memgraph/tests/unit/query_planner.cpp
Teon Banek f0aaca4a1a Plan Skip and Limit after OrderBy
Summary:
Revive the OutputSymbols method.
Use OutputSymbols to stream results in Interpret.

Reviewers: mislav.bradac, buda, florijan

Reviewed By: florijan

Subscribers: pullbot

Differential Revision: https://phabricator.memgraph.io/D318
2017-04-26 16:27:41 +02:00

628 lines
23 KiB
C++

#include <list>
#include <tuple>
#include <unordered_set>
#include "gtest/gtest.h"
#include "dbms/dbms.hpp"
#include "query/frontend/ast/ast.hpp"
#include "query/frontend/semantic/symbol_generator.hpp"
#include "query/frontend/semantic/symbol_table.hpp"
#include "query/plan/operator.hpp"
#include "query/plan/planner.hpp"
#include "query_common.hpp"
using namespace query::plan;
using query::AstTreeStorage;
using query::Symbol;
using query::SymbolTable;
using query::SymbolGenerator;
using Direction = query::EdgeAtom::Direction;
namespace {
class BaseOpChecker {
public:
virtual ~BaseOpChecker() {}
virtual void CheckOp(LogicalOperator &, const SymbolTable &) = 0;
};
class PlanChecker : public LogicalOperatorVisitor {
public:
using LogicalOperatorVisitor::PreVisit;
using LogicalOperatorVisitor::Visit;
using LogicalOperatorVisitor::PostVisit;
PlanChecker(const std::list<BaseOpChecker *> &checkers,
const SymbolTable &symbol_table)
: checkers_(checkers), symbol_table_(symbol_table) {}
void Visit(CreateNode &op) override { CheckOp(op); }
void Visit(CreateExpand &op) override { CheckOp(op); }
void Visit(Delete &op) override { CheckOp(op); }
void Visit(ScanAll &op) override { CheckOp(op); }
void Visit(Expand &op) override { CheckOp(op); }
void Visit(NodeFilter &op) override { CheckOp(op); }
void Visit(EdgeFilter &op) override { CheckOp(op); }
void Visit(Filter &op) override { CheckOp(op); }
void Visit(Produce &op) override { CheckOp(op); }
void Visit(SetProperty &op) override { CheckOp(op); }
void Visit(SetProperties &op) override { CheckOp(op); }
void Visit(SetLabels &op) override { CheckOp(op); }
void Visit(RemoveProperty &op) override { CheckOp(op); }
void Visit(RemoveLabels &op) override { CheckOp(op); }
void Visit(ExpandUniquenessFilter<VertexAccessor> &op) override {
CheckOp(op);
}
void Visit(ExpandUniquenessFilter<EdgeAccessor> &op) override { CheckOp(op); }
void Visit(Accumulate &op) override { CheckOp(op); }
void Visit(Aggregate &op) override { CheckOp(op); }
void Visit(Skip &op) override { CheckOp(op); }
void Visit(Limit &op) override { CheckOp(op); }
void Visit(OrderBy &op) override { CheckOp(op); }
bool PreVisit(Merge &op) override {
CheckOp(op);
op.input()->Accept(*this);
return false;
}
std::list<BaseOpChecker *> checkers_;
private:
void CheckOp(LogicalOperator &op) {
ASSERT_FALSE(checkers_.empty());
checkers_.back()->CheckOp(op, symbol_table_);
checkers_.pop_back();
}
const SymbolTable &symbol_table_;
};
template <class TOp>
class OpChecker : public BaseOpChecker {
public:
void CheckOp(LogicalOperator &op, const SymbolTable &symbol_table) override {
auto *expected_op = dynamic_cast<TOp *>(&op);
ASSERT_TRUE(expected_op);
ExpectOp(*expected_op, symbol_table);
}
virtual void ExpectOp(TOp &op, const SymbolTable &) {}
};
using ExpectCreateNode = OpChecker<CreateNode>;
using ExpectCreateExpand = OpChecker<CreateExpand>;
using ExpectDelete = OpChecker<Delete>;
using ExpectScanAll = OpChecker<ScanAll>;
using ExpectExpand = OpChecker<Expand>;
using ExpectNodeFilter = OpChecker<NodeFilter>;
using ExpectEdgeFilter = OpChecker<EdgeFilter>;
using ExpectFilter = OpChecker<Filter>;
using ExpectProduce = OpChecker<Produce>;
using ExpectSetProperty = OpChecker<SetProperty>;
using ExpectSetProperties = OpChecker<SetProperties>;
using ExpectSetLabels = OpChecker<SetLabels>;
using ExpectRemoveProperty = OpChecker<RemoveProperty>;
using ExpectRemoveLabels = OpChecker<RemoveLabels>;
template <class TAccessor>
using ExpectExpandUniquenessFilter =
OpChecker<ExpandUniquenessFilter<TAccessor>>;
using ExpectSkip = OpChecker<Skip>;
using ExpectLimit = OpChecker<Limit>;
using ExpectOrderBy = OpChecker<OrderBy>;
class ExpectAccumulate : public OpChecker<Accumulate> {
public:
ExpectAccumulate(const std::unordered_set<Symbol, Symbol::Hash> &symbols)
: symbols_(symbols) {}
void ExpectOp(Accumulate &op, const SymbolTable &symbol_table) override {
std::unordered_set<Symbol, Symbol::Hash> got_symbols(op.symbols().begin(),
op.symbols().end());
EXPECT_EQ(symbols_, got_symbols);
}
private:
const std::unordered_set<Symbol, Symbol::Hash> symbols_;
};
class ExpectAggregate : public OpChecker<Aggregate> {
public:
ExpectAggregate(const std::vector<query::Aggregation *> &aggregations,
const std::unordered_set<query::Expression *> &group_by)
: aggregations_(aggregations), group_by_(group_by) {}
void ExpectOp(Aggregate &op, const SymbolTable &symbol_table) override {
auto aggr_it = aggregations_.begin();
for (const auto &aggr_elem : op.aggregations()) {
ASSERT_NE(aggr_it, aggregations_.end());
auto aggr = *aggr_it++;
auto expected =
std::make_tuple(aggr->expression_, aggr->op_, symbol_table.at(*aggr));
EXPECT_EQ(expected, aggr_elem);
}
EXPECT_EQ(aggr_it, aggregations_.end());
auto got_group_by = std::unordered_set<query::Expression *>(
op.group_by().begin(), op.group_by().end());
EXPECT_EQ(group_by_, got_group_by);
}
private:
const std::vector<query::Aggregation *> aggregations_;
const std::unordered_set<query::Expression *> group_by_;
};
class ExpectMerge : public OpChecker<Merge> {
public:
ExpectMerge(const std::list<BaseOpChecker *> &on_match,
const std::list<BaseOpChecker *> &on_create)
: on_match_(on_match), on_create_(on_create) {}
void ExpectOp(Merge &merge, const SymbolTable &symbol_table) override {
PlanChecker check_match(on_match_, symbol_table);
merge.merge_match()->Accept(check_match);
PlanChecker check_create(on_create_, symbol_table);
merge.merge_create()->Accept(check_create);
}
private:
const std::list<BaseOpChecker *> &on_match_;
const std::list<BaseOpChecker *> &on_create_;
};
auto MakeSymbolTable(query::Query &query) {
SymbolTable symbol_table;
SymbolGenerator symbol_generator(symbol_table);
query.Accept(symbol_generator);
return symbol_table;
}
template <class... TChecker>
auto CheckPlan(LogicalOperator &plan, const SymbolTable &symbol_table,
TChecker... checker) {
std::list<BaseOpChecker *> checkers{&checker...};
PlanChecker plan_checker(checkers, symbol_table);
plan.Accept(plan_checker);
EXPECT_TRUE(plan_checker.checkers_.empty());
}
template <class... TChecker>
auto CheckPlan(query::Query &query, TChecker... checker) {
auto symbol_table = MakeSymbolTable(query);
auto plan = MakeLogicalPlan(query, symbol_table);
CheckPlan(*plan, symbol_table, checker...);
}
TEST(TestLogicalPlanner, MatchNodeReturn) {
// Test MATCH (n) RETURN n AS n
AstTreeStorage storage;
auto query = QUERY(MATCH(PATTERN(NODE("n"))), RETURN(IDENT("n"), AS("n")));
CheckPlan(*query, ExpectScanAll(), ExpectProduce());
}
TEST(TestLogicalPlanner, CreateNodeReturn) {
// Test CREATE (n) RETURN n AS n
AstTreeStorage storage;
auto ident_n = IDENT("n");
auto query = QUERY(CREATE(PATTERN(NODE("n"))), RETURN(ident_n, AS("n")));
auto symbol_table = MakeSymbolTable(*query);
auto acc = ExpectAccumulate({symbol_table.at(*ident_n)});
auto plan = MakeLogicalPlan(*query, symbol_table);
CheckPlan(*plan, symbol_table, ExpectCreateNode(), acc, ExpectProduce());
}
TEST(TestLogicalPlanner, CreateExpand) {
// Test CREATE (n) -[r :rel1]-> (m)
AstTreeStorage storage;
Dbms dbms;
auto dba = dbms.active();
auto relationship = dba->edge_type("relationship");
auto query = QUERY(CREATE(PATTERN(
NODE("n"), EDGE("r", relationship, Direction::RIGHT), NODE("m"))));
CheckPlan(*query, ExpectCreateNode(), ExpectCreateExpand());
}
TEST(TestLogicalPlanner, CreateMultipleNode) {
// Test CREATE (n), (m)
AstTreeStorage storage;
auto query = QUERY(CREATE(PATTERN(NODE("n")), PATTERN(NODE("m"))));
CheckPlan(*query, ExpectCreateNode(), ExpectCreateNode());
}
TEST(TestLogicalPlanner, CreateNodeExpandNode) {
// Test CREATE (n) -[r :rel]-> (m), (l)
AstTreeStorage storage;
Dbms dbms;
auto dba = dbms.active();
auto relationship = dba->edge_type("rel");
auto query = QUERY(CREATE(
PATTERN(NODE("n"), EDGE("r", relationship, Direction::RIGHT), NODE("m")),
PATTERN(NODE("l"))));
CheckPlan(*query, ExpectCreateNode(), ExpectCreateExpand(),
ExpectCreateNode());
}
TEST(TestLogicalPlanner, MatchCreateExpand) {
// Test MATCH (n) CREATE (n) -[r :rel1]-> (m)
AstTreeStorage storage;
Dbms dbms;
auto dba = dbms.active();
auto relationship = dba->edge_type("relationship");
auto query =
QUERY(MATCH(PATTERN(NODE("n"))),
CREATE(PATTERN(NODE("n"), EDGE("r", relationship, Direction::RIGHT),
NODE("m"))));
CheckPlan(*query, ExpectScanAll(), ExpectCreateExpand());
}
TEST(TestLogicalPlanner, MatchLabeledNodes) {
// Test MATCH (n :label) RETURN n AS n
AstTreeStorage storage;
Dbms dbms;
auto dba = dbms.active();
auto label = dba->label("label");
auto query =
QUERY(MATCH(PATTERN(NODE("n", label))), RETURN(IDENT("n"), AS("n")));
CheckPlan(*query, ExpectScanAll(), ExpectNodeFilter(), ExpectProduce());
}
TEST(TestLogicalPlanner, MatchPathReturn) {
// Test MATCH (n) -[r :relationship]- (m) RETURN n AS n
AstTreeStorage storage;
Dbms dbms;
auto dba = dbms.active();
auto relationship = dba->edge_type("relationship");
auto query =
QUERY(MATCH(PATTERN(NODE("n"), EDGE("r", relationship), NODE("m"))),
RETURN(IDENT("n"), AS("n")));
CheckPlan(*query, ExpectScanAll(), ExpectExpand(), ExpectEdgeFilter(),
ExpectProduce());
}
TEST(TestLogicalPlanner, MatchWhereReturn) {
// Test MATCH (n) WHERE n.property < 42 RETURN n AS n
AstTreeStorage storage;
Dbms dbms;
auto dba = dbms.active();
auto property = dba->property("property");
auto query = QUERY(MATCH(PATTERN(NODE("n"))),
WHERE(LESS(PROPERTY_LOOKUP("n", property), LITERAL(42))),
RETURN(IDENT("n"), AS("n")));
CheckPlan(*query, ExpectScanAll(), ExpectFilter(), ExpectProduce());
}
TEST(TestLogicalPlanner, MatchDelete) {
// Test MATCH (n) DELETE n
AstTreeStorage storage;
auto query = QUERY(MATCH(PATTERN(NODE("n"))), DELETE(IDENT("n")));
CheckPlan(*query, ExpectScanAll(), ExpectDelete());
}
TEST(TestLogicalPlanner, MatchNodeSet) {
// Test MATCH (n) SET n.prop = 42, n = n, n :label
AstTreeStorage storage;
Dbms dbms;
auto dba = dbms.active();
auto prop = dba->property("prop");
auto label = dba->label("label");
auto query = QUERY(MATCH(PATTERN(NODE("n"))),
SET(PROPERTY_LOOKUP("n", prop), LITERAL(42)),
SET("n", IDENT("n")), SET("n", {label}));
CheckPlan(*query, ExpectScanAll(), ExpectSetProperty(), ExpectSetProperties(),
ExpectSetLabels());
}
TEST(TestLogicalPlanner, MatchRemove) {
// Test MATCH (n) REMOVE n.prop REMOVE n :label
AstTreeStorage storage;
Dbms dbms;
auto dba = dbms.active();
auto prop = dba->property("prop");
auto label = dba->label("label");
auto query = QUERY(MATCH(PATTERN(NODE("n"))),
REMOVE(PROPERTY_LOOKUP("n", prop)), REMOVE("n", {label}));
CheckPlan(*query, ExpectScanAll(), ExpectRemoveProperty(),
ExpectRemoveLabels());
}
TEST(TestLogicalPlanner, MatchMultiPattern) {
// Test MATCH (n) -[r]- (m), (j) -[e]- (i)
AstTreeStorage storage;
auto query = QUERY(MATCH(PATTERN(NODE("n"), EDGE("r"), NODE("m")),
PATTERN(NODE("j"), EDGE("e"), NODE("i"))));
// We expect the expansions after the first to have a uniqueness filter in a
// single MATCH clause.
CheckPlan(*query, ExpectScanAll(), ExpectExpand(), ExpectScanAll(),
ExpectExpand(), ExpectExpandUniquenessFilter<EdgeAccessor>());
}
TEST(TestLogicalPlanner, MatchMultiPatternSameStart) {
// Test MATCH (n), (n) -[e]- (m)
AstTreeStorage storage;
auto query = QUERY(
MATCH(PATTERN(NODE("n")), PATTERN(NODE("n"), EDGE("e"), NODE("m"))));
// We expect the second pattern to generate only an Expand, since another
// ScanAll would be redundant.
CheckPlan(*query, ExpectScanAll(), ExpectExpand());
}
TEST(TestLogicalPlanner, MatchMultiPatternSameExpandStart) {
// Test MATCH (n) -[r]- (m), (m) -[e]- (l)
AstTreeStorage storage;
auto query = QUERY(MATCH(PATTERN(NODE("n"), EDGE("r"), NODE("m")),
PATTERN(NODE("m"), EDGE("e"), NODE("l"))));
// We expect the second pattern to generate only an Expand. Another
// ScanAll would be redundant, as it would generate the nodes obtained from
// expansion. Additionally, a uniqueness filter is expected.
CheckPlan(*query, ExpectScanAll(), ExpectExpand(), ExpectExpand(),
ExpectExpandUniquenessFilter<EdgeAccessor>());
}
TEST(TestLogicalPlanner, MultiMatch) {
// Test MATCH (n) -[r]- (m) MATCH (j) -[e]- (i) -[f]- (h)
AstTreeStorage storage;
auto query = QUERY(
MATCH(PATTERN(NODE("n"), EDGE("r"), NODE("m"))),
MATCH(PATTERN(NODE("j"), EDGE("e"), NODE("i"), EDGE("f"), NODE("h"))));
// Multiple MATCH clauses form a Cartesian product, so the uniqueness should
// not cross MATCH boundaries.
CheckPlan(*query, ExpectScanAll(), ExpectExpand(), ExpectScanAll(),
ExpectExpand(), ExpectExpand(),
ExpectExpandUniquenessFilter<EdgeAccessor>());
}
TEST(TestLogicalPlanner, MultiMatchSameStart) {
// Test MATCH (n) MATCH (n) -[r]- (m)
AstTreeStorage storage;
auto query = QUERY(MATCH(PATTERN(NODE("n"))),
MATCH(PATTERN(NODE("n"), EDGE("r"), NODE("m"))));
// Similar to MatchMultiPatternSameStart, we expect only Expand from second
// MATCH clause.
CheckPlan(*query, ExpectScanAll(), ExpectExpand());
}
TEST(TestLogicalPlanner, MatchEdgeCycle) {
// Test MATCH (n) -[r]- (m) -[r]- (j)
AstTreeStorage storage;
auto query = QUERY(
MATCH(PATTERN(NODE("n"), EDGE("r"), NODE("m"), EDGE("r"), NODE("j"))));
// There is no ExpandUniquenessFilter for referencing the same edge.
CheckPlan(*query, ExpectScanAll(), ExpectExpand(), ExpectExpand());
}
TEST(TestLogicalPlanner, MatchWithReturn) {
// Test MATCH (old) WITH old AS new RETURN new AS new
AstTreeStorage storage;
auto query = QUERY(MATCH(PATTERN(NODE("old"))), WITH(IDENT("old"), AS("new")),
RETURN(IDENT("new"), AS("new")));
// No accumulation since we only do reads.
CheckPlan(*query, ExpectScanAll(), ExpectProduce(), ExpectProduce());
}
TEST(TestLogicalPlanner, MatchWithWhereReturn) {
// Test MATCH (old) WITH old AS new WHERE new.prop < 42 RETURN new AS new
Dbms dbms;
auto dba = dbms.active();
auto prop = dba->property("prop");
AstTreeStorage storage;
auto query = QUERY(MATCH(PATTERN(NODE("old"))), WITH(IDENT("old"), AS("new")),
WHERE(LESS(PROPERTY_LOOKUP("new", prop), LITERAL(42))),
RETURN(IDENT("new"), AS("new")));
// No accumulation since we only do reads.
CheckPlan(*query, ExpectScanAll(), ExpectProduce(), ExpectFilter(),
ExpectProduce());
}
TEST(TestLogicalPlanner, CreateMultiExpand) {
// Test CREATE (n) -[r :r]-> (m), (n) - [p :p]-> (l)
Dbms dbms;
auto dba = dbms.active();
auto r = dba->edge_type("r");
auto p = dba->edge_type("p");
AstTreeStorage storage;
auto query = QUERY(
CREATE(PATTERN(NODE("n"), EDGE("r", r, Direction::RIGHT), NODE("m")),
PATTERN(NODE("n"), EDGE("p", p, Direction::RIGHT), NODE("l"))));
CheckPlan(*query, ExpectCreateNode(), ExpectCreateExpand(),
ExpectCreateExpand());
}
TEST(TestLogicalPlanner, MatchWithSumWhereReturn) {
// Test MATCH (n) WITH SUM(n.prop) + 42 AS sum WHERE sum < 42
// RETURN sum AS result
Dbms dbms;
auto dba = dbms.active();
auto prop = dba->property("prop");
AstTreeStorage storage;
auto sum = SUM(PROPERTY_LOOKUP("n", prop));
auto literal = LITERAL(42);
auto query =
QUERY(MATCH(PATTERN(NODE("n"))), WITH(ADD(sum, literal), AS("sum")),
WHERE(LESS(IDENT("sum"), LITERAL(42))),
RETURN(IDENT("sum"), AS("result")));
auto aggr = ExpectAggregate({sum}, {literal});
CheckPlan(*query, ExpectScanAll(), aggr, ExpectProduce(), ExpectFilter(),
ExpectProduce());
}
TEST(TestLogicalPlanner, MatchReturnSum) {
// Test MATCH (n) RETURN SUM(n.prop1) AS sum, n.prop2 AS group
Dbms dbms;
auto dba = dbms.active();
auto prop1 = dba->property("prop1");
auto prop2 = dba->property("prop2");
AstTreeStorage storage;
auto sum = SUM(PROPERTY_LOOKUP("n", prop1));
auto n_prop2 = PROPERTY_LOOKUP("n", prop2);
auto query = QUERY(MATCH(PATTERN(NODE("n"))),
RETURN(sum, AS("sum"), n_prop2, AS("group")));
auto aggr = ExpectAggregate({sum}, {n_prop2});
CheckPlan(*query, ExpectScanAll(), aggr, ExpectProduce());
}
TEST(TestLogicalPlanner, CreateWithSum) {
// Test CREATE (n) WITH SUM(n.prop) AS sum
Dbms dbms;
auto dba = dbms.active();
auto prop = dba->property("prop");
AstTreeStorage storage;
auto n_prop = PROPERTY_LOOKUP("n", prop);
auto sum = SUM(n_prop);
auto query = QUERY(CREATE(PATTERN(NODE("n"))), WITH(sum, AS("sum")));
auto symbol_table = MakeSymbolTable(*query);
auto acc = ExpectAccumulate({symbol_table.at(*n_prop->expression_)});
auto aggr = ExpectAggregate({sum}, {});
auto plan = MakeLogicalPlan(*query, symbol_table);
// We expect both the accumulation and aggregation because the part before
// WITH updates the database.
CheckPlan(*plan, symbol_table, ExpectCreateNode(), acc, aggr,
ExpectProduce());
}
TEST(TestLogicalPlanner, MatchWithCreate) {
// Test MATCH (n) WITH n AS a CREATE (a) -[r :r]-> (b)
Dbms dbms;
auto dba = dbms.active();
auto r_type = dba->edge_type("r");
AstTreeStorage storage;
auto query =
QUERY(MATCH(PATTERN(NODE("n"))), WITH(IDENT("n"), AS("a")),
CREATE(PATTERN(NODE("a"), EDGE("r", r_type, Direction::RIGHT),
NODE("b"))));
CheckPlan(*query, ExpectScanAll(), ExpectProduce(), ExpectCreateExpand());
}
TEST(TestLogicalPlanner, MatchReturnSkipLimit) {
// Test MATCH (n) RETURN n SKIP 2 LIMIT 1
AstTreeStorage storage;
auto query =
QUERY(MATCH(PATTERN(NODE("n"))),
RETURN(IDENT("n"), AS("n"), SKIP(LITERAL(2)), LIMIT(LITERAL(1))));
CheckPlan(*query, ExpectScanAll(), ExpectProduce(), ExpectSkip(),
ExpectLimit());
}
TEST(TestLogicalPlanner, CreateWithSkipReturnLimit) {
// Test CREATE (n) WITH n AS m SKIP 2 RETURN m LIMIT 1
AstTreeStorage storage;
auto ident_n = IDENT("n");
auto query = QUERY(CREATE(PATTERN(NODE("n"))),
WITH(ident_n, AS("m"), SKIP(LITERAL(2))),
RETURN(IDENT("m"), AS("m"), LIMIT(LITERAL(1))));
auto symbol_table = MakeSymbolTable(*query);
auto acc = ExpectAccumulate({symbol_table.at(*ident_n)});
auto plan = MakeLogicalPlan(*query, symbol_table);
// Since we have a write query, we need to have Accumulate. This is a bit
// different than Neo4j 3.0, which optimizes WITH followed by RETURN as a
// single RETURN clause and then moves Skip and Limit before Accumulate. This
// causes different behaviour. A newer version of Neo4j does the same thing as
// us here (but who knows if they change it again).
CheckPlan(*plan, symbol_table, ExpectCreateNode(), acc, ExpectProduce(),
ExpectSkip(), ExpectProduce(), ExpectLimit());
}
TEST(TestLogicalPlanner, CreateReturnSumSkipLimit) {
// Test CREATE (n) RETURN SUM(n.prop) AS s SKIP 2 LIMIT 1
Dbms dbms;
auto dba = dbms.active();
auto prop = dba->property("prop");
AstTreeStorage storage;
auto n_prop = PROPERTY_LOOKUP("n", prop);
auto sum = SUM(n_prop);
auto query = QUERY(CREATE(PATTERN(NODE("n"))),
RETURN(sum, AS("s"), SKIP(LITERAL(2)), LIMIT(LITERAL(1))));
auto symbol_table = MakeSymbolTable(*query);
auto acc = ExpectAccumulate({symbol_table.at(*n_prop->expression_)});
auto aggr = ExpectAggregate({sum}, {});
auto plan = MakeLogicalPlan(*query, symbol_table);
CheckPlan(*plan, symbol_table, ExpectCreateNode(), acc, aggr, ExpectProduce(),
ExpectSkip(), ExpectLimit());
}
TEST(TestLogicalPlanner, MatchReturnOrderBy) {
// Test MATCH (n) RETURN n ORDER BY n.prop
Dbms dbms;
auto dba = dbms.active();
auto prop = dba->property("prop");
AstTreeStorage storage;
auto ret = RETURN(IDENT("n"), AS("n"), ORDER_BY(PROPERTY_LOOKUP("n", prop)));
auto query = QUERY(MATCH(PATTERN(NODE("n"))), ret);
CheckPlan(*query, ExpectScanAll(), ExpectProduce(), ExpectOrderBy());
}
TEST(TestLogicalPlanner, CreateWithOrderByWhere) {
// Test CREATE (n) -[r :r]-> (m)
// WITH n AS new ORDER BY new.prop, r.prop WHERE m.prop < 42
Dbms dbms;
auto dba = dbms.active();
auto prop = dba->property("prop");
auto r_type = dba->edge_type("r");
AstTreeStorage storage;
auto ident_n = IDENT("n");
auto new_prop = PROPERTY_LOOKUP("new", prop);
auto r_prop = PROPERTY_LOOKUP("r", prop);
auto m_prop = PROPERTY_LOOKUP("m", prop);
auto query =
QUERY(CREATE(PATTERN(NODE("n"), EDGE("r", r_type, Direction::RIGHT),
NODE("m"))),
WITH(ident_n, AS("new"), ORDER_BY(new_prop, r_prop)),
WHERE(LESS(m_prop, LITERAL(42))));
auto symbol_table = MakeSymbolTable(*query);
// Since this is a write query, we expect to accumulate to old used symbols.
auto acc = ExpectAccumulate({
symbol_table.at(*ident_n), // `n` in WITH
symbol_table.at(*r_prop->expression_), // `r` in ORDER BY
symbol_table.at(*m_prop->expression_), // `m` in WHERE
});
auto plan = MakeLogicalPlan(*query, symbol_table);
CheckPlan(*plan, symbol_table, ExpectCreateNode(), ExpectCreateExpand(), acc,
ExpectProduce(), ExpectFilter(), ExpectOrderBy());
}
TEST(TestLogicalPlanner, ReturnAddSumCountOrderBy) {
// Test RETURN SUM(1) + COUNT(2) AS result ORDER BY result
AstTreeStorage storage;
auto sum = SUM(LITERAL(1));
auto count = COUNT(LITERAL(2));
auto query =
QUERY(RETURN(ADD(sum, count), AS("result"), ORDER_BY(IDENT("result"))));
auto aggr = ExpectAggregate({sum, count}, {});
CheckPlan(*query, aggr, ExpectProduce(), ExpectOrderBy());
}
TEST(TestLogicalPlanner, MatchMerge) {
// Test MATCH (n) MERGE (n) -[r :r]- (m)
// ON MATCH SET n.prop = 42 ON CREATE SET m = n
// RETURN n AS n
Dbms dbms;
auto dba = dbms.active();
auto r_type = dba->edge_type("r");
auto prop = dba->property("prop");
AstTreeStorage storage;
auto ident_n = IDENT("n");
auto query =
QUERY(MATCH(PATTERN(NODE("n"))),
MERGE(PATTERN(NODE("n"), EDGE("r", r_type), NODE("m")),
ON_MATCH(SET(PROPERTY_LOOKUP("n", prop), LITERAL(42))),
ON_CREATE(SET("m", IDENT("n")))),
RETURN(ident_n, AS("n")));
std::list<BaseOpChecker *> on_match{
new ExpectExpand(), new ExpectEdgeFilter(), new ExpectSetProperty()};
std::list<BaseOpChecker *> on_create{new ExpectCreateExpand(),
new ExpectSetProperties()};
auto symbol_table = MakeSymbolTable(*query);
// We expect Accumulate after Merge, because it is considered as a write.
auto acc = ExpectAccumulate({symbol_table.at(*ident_n)});
auto plan = MakeLogicalPlan(*query, symbol_table);
CheckPlan(*plan, symbol_table, ExpectScanAll(),
ExpectMerge(on_match, on_create), acc, ExpectProduce());
for (auto &op : on_match) delete op;
on_match.clear();
for (auto &op : on_create) delete op;
on_create.clear();
}
} // namespace