memgraph/tests/benchmark/btree_map.hpp
2022-11-24 17:45:43 +01:00

476 lines
16 KiB
C++

/*******************************************************************************
* tlx/container/btree_map.hpp
*
* Part of tlx - http://panthema.net/tlx
*
* Copyright (C) 2008-2017 Timo Bingmann <tb@panthema.net>
*
* All rights reserved. Published under the Boost Software License, Version 1.0
******************************************************************************/
#ifndef TLX_CONTAINER_BTREE_MAP_HEADER
#define TLX_CONTAINER_BTREE_MAP_HEADER
#include <functional>
#include <memory>
#include <utility>
#include "btree.hpp"
namespace tlx {
//! \addtogroup tlx_container_btree
//! \{
/*!
* Specialized B+ tree template class implementing STL's map container.
*
* Implements the STL map using a B+ tree. It can be used as a drop-in
* replacement for std::map. Not all asymptotic time requirements are met in
* theory. The class has a traits class defining B+ tree properties like slots
* and self-verification. Furthermore an allocator can be specified for tree
* nodes.
*/
template <typename Key_, typename Data_, typename Compare_ = std::less<Key_>,
typename Traits_ = btree_default_traits<Key_, std::pair<Key_, Data_>>,
typename Alloc_ = std::allocator<std::pair<Key_, Data_>>>
class btree_map {
public:
//! \name Template Parameter Types
//! \{
//! First template parameter: The key type of the btree. This is stored in
//! inner nodes.
typedef Key_ key_type;
//! Second template parameter: The value type associated with each key.
//! Stored in the B+ tree's leaves
typedef Data_ data_type;
//! Third template parameter: Key comparison function object
typedef Compare_ key_compare;
//! Fourth template parameter: Traits object used to define more parameters
//! of the B+ tree
typedef Traits_ traits;
//! Fifth template parameter: STL allocator
typedef Alloc_ allocator_type;
//! \}
// The macro TLX_BTREE_FRIENDS can be used by outside class to access the B+
// tree internals. This was added for wxBTreeDemo to be able to draw the
// tree.
TLX_BTREE_FRIENDS;
public:
//! \name Constructed Types
//! \{
//! Typedef of our own type
typedef btree_map<key_type, data_type, key_compare, traits, allocator_type> self;
//! Construct the STL-required value_type as a composition pair of key and
//! data types
typedef std::pair<key_type, data_type> value_type;
//! Key Extractor Struct
struct key_of_value {
//! pull first out of pair
static const key_type &get(const value_type &v) { return v.first; }
};
//! Implementation type of the btree_base
typedef BTree<key_type, value_type, key_of_value, key_compare, traits, false, allocator_type> btree_impl;
//! Function class comparing two value_type pairs.
typedef typename btree_impl::value_compare value_compare;
//! Size type used to count keys
typedef typename btree_impl::size_type size_type;
//! Small structure containing statistics about the tree
typedef typename btree_impl::tree_stats tree_stats;
//! \}
public:
//! \name Static Constant Options and Values of the B+ Tree
//! \{
//! Base B+ tree parameter: The number of key/data slots in each leaf
static const unsigned short leaf_slotmax = btree_impl::leaf_slotmax;
//! Base B+ tree parameter: The number of key slots in each inner node,
//! this can differ from slots in each leaf.
static const unsigned short inner_slotmax = btree_impl::inner_slotmax;
//! Computed B+ tree parameter: The minimum number of key/data slots used
//! in a leaf. If fewer slots are used, the leaf will be merged or slots
//! shifted from it's siblings.
static const unsigned short leaf_slotmin = btree_impl::leaf_slotmin;
//! Computed B+ tree parameter: The minimum number of key slots used
//! in an inner node. If fewer slots are used, the inner node will be
//! merged or slots shifted from it's siblings.
static const unsigned short inner_slotmin = btree_impl::inner_slotmin;
//! Debug parameter: Enables expensive and thorough checking of the B+ tree
//! invariants after each insert/erase operation.
static const bool self_verify = btree_impl::self_verify;
//! Debug parameter: Prints out lots of debug information about how the
//! algorithms change the tree. Requires the header file to be compiled
//! with TLX_BTREE_DEBUG and the key type must be std::ostream printable.
static const bool debug = btree_impl::debug;
//! Operational parameter: Allow duplicate keys in the btree.
static const bool allow_duplicates = btree_impl::allow_duplicates;
//! \}
public:
//! \name Iterators and Reverse Iterators
//! \{
//! STL-like iterator object for B+ tree items. The iterator points to a
//! specific slot number in a leaf.
typedef typename btree_impl::iterator iterator;
//! STL-like iterator object for B+ tree items. The iterator points to a
//! specific slot number in a leaf.
typedef typename btree_impl::const_iterator const_iterator;
//! create mutable reverse iterator by using STL magic
typedef typename btree_impl::reverse_iterator reverse_iterator;
//! create constant reverse iterator by using STL magic
typedef typename btree_impl::const_reverse_iterator const_reverse_iterator;
//! \}
private:
//! \name Tree Implementation Object
//! \{
//! The contained implementation object
btree_impl tree_;
//! \}
public:
//! \name Constructors and Destructor
//! \{
//! Default constructor initializing an empty B+ tree with the standard key
//! comparison function
explicit btree_map(const allocator_type &alloc = allocator_type()) : tree_(alloc) {}
//! Constructor initializing an empty B+ tree with a special key
//! comparison object
explicit btree_map(const key_compare &kcf, const allocator_type &alloc = allocator_type()) : tree_(kcf, alloc) {}
//! Constructor initializing a B+ tree with the range [first,last)
template <class InputIterator>
btree_map(InputIterator first, InputIterator last, const allocator_type &alloc = allocator_type())
: tree_(first, last, alloc) {}
//! Constructor initializing a B+ tree with the range [first,last) and a
//! special key comparison object
template <class InputIterator>
btree_map(InputIterator first, InputIterator last, const key_compare &kcf,
const allocator_type &alloc = allocator_type())
: tree_(first, last, kcf, alloc) {}
//! Frees up all used B+ tree memory pages
~btree_map() {}
//! Fast swapping of two identical B+ tree objects.
void swap(btree_map &from) { std::swap(tree_, from.tree_); }
//! \}
public:
//! \name Key and Value Comparison Function Objects
//! \{
//! Constant access to the key comparison object sorting the B+ tree
key_compare key_comp() const { return tree_.key_comp(); }
//! Constant access to a constructed value_type comparison object. required
//! by the STL
value_compare value_comp() const { return tree_.value_comp(); }
//! \}
public:
//! \name Allocators
//! \{
//! Return the base node allocator provided during construction.
allocator_type get_allocator() const { return tree_.get_allocator(); }
//! \}
public:
//! \name Fast Destruction of the B+ Tree
//! \{
//! Frees all key/data pairs and all nodes of the tree
void clear() { tree_.clear(); }
//! \}
public:
//! \name STL Iterator Construction Functions
//! \{
//! Constructs a read/data-write iterator that points to the first slot in
//! the first leaf of the B+ tree.
iterator begin() { return tree_.begin(); }
//! Constructs a read/data-write iterator that points to the first invalid
//! slot in the last leaf of the B+ tree.
iterator end() { return tree_.end(); }
//! Constructs a read-only constant iterator that points to the first slot
//! in the first leaf of the B+ tree.
const_iterator begin() const { return tree_.begin(); }
//! Constructs a read-only constant iterator that points to the first
//! invalid slot in the last leaf of the B+ tree.
const_iterator end() const { return tree_.end(); }
//! Constructs a read/data-write reverse iterator that points to the first
//! invalid slot in the last leaf of the B+ tree. Uses STL magic.
reverse_iterator rbegin() { return tree_.rbegin(); }
//! Constructs a read/data-write reverse iterator that points to the first
//! slot in the first leaf of the B+ tree. Uses STL magic.
reverse_iterator rend() { return tree_.rend(); }
//! Constructs a read-only reverse iterator that points to the first
//! invalid slot in the last leaf of the B+ tree. Uses STL magic.
const_reverse_iterator rbegin() const { return tree_.rbegin(); }
//! Constructs a read-only reverse iterator that points to the first slot
//! in the first leaf of the B+ tree. Uses STL magic.
const_reverse_iterator rend() const { return tree_.rend(); }
//! \}
public:
//! \name Access Functions to the Item Count
//! \{
//! Return the number of key/data pairs in the B+ tree
size_type size() const { return tree_.size(); }
//! Returns true if there is at least one key/data pair in the B+ tree
bool empty() const { return tree_.empty(); }
//! Returns the largest possible size of the B+ Tree. This is just a
//! function required by the STL standard, the B+ Tree can hold more items.
size_type max_size() const { return tree_.max_size(); }
//! Return a const reference to the current statistics.
const tree_stats &get_stats() const { return tree_.get_stats(); }
//! \}
public:
//! \name STL Access Functions Querying the Tree by Descending to a Leaf
//! \{
//! Non-STL function checking whether a key is in the B+ tree. The same as
//! (find(k) != end()) or (count() != 0).
bool exists(const key_type &key) const { return tree_.exists(key); }
//! Tries to locate a key in the B+ tree and returns an iterator to the
//! key/data slot if found. If unsuccessful it returns end().
iterator find(const key_type &key) { return tree_.find(key); }
//! Tries to locate a key in the B+ tree and returns an constant iterator to
//! the key/data slot if found. If unsuccessful it returns end().
const_iterator find(const key_type &key) const { return tree_.find(key); }
//! Tries to locate a key in the B+ tree and returns the number of identical
//! key entries found. Since this is a unique map, count() returns either 0
//! or 1.
size_type count(const key_type &key) const { return tree_.count(key); }
//! Searches the B+ tree and returns an iterator to the first pair equal to
//! or greater than key, or end() if all keys are smaller.
iterator lower_bound(const key_type &key) { return tree_.lower_bound(key); }
//! Searches the B+ tree and returns a constant iterator to the first pair
//! equal to or greater than key, or end() if all keys are smaller.
const_iterator lower_bound(const key_type &key) const { return tree_.lower_bound(key); }
//! Searches the B+ tree and returns an iterator to the first pair greater
//! than key, or end() if all keys are smaller or equal.
iterator upper_bound(const key_type &key) { return tree_.upper_bound(key); }
//! Searches the B+ tree and returns a constant iterator to the first pair
//! greater than key, or end() if all keys are smaller or equal.
const_iterator upper_bound(const key_type &key) const { return tree_.upper_bound(key); }
//! Searches the B+ tree and returns both lower_bound() and upper_bound().
std::pair<iterator, iterator> equal_range(const key_type &key) { return tree_.equal_range(key); }
//! Searches the B+ tree and returns both lower_bound() and upper_bound().
std::pair<const_iterator, const_iterator> equal_range(const key_type &key) const { return tree_.equal_range(key); }
//! \}
public:
//! \name B+ Tree Object Comparison Functions
//! \{
//! Equality relation of B+ trees of the same type. B+ trees of the same
//! size and equal elements (both key and data) are considered equal.
bool operator==(const btree_map &other) const { return (tree_ == other.tree_); }
//! Inequality relation. Based on operator==.
bool operator!=(const btree_map &other) const { return (tree_ != other.tree_); }
//! Total ordering relation of B+ trees of the same type. It uses
//! std::lexicographical_compare() for the actual comparison of elements.
bool operator<(const btree_map &other) const { return (tree_ < other.tree_); }
//! Greater relation. Based on operator<.
bool operator>(const btree_map &other) const { return (tree_ > other.tree_); }
//! Less-equal relation. Based on operator<.
bool operator<=(const btree_map &other) const { return (tree_ <= other.tree_); }
//! Greater-equal relation. Based on operator<.
bool operator>=(const btree_map &other) const { return (tree_ >= other.tree_); }
//! \}
public:
//! \name Fast Copy: Assign Operator and Copy Constructors
//! \{
//! Assignment operator. All the key/data pairs are copied
btree_map &operator=(const btree_map &other) {
if (this != &other) tree_ = other.tree_;
return *this;
}
//! Copy constructor. The newly initialized B+ tree object will contain a
//! copy of all key/data pairs.
btree_map(const btree_map &other) : tree_(other.tree_) {}
//! \}
public:
//! \name Public Insertion Functions
//! \{
//! Attempt to insert a key/data pair into the B+ tree. Fails if the pair is
//! already present.
std::pair<iterator, bool> insert(const value_type &x) { return tree_.insert(x); }
//! Attempt to insert a key/data pair into the B+ tree. This function is the
//! same as the other insert. Fails if the inserted pair is already present.
std::pair<iterator, bool> insert2(const key_type &key, const data_type &data) {
return tree_.insert(value_type(key, data));
}
//! Attempt to insert a key/data pair into the B+ tree. The iterator hint is
//! currently ignored by the B+ tree insertion routine.
iterator insert(iterator hint, const value_type &x) { return tree_.insert(hint, x); }
//! Attempt to insert a key/data pair into the B+ tree. The iterator hint is
//! currently ignored by the B+ tree insertion routine.
iterator insert2(iterator hint, const key_type &key, const data_type &data) {
return tree_.insert(hint, value_type(key, data));
}
//! Returns a reference to the object that is associated with a particular
//! key. If the map does not already contain such an object, operator[]
//! inserts the default object data_type().
data_type &operator[](const key_type &key) {
iterator i = insert(value_type(key, data_type())).first;
return i->second;
}
//! Attempt to insert the range [first,last) of value_type pairs into the B+
//! tree. Each key/data pair is inserted individually.
template <typename InputIterator>
void insert(InputIterator first, InputIterator last) {
return tree_.insert(first, last);
}
//! Bulk load a sorted range [first,last). Loads items into leaves and
//! constructs a B-tree above them. The tree must be empty when calling this
//! function.
template <typename Iterator>
void bulk_load(Iterator first, Iterator last) {
return tree_.bulk_load(first, last);
}
//! \}
public:
//! \name Public Erase Functions
//! \{
//! Erases the key/data pairs associated with the given key. For this
//! unique-associative map there is no difference to erase().
bool erase_one(const key_type &key) { return tree_.erase_one(key); }
//! Erases all the key/data pairs associated with the given key. This is
//! implemented using erase_one().
size_type erase(const key_type &key) { return tree_.erase(key); }
//! Erase the key/data pair referenced by the iterator.
void erase(iterator iter) { return tree_.erase(iter); }
#ifdef TLX_BTREE_TODO
//! Erase all key/data pairs in the range [first,last). This function is
//! currently not implemented by the B+ Tree.
void erase(iterator /* first */, iterator /* last */) { abort(); }
#endif
//! \}
#ifdef TLX_BTREE_DEBUG
public:
//! \name Debug Printing
//! \{
//! Print out the B+ tree structure with keys onto the given ostream. This
//! function requires that the header is compiled with TLX_BTREE_DEBUG and
//! that key_type is printable via std::ostream.
void print(std::ostream &os) const { tree_.print(os); }
//! Print out only the leaves via the double linked list.
void print_leaves(std::ostream &os) const { tree_.print_leaves(os); }
//! \}
#endif
public:
//! \name Verification of B+ Tree Invariants
//! \{
//! Run a thorough verification of all B+ tree invariants. The program
//! aborts via TLX_BTREE_ASSERT() if something is wrong.
void verify() const { tree_.verify(); }
//! \}
};
//! \}
} // namespace tlx
#endif // !TLX_CONTAINER_BTREE_MAP_HEADER
/******************************************************************************/