memgraph/tests/macro_benchmark/harness/long_running_suite.py
Mislav Bradac 7e99e93e47 Start work on parallel benchmark
Summary: First version of our benchmark

Reviewers: florijan, buda

Reviewed By: florijan

Subscribers: pullbot

Differential Revision: https://phabricator.memgraph.io/D740
2017-09-12 16:58:21 +02:00

130 lines
4.6 KiB
Python

import logging
import os
import time
import itertools
import json
from argparse import ArgumentParser
from collections import defaultdict
from statistics import median
from common import get_absolute_path
from databases import Memgraph, Neo
from clients import QueryClient, LongRunningClient
log = logging.getLogger(__name__)
class LongRunningSuite:
KNOWN_KEYS = {"config", "setup", "run"}
def __init__(self, args):
argp = ArgumentParser("LongRunningSuiteArgumentParser")
argp.add_argument("--num-client-workers", default=4)
self.args, _ = argp.parse_known_args(args)
pass
def run(self, scenario, group_name, scenario_name, runner):
runner.start()
# This suite allows empty lines in setup. Those lines separate query
# groups. It is guaranteed that groups will be executed sequentially,
# but queries in each group are possibly executed concurrently.
query_groups = [[]]
for query in scenario.get("setup")():
if query == "":
query_groups.append([])
else:
query_groups[-1].append(query)
if query_groups[-1] == []:
query_groups.pop()
log.info("Executing {} query groups in setup"
.format(len(query_groups)))
for i, queries in enumerate(query_groups):
start_time = time.time()
# TODO: number of threads configurable
runner.setup(queries, self.args.num_client_workers)
log.info("\t{}. group imported in done in {:.2f} seconds".format(
i + 1, time.time() - start_time))
config = next(scenario.get("config")())
duration = config["duration"]
log.info("Executing run for {} seconds with {} client workers".format(
duration, self.args.num_client_workers))
# TODO: number of threads configurable
results = runner.run(next(scenario.get("run")()), duration,
self.args.num_client_workers)
runner.stop()
measurements = []
for result in results:
print(result["num_executed_queries"], result["elapsed_time"])
# TODO: Revise this.
measurements.append({
"target": "throughput",
"value": result["num_executed_queries"] / result["elapsed_time"],
"unit": "queries per second",
"type": "throughput"})
self.summary = "Throughtput: " + str(measurements[-1]["value"])
return measurements
def runners(self):
return { "MemgraphRunner" : MemgraphRunner, "NeoRunner" : NeoRunner }
def groups(self):
return ["pokec"]
class _LongRunningRunner:
def __init__(self, args, database):
self.log = logging.getLogger("_LongRunningRunner")
self.database = database
self.query_client = QueryClient(args)
self.long_running_client = LongRunningClient(args)
def start(self):
self.database.start()
def setup(self, queries, num_client_workers):
return self.query_client(queries, self.database, num_client_workers)
def run(self, config, duration, num_client_workers):
return self.long_running_client(
config, self.database, duration, num_client_workers)
def stop(self):
self.log.info("stop")
self.database.stop()
class MemgraphRunner(_LongRunningRunner):
"""
Configures memgraph database for QuerySuite execution.
"""
def __init__(self, args):
argp = ArgumentParser("MemgraphRunnerArgumentParser")
# TODO: change default config
argp.add_argument("--runner-config", default=get_absolute_path(
"benchmarking_throughput.conf", "config"),
help="Path to memgraph config")
argp.add_argument("--num-workers", help="Number of workers")
self.args, remaining_args = argp.parse_known_args(args)
database = Memgraph(remaining_args, self.args.runner_config,
self.args.num_workers)
super(MemgraphRunner, self).__init__(remaining_args, database)
class NeoRunner(_LongRunningRunner):
"""
Configures neo4j database for QuerySuite execution.
"""
def __init__(self, args):
argp = ArgumentParser("NeoRunnerArgumentParser")
argp.add_argument("--runner-config",
default=get_absolute_path(
"config/neo4j_long_running.conf"),
help="Path to neo config file")
self.args, remaining_args = argp.parse_known_args(args)
database = Neo(remaining_args, self.args.runner_config, [1])
super(NeoRunner, self).__init__(remaining_args, database)