get<0>(node_m->properties_)[this->storage.GetPropertyIx("property")] = LITERAL(1);
auto *query = QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("n"), EDGE("r"), node_m)), RETURN("r")));
auto symbol_table = memgraph::query::MakeSymbolTable(query);
auto planner = MakePlanner<TypeParam>(&dba, this->storage, symbol_table, query);
// We expect 1x ScanAll and then Expand, since we are guessing that
// is faster (due to high label index vertex count).
CheckPlan(planner.plan(), symbol_table, ExpectScanAll(), ExpectExpand(), ExpectFilter(), ExpectProduce());
}
TYPED_TEST(TestPlanner, MatchWhereAndSplit) {
// Test MATCH (n) -[r]- (m) WHERE n.prop AND r.prop RETURN m
FakeDbAccessor dba;
auto prop = PROPERTY_PAIR(dba, "prop");
auto *query =
QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("n"), EDGE("r"), NODE("m"))),
WHERE(AND(PROPERTY_LOOKUP(dba, "n", prop), PROPERTY_LOOKUP(dba, "r", prop))), RETURN("m")));
// We expect `n.prop` filter right after scanning `n`.
CheckPlan<TypeParam>(query, this->storage, ExpectScanAll(), ExpectFilter(), ExpectExpand(), ExpectFilter(),
ExpectProduce());
}
TYPED_TEST(TestPlanner, ReturnAsteriskOmitsLambdaSymbols) {
// Test MATCH (n) -[r* (ie, in | true)]- (m) RETURN *
FakeDbAccessor dba;
auto edge = EDGE_VARIABLE("r", Type::DEPTH_FIRST, Direction::BOTH);
edge->filter_lambda_.inner_edge = IDENT("ie");
edge->filter_lambda_.inner_node = IDENT("in");
edge->filter_lambda_.expression = LITERAL(true);
auto ret = this->storage.template Create<memgraph::query::Return>();
ret->body_.all_identifiers = true;
auto *query = QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("n"), edge, NODE("m"))), ret));
auto symbol_table = memgraph::query::MakeSymbolTable(query);
auto planner = MakePlanner<TypeParam>(&dba, this->storage, symbol_table, query);
auto *produce = dynamic_cast<Produce *>(&planner.plan());
ASSERT_TRUE(produce);
std::vector<std::string> outputs;
for (const auto &output_symbol : produce->OutputSymbols(symbol_table)) {
outputs.emplace_back(output_symbol.name());
}
// We expect `*` expanded to `n`, `r` and `m`.
EXPECT_EQ(outputs.size(), 3);
for (const auto &name : {"n", "r", "m"}) {
EXPECT_TRUE(memgraph::utils::Contains(outputs, name));
}
}
TYPED_TEST(TestPlanner, FilterRegexMatchIndex) {
// Test MATCH (n :label) WHERE n.prop =~ "regex" RETURN n
FakeDbAccessor dba;
auto prop = dba.Property("prop");
auto label = dba.Label("label");
dba.SetIndexCount(label, 0);
dba.SetIndexCount(label, prop, 0);
auto *regex_match =
this->storage.template Create<memgraph::query::RegexMatch>(PROPERTY_LOOKUP(dba, "n", prop), LITERAL("regex"));
auto *query = QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("n", "label"))), WHERE(regex_match), RETURN("n")));
// We expect that we use index by property range where lower bound is an empty
// string. Filter must still remain in place, because we don't have regex
// based index.
Bound lower_bound(LITERAL(""), Bound::Type::INCLUSIVE);
auto symbol_table = memgraph::query::MakeSymbolTable(query);
auto planner = MakePlanner<TypeParam>(&dba, this->storage, symbol_table, query);
CheckPlan(planner.plan(), symbol_table, ExpectScanAllByLabelPropertyRange(label, prop, lower_bound, std::nullopt),
ExpectFilter(), ExpectProduce());
}
TYPED_TEST(TestPlanner, FilterRegexMatchPreferEqualityIndex) {
// Test MATCH (n :label) WHERE n.prop =~ "regex" AND n.prop = 42 RETURN n
FakeDbAccessor dba;
auto prop = PROPERTY_PAIR(dba, "prop");
auto label = dba.Label("label");
dba.SetIndexCount(label, 0);
dba.SetIndexCount(label, prop.second, 0);
auto *regex_match =
this->storage.template Create<memgraph::query::RegexMatch>(PROPERTY_LOOKUP(dba, "n", prop), LITERAL("regex"));
auto *lit_42 = LITERAL(42);
auto *query = QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("n", "label"))),
WHERE(AND(regex_match, EQ(PROPERTY_LOOKUP(dba, "n", prop), lit_42))), RETURN("n")));
// We expect that we use index by property value equal to 42, because that's
// much better than property range for regex matching.
auto symbol_table = memgraph::query::MakeSymbolTable(query);
auto planner = MakePlanner<TypeParam>(&dba, this->storage, symbol_table, query);
CheckPlan(planner.plan(), symbol_table, ExpectScanAllByLabelPropertyValue(label, prop, lit_42), ExpectFilter(),
ExpectProduce());
}
TYPED_TEST(TestPlanner, FilterRegexMatchPreferEqualityIndex2) {
// Test MATCH (n :label)
// WHERE n.prop =~ "regex" AND n.prop = 42 AND n.prop > 0 RETURN n
FakeDbAccessor dba;
auto prop = PROPERTY_PAIR(dba, "prop");
auto label = dba.Label("label");
dba.SetIndexCount(label, 0);
dba.SetIndexCount(label, prop.second, 0);
auto *regex_match =
this->storage.template Create<memgraph::query::RegexMatch>(PROPERTY_LOOKUP(dba, "n", prop), LITERAL("regex"));
auto *lit_42 = LITERAL(42);
auto *query = QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("n", "label"))),
WHERE(AND(AND(regex_match, EQ(PROPERTY_LOOKUP(dba, "n", prop), lit_42)),
GREATER(PROPERTY_LOOKUP(dba, "n", prop), LITERAL(0)))),
RETURN("n")));
// We expect that we use index by property value equal to 42, because that's
// much better than property range.
auto symbol_table = memgraph::query::MakeSymbolTable(query);
auto planner = MakePlanner<TypeParam>(&dba, this->storage, symbol_table, query);
CheckPlan(planner.plan(), symbol_table, ExpectScanAllByLabelPropertyValue(label, prop, lit_42), ExpectFilter(),
ExpectProduce());
}
TYPED_TEST(TestPlanner, FilterRegexMatchPreferRangeIndex) {
// Test MATCH (n :label) WHERE n.prop =~ "regex" AND n.prop > 42 RETURN n
FakeDbAccessor dba;
auto prop = dba.Property("prop");
auto label = dba.Label("label");
dba.SetIndexCount(label, 0);
dba.SetIndexCount(label, prop, 0);
auto *regex_match =
this->storage.template Create<memgraph::query::RegexMatch>(PROPERTY_LOOKUP(dba, "n", prop), LITERAL("regex"));
auto *lit_42 = LITERAL(42);
auto *query =
QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("n", "label"))),
WHERE(AND(regex_match, GREATER(PROPERTY_LOOKUP(dba, "n", prop), lit_42))), RETURN("n")));
// We expect that we use index by property range on a concrete value (42), as
// it is much better than using a range from empty string for regex matching.
Bound lower_bound(lit_42, Bound::Type::EXCLUSIVE);
auto symbol_table = memgraph::query::MakeSymbolTable(query);
auto planner = MakePlanner<TypeParam>(&dba, this->storage, symbol_table, query);
CheckPlan(planner.plan(), symbol_table, ExpectScanAllByLabelPropertyRange(label, prop, lower_bound, std::nullopt),
ExpectFilter(), ExpectProduce());
}
TYPED_TEST(TestPlanner, CallProcedureStandalone) {
// Test CALL proc(1,2,3) YIELD field AS result
FakeDbAccessor dba;
auto *ast_call = this->storage.template Create<memgraph::query::CallProcedure>();
ast_call->procedure_name_ = "proc";
ast_call->arguments_ = {LITERAL(1), LITERAL(2), LITERAL(3)};
ast_call->result_fields_ = {"field"};
ast_call->result_identifiers_ = {IDENT("result")};
auto *query = QUERY(SINGLE_QUERY(ast_call));
auto symbol_table = memgraph::query::MakeSymbolTable(query);
std::vector<Symbol> result_syms;
result_syms.reserve(ast_call->result_identifiers_.size());
for (const auto *ident : ast_call->result_identifiers_) {
result_syms.push_back(symbol_table.at(*ident));
}
auto planner = MakePlanner<TypeParam>(&dba, this->storage, symbol_table, query);
CheckPlan(
planner.plan(), symbol_table,
ExpectCallProcedure(ast_call->procedure_name_, ast_call->arguments_, ast_call->result_fields_, result_syms));
}
TYPED_TEST(TestPlanner, CallProcedureAfterScanAll) {
// Test MATCH (n) CALL proc(n) YIELD field AS result RETURN result
FakeDbAccessor dba;
auto *ast_call = this->storage.template Create<memgraph::query::CallProcedure>();
ast_call->procedure_name_ = "proc";
ast_call->arguments_ = {IDENT("n")};
ast_call->result_fields_ = {"field"};
ast_call->result_identifiers_ = {IDENT("result")};
auto *query = QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("n"))), ast_call, RETURN("result")));
auto symbol_table = memgraph::query::MakeSymbolTable(query);
std::vector<Symbol> result_syms;
result_syms.reserve(ast_call->result_identifiers_.size());
for (const auto *ident : ast_call->result_identifiers_) {
result_syms.push_back(symbol_table.at(*ident));
}
auto planner = MakePlanner<TypeParam>(&dba, this->storage, symbol_table, query);
CheckPlan(planner.plan(), symbol_table, ExpectScanAll(),
ExpectCallProcedure(ast_call->procedure_name_, ast_call->arguments_, ast_call->result_fields_, result_syms),
ExpectProduce());
}
TYPED_TEST(TestPlanner, CallProcedureBeforeScanAll) {
// Test CALL proc() YIELD field MATCH (n) WHERE n.prop = field RETURN n
FakeDbAccessor dba;
auto *ast_call = this->storage.template Create<memgraph::query::CallProcedure>();
ast_call->procedure_name_ = "proc";
ast_call->result_fields_ = {"field"};
ast_call->result_identifiers_ = {IDENT("field")};
auto property = dba.Property("prop");
auto *query = QUERY(SINGLE_QUERY(ast_call, MATCH(PATTERN(NODE("n"))),
WHERE(EQ(PROPERTY_LOOKUP(dba, "n", property), IDENT("field"))), RETURN("n")));
auto symbol_table = memgraph::query::MakeSymbolTable(query);
std::vector<Symbol> result_syms;
result_syms.reserve(ast_call->result_identifiers_.size());
for (const auto *ident : ast_call->result_identifiers_) {
result_syms.push_back(symbol_table.at(*ident));
}
auto planner = MakePlanner<TypeParam>(&dba, this->storage, symbol_table, query);
CheckPlan(planner.plan(), symbol_table,
ExpectCallProcedure(ast_call->procedure_name_, ast_call->arguments_, ast_call->result_fields_, result_syms),
ExpectScanAll(), ExpectFilter(), ExpectProduce());
}
TYPED_TEST(TestPlanner, ScanAllById) {
// Test MATCH (n) WHERE id(n) = 42 RETURN n
auto *query =
QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("n"))), WHERE(EQ(FN("id", IDENT("n")), LITERAL(42))), RETURN("n")));
CheckPlan<TypeParam>(query, this->storage, ExpectScanAllById(), ExpectProduce());
}
TYPED_TEST(TestPlanner, BfsToExisting) {
// Test MATCH (n)-[r *bfs]-(m) WHERE id(m) = 42 RETURN r
auto *bfs = this->storage.template Create<memgraph::query::EdgeAtom>(
IDENT("r"), memgraph::query::EdgeAtom::Type::BREADTH_FIRST, Direction::BOTH);
bfs->filter_lambda_.inner_edge = IDENT("ie");
bfs->filter_lambda_.inner_node = IDENT("in");
bfs->filter_lambda_.expression = LITERAL(true);
auto *query = QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("n"), bfs, NODE("m"))),
WHERE(EQ(FN("id", IDENT("m")), LITERAL(42))), RETURN("r")));
CheckPlan<TypeParam>(query, this->storage, ExpectScanAll(), ExpectScanAllById(), ExpectExpandBfs(), ExpectProduce());
}
TYPED_TEST(TestPlanner, LabelPropertyInListValidOptimization) {
// Test MATCH (n:label) WHERE n.property IN ['a'] RETURN n
FakeDbAccessor dba;
auto label = dba.Label("label");
auto property = PROPERTY_PAIR(dba, "property");
auto *lit_list_a = LIST(LITERAL('a'));
auto *query = QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("n", "label"))),
WHERE(IN_LIST(PROPERTY_LOOKUP(dba, "n", property), lit_list_a)), RETURN("n")));
{
auto symbol_table = memgraph::query::MakeSymbolTable(query);
auto planner = MakePlanner<TypeParam>(&dba, this->storage, symbol_table, query);
CheckPlan(planner.plan(), symbol_table, ExpectScanAll(), ExpectFilter(), ExpectProduce());
}
{
dba.SetIndexCount(label, 1);
auto symbol_table = memgraph::query::MakeSymbolTable(query);
auto planner = MakePlanner<TypeParam>(&dba, this->storage, symbol_table, query);
CheckPlan(planner.plan(), symbol_table, ExpectScanAllByLabel(), ExpectFilter(), ExpectProduce());
}
{
dba.SetIndexCount(label, property.second, 1);
auto symbol_table = memgraph::query::MakeSymbolTable(query);
auto planner = MakePlanner<TypeParam>(&dba, this->storage, symbol_table, query);
CheckPlan(planner.plan(), symbol_table, ExpectUnwind(),
ExpectScanAllByLabelPropertyValue(label, property, lit_list_a), ExpectProduce());
}
}
TYPED_TEST(TestPlanner, LabelPropertyInListWhereLabelPropertyOnLeftNotListOnRight) {
// Test MATCH (n:label) WHERE n.property IN 'a' RETURN n
FakeDbAccessor dba;
auto label = dba.Label("label");
auto property = PROPERTY_PAIR(dba, "property");
auto *lit_a = LITERAL('a');
auto *query = QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("n", "label"))),
WHERE(IN_LIST(PROPERTY_LOOKUP(dba, "n", property), lit_a)), RETURN("n")));
{
dba.SetIndexCount(label, property.second, 1);
auto symbol_table = memgraph::query::MakeSymbolTable(query);
auto planner = MakePlanner<TypeParam>(&dba, this->storage, symbol_table, query);
CheckPlan(planner.plan(), symbol_table, ExpectScanAll(), ExpectFilter(), ExpectProduce());
}
}
TYPED_TEST(TestPlanner, LabelPropertyInListWhereLabelPropertyOnRight) {
// Test MATCH (n:label) WHERE ['a'] IN n.property RETURN n
FakeDbAccessor dba;
auto label = dba.Label("label");
auto property = PROPERTY_PAIR(dba, "property");
auto *lit_list_a = LIST(LITERAL('a'));
auto *query = QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("n", "label"))),
WHERE(IN_LIST(lit_list_a, PROPERTY_LOOKUP(dba, "n", property))), RETURN("n")));
{
auto symbol_table = memgraph::query::MakeSymbolTable(query);
auto planner = MakePlanner<TypeParam>(&dba, this->storage, symbol_table, query);
CheckPlan(planner.plan(), symbol_table, ExpectScanAll(), ExpectFilter(), ExpectProduce());
}
{
dba.SetIndexCount(label, 1);
auto symbol_table = memgraph::query::MakeSymbolTable(query);
auto planner = MakePlanner<TypeParam>(&dba, this->storage, symbol_table, query);
CheckPlan(planner.plan(), symbol_table, ExpectScanAllByLabel(), ExpectFilter(), ExpectProduce());
}
{
dba.SetIndexCount(label, property.second, 1);
auto symbol_table = memgraph::query::MakeSymbolTable(query);
auto planner = MakePlanner<TypeParam>(&dba, this->storage, symbol_table, query);
CheckPlan(planner.plan(), symbol_table, ExpectScanAllByLabel(), ExpectFilter(), ExpectProduce());
}
}
TYPED_TEST(TestPlanner, Foreach) {
FakeDbAccessor dba;
{
auto *i = NEXPR("i", IDENT("i"));
auto *query = QUERY(SINGLE_QUERY(FOREACH(i, {CREATE(PATTERN(NODE("n")))})));
auto create = ExpectCreateNode();
std::list<BaseOpChecker *> updates{&create};
std::list<BaseOpChecker *> input;
CheckPlan<TypeParam>(query, this->storage, ExpectForeach(input, updates), ExpectEmptyResult());
}
{
auto *i = NEXPR("i", IDENT("i"));
auto *query = QUERY(SINGLE_QUERY(FOREACH(i, {DELETE(IDENT("i"))})));
auto del = ExpectDelete();
std::list<BaseOpChecker *> updates{&del};
std::list<BaseOpChecker *> input;
CheckPlan<TypeParam>(query, this->storage, ExpectForeach({input}, updates), ExpectEmptyResult());
}
{
auto prop = dba.Property("prop");
auto *i = NEXPR("i", IDENT("i"));
auto *query = QUERY(SINGLE_QUERY(FOREACH(i, {SET(PROPERTY_LOOKUP(dba, "i", prop), LITERAL(10))})));
auto set_prop = ExpectSetProperty();
std::list<BaseOpChecker *> updates{&set_prop};
std::list<BaseOpChecker *> input;
CheckPlan<TypeParam>(query, this->storage, ExpectForeach({input}, updates), ExpectEmptyResult());
}
{
auto *i = NEXPR("i", IDENT("i"));
auto *j = NEXPR("j", IDENT("j"));
auto *query = QUERY(SINGLE_QUERY(FOREACH(i, {FOREACH(j, {CREATE(PATTERN(NODE("n"))), DELETE(IDENT("i"))})})));
auto create = ExpectCreateNode();
auto del = ExpectDelete();
std::list<BaseOpChecker *> input;
std::list<BaseOpChecker *> nested_updates{{&create, &del}};
auto nested_foreach = ExpectForeach(input, nested_updates);
std::list<BaseOpChecker *> updates{&nested_foreach};
CheckPlan<TypeParam>(query, this->storage, ExpectForeach(input, updates), ExpectEmptyResult());
}
{
auto *i = NEXPR("i", IDENT("i"));
auto *j = NEXPR("j", IDENT("j"));
auto create = ExpectCreateNode();
std::list<BaseOpChecker *> empty;
std::list<BaseOpChecker *> updates{&create};
auto input_op = ExpectForeach(empty, updates);
std::list<BaseOpChecker *> input{&input_op};
auto *query =
QUERY(SINGLE_QUERY(FOREACH(i, {CREATE(PATTERN(NODE("n")))}), FOREACH(j, {CREATE(PATTERN(NODE("n")))})));
CheckPlan<TypeParam>(query, this->storage, ExpectForeach(input, updates), ExpectEmptyResult());
}
{
// FOREACH with index
// FOREACH (n in [...] | MERGE (v:Label));
const auto label_name = "label";
const auto label = dba.Label(label_name);
dba.SetIndexCount(label, 0);
auto *n = NEXPR("n", IDENT("n"));
auto *query = QUERY(SINGLE_QUERY(FOREACH(n, {MERGE(PATTERN(NODE("v", label_name)))})));
auto symbol_table = memgraph::query::MakeSymbolTable(query);
auto planner = MakePlanner<TypeParam>(&dba, this->storage, symbol_table, query);
std::list<BaseOpChecker *> on_match{new ExpectScanAllByLabel()};
std::list<BaseOpChecker *> on_create{new ExpectCreateNode()};
auto create = ExpectMerge(on_match, on_create);
std::list<BaseOpChecker *> updates{&create};
std::list<BaseOpChecker *> input;
CheckPlan(planner.plan(), symbol_table, ExpectForeach(input, updates), ExpectEmptyResult());
DeleteListContent(&on_match);
DeleteListContent(&on_create);
}
}
TYPED_TEST(TestPlanner, Exists) {
// MATCH (n) WHERE exists((n)-[]-())
FakeDbAccessor dba;
{
auto *query = QUERY(SINGLE_QUERY(
MATCH(PATTERN(NODE("n"))),
WHERE(EXISTS(PATTERN(NODE("n"), EDGE("edge", memgraph::query::EdgeAtom::Direction::BOTH, {}, false),
NODE("node", std::nullopt, false)))),
RETURN("n")));
auto symbol_table = memgraph::query::MakeSymbolTable(query);
auto planner = MakePlanner<TypeParam>(&dba, this->storage, symbol_table, query);
std::list<BaseOpChecker *> pattern_filter{new ExpectExpand(), new ExpectLimit(), new ExpectEvaluatePatternFilter()};
CheckPlan(planner.plan(), symbol_table, ExpectScanAll(),
ExpectFilter(std::vector<std::list<BaseOpChecker *>>{pattern_filter}), ExpectProduce());
DeleteListContent(&pattern_filter);
}
// MATCH (n) WHERE exists((n)-[:TYPE]-(:Two))
{
auto *query = QUERY(SINGLE_QUERY(
MATCH(PATTERN(NODE("n"))),
WHERE(EXISTS(PATTERN(NODE("n"), EDGE("edge", memgraph::query::EdgeAtom::Direction::BOTH, {"TYPE"}, false),
NODE("node", "Two", false)))),
RETURN("n")));
auto symbol_table = memgraph::query::MakeSymbolTable(query);
auto planner = MakePlanner<TypeParam>(&dba, this->storage, symbol_table, query);
std::list<BaseOpChecker *> pattern_filter{new ExpectExpand(), new ExpectFilter(), new ExpectLimit(),
new ExpectEvaluatePatternFilter()};
CheckPlan(planner.plan(), symbol_table, ExpectScanAll(),
ExpectFilter(std::vector<std::list<BaseOpChecker *>>{pattern_filter}), ExpectProduce());
DeleteListContent(&pattern_filter);
}
// MATCH (n) WHERE exists((n)-[:TYPE]-(:Two)) AND exists((n)-[]-())
{
auto *query = QUERY(SINGLE_QUERY(
MATCH(PATTERN(NODE("n"))),
WHERE(AND(EXISTS(PATTERN(NODE("n"), EDGE("edge", memgraph::query::EdgeAtom::Direction::BOTH, {"TYPE"}, false),
NODE("node", "Two", false))),
EXISTS(PATTERN(NODE("n"), EDGE("edge2", memgraph::query::EdgeAtom::Direction::BOTH, {}, false),
NODE("node2", std::nullopt, false))))),
RETURN("n")));
auto symbol_table = memgraph::query::MakeSymbolTable(query);
auto planner = MakePlanner<TypeParam>(&dba, this->storage, symbol_table, query);
std::list<BaseOpChecker *> pattern_filter_with_types{new ExpectExpand(), new ExpectFilter(), new ExpectLimit(),
new ExpectEvaluatePatternFilter()};
std::list<BaseOpChecker *> pattern_filter_without_types{new ExpectExpand(), new ExpectLimit(),
new ExpectEvaluatePatternFilter()};
CheckPlan(
planner.plan(), symbol_table, ExpectScanAll(),
ExpectFilter(std::vector<std::list<BaseOpChecker *>>{pattern_filter_without_types, pattern_filter_with_types}),
ExpectProduce());
DeleteListContent(&pattern_filter_with_types);
DeleteListContent(&pattern_filter_without_types);
}
// MATCH (n) WHERE n.prop = 1 AND exists((n)-[:TYPE]-(:Two))
{
auto property = dba.Property("prop");
auto *query = QUERY(SINGLE_QUERY(
MATCH(PATTERN(NODE("n"))),
WHERE(AND(EXISTS(PATTERN(NODE("n"), EDGE("edge", memgraph::query::EdgeAtom::Direction::BOTH, {"TYPE"}, false),
NODE("node", "Two", false))),
PROPERTY_LOOKUP(dba, "n", property))),
RETURN("n")));
auto symbol_table = memgraph::query::MakeSymbolTable(query);
auto planner = MakePlanner<TypeParam>(&dba, this->storage, symbol_table, query);
std::list<BaseOpChecker *> pattern_filter{new ExpectExpand(), new ExpectFilter(), new ExpectLimit(),
new ExpectEvaluatePatternFilter()};
CheckPlan(planner.plan(), symbol_table, ExpectScanAll(),
ExpectFilter(std::vector<std::list<BaseOpChecker *>>{pattern_filter}), ExpectProduce());
DeleteListContent(&pattern_filter);
}
// MATCH (n) WHERE exists((n)-[:TYPE]-(:Two)) OR exists((n)-[]-())
{
auto *query = QUERY(SINGLE_QUERY(
MATCH(PATTERN(NODE("n"))),
WHERE(OR(EXISTS(PATTERN(NODE("n"), EDGE("edge", memgraph::query::EdgeAtom::Direction::BOTH, {"TYPE"}, false),
NODE("node", "Two", false))),
EXISTS(PATTERN(NODE("n"), EDGE("edge2", memgraph::query::EdgeAtom::Direction::BOTH, {}, false),
NODE("node2", std::nullopt, false))))),
RETURN("n")));
auto symbol_table = memgraph::query::MakeSymbolTable(query);
auto planner = MakePlanner<TypeParam>(&dba, this->storage, symbol_table, query);
std::list<BaseOpChecker *> pattern_filter_with_types{new ExpectExpand(), new ExpectFilter(), new ExpectLimit(),
new ExpectEvaluatePatternFilter()};
std::list<BaseOpChecker *> pattern_filter_without_types{new ExpectExpand(), new ExpectLimit(),
new ExpectEvaluatePatternFilter()};
CheckPlan(
planner.plan(), symbol_table, ExpectScanAll(),
ExpectFilter(std::vector<std::list<BaseOpChecker *>>{pattern_filter_with_types, pattern_filter_without_types}),
ExpectProduce());
DeleteListContent(&pattern_filter_with_types);
DeleteListContent(&pattern_filter_without_types);
}
}
TYPED_TEST(TestPlanner, Subqueries) {
// MATCH (n) CALL { MATCH (m) RETURN (m) } RETURN n, m
FakeDbAccessor dba;
{
auto *subquery = SINGLE_QUERY(MATCH(PATTERN(NODE("n"))), RETURN("n"));
auto *query = QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("m"))), CALL_SUBQUERY(subquery), RETURN("m", "n")));
auto symbol_table = memgraph::query::MakeSymbolTable(query);
auto planner = MakePlanner<TypeParam>(&dba, this->storage, symbol_table, query);
std::list<BaseOpChecker *> subquery_plan{new ExpectScanAll(), new ExpectProduce()};
CheckPlan(planner.plan(), symbol_table, ExpectScanAll(), ExpectApply(subquery_plan), ExpectProduce());
DeleteListContent(&subquery_plan);
}
// MATCH (n) CALL { MATCH (m)-[r]->(n) RETURN (m) } RETURN n, m
{
auto *subquery = SINGLE_QUERY(MATCH(PATTERN(NODE("n"), EDGE("r", Direction::OUT), NODE("m"))), RETURN("n"));
auto *query = QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("m"))), CALL_SUBQUERY(subquery), RETURN("m", "n")));
auto symbol_table = memgraph::query::MakeSymbolTable(query);
auto planner = MakePlanner<TypeParam>(&dba, this->storage, symbol_table, query);
std::list<BaseOpChecker *> subquery_plan{new ExpectScanAll(), new ExpectExpand(), new ExpectProduce()};
CheckPlan(planner.plan(), symbol_table, ExpectScanAll(), ExpectApply(subquery_plan), ExpectProduce());
DeleteListContent(&subquery_plan);
}
// MATCH (n) CALL { MATCH (p)-[r]->(s) WHERE s.prop = 2 RETURN (p) } RETURN n, p
{
auto property = dba.Property("prop");
auto *subquery = SINGLE_QUERY(MATCH(PATTERN(NODE("p"), EDGE("r", Direction::OUT), NODE("s"))),
WHERE(EQ(PROPERTY_LOOKUP(dba, "s", property), LITERAL(2))), RETURN("p"));
auto *query = QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("n"))), CALL_SUBQUERY(subquery), RETURN("n", "p")));
auto symbol_table = memgraph::query::MakeSymbolTable(query);
auto planner = MakePlanner<TypeParam>(&dba, this->storage, symbol_table, query);
std::list<BaseOpChecker *> subquery_plan{new ExpectScanAll(), new ExpectExpand(), new ExpectFilter(),
new ExpectProduce()};
CheckPlan(planner.plan(), symbol_table, ExpectScanAll(), ExpectApply(subquery_plan), ExpectProduce());
DeleteListContent(&subquery_plan);
}
// MATCH (m) CALL { MATCH (n) CALL { MATCH (o) RETURN o } RETURN n, o } RETURN m, n, o
{
auto *subquery_inside_subquery = SINGLE_QUERY(MATCH(PATTERN(NODE("o"))), RETURN("o"));
auto *subquery = SINGLE_QUERY(MATCH(PATTERN(NODE("n"))), CALL_SUBQUERY(subquery_inside_subquery), RETURN("n", "o"));
auto *query = QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("m"))), CALL_SUBQUERY(subquery), RETURN("m", "n", "o")));
auto symbol_table = memgraph::query::MakeSymbolTable(query);
auto planner = MakePlanner<TypeParam>(&dba, this->storage, symbol_table, query);
std::list<BaseOpChecker *> subquery_inside_subquery_plan{new ExpectScanAll(), new ExpectProduce()};
std::list<BaseOpChecker *> subquery_plan{new ExpectScanAll(), new ExpectApply(subquery_inside_subquery_plan),
new ExpectProduce()};
CheckPlan(planner.plan(), symbol_table, ExpectScanAll(), ExpectApply(subquery_plan), ExpectProduce());
DeleteListContent(&subquery_plan);
DeleteListContent(&subquery_inside_subquery_plan);
}
// MATCH (m) CALL { MATCH (n) RETURN n UNION MATCH (n) RETURN n } RETURN m, n
{
auto *subquery = QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("n"))), RETURN("n")),
UNION_ALL(SINGLE_QUERY(MATCH(PATTERN(NODE("n"))), RETURN("n"))));
auto *query = QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("m"))), CALL_SUBQUERY(subquery), RETURN("m", "n")));
auto symbol_table = memgraph::query::MakeSymbolTable(query);
auto planner = MakePlanner<TypeParam>(&dba, this->storage, symbol_table, query);
std::list<BaseOpChecker *> left_subquery_part{new ExpectScanAll(), new ExpectProduce()};
std::list<BaseOpChecker *> right_subquery_part{new ExpectScanAll(), new ExpectProduce()};
std::list<BaseOpChecker *> subquery_plan{new ExpectUnion(left_subquery_part, right_subquery_part)};
CheckPlan(planner.plan(), symbol_table, ExpectScanAll(), ExpectApply(subquery_plan), ExpectProduce());
DeleteListContent(&subquery_plan);
DeleteListContent(&left_subquery_part);
DeleteListContent(&right_subquery_part);
}
}
} // namespace