memgraph/tests/unit/bolt_decoder.cpp

690 lines
20 KiB
C++

#include <bit>
#include "bolt_common.hpp"
#include "bolt_testdata.hpp"
#include "communication/bolt/v1/decoder/decoder.hpp"
using communication::bolt::Value;
constexpr const int SIZE = 131072;
uint8_t data[SIZE];
/**
* TestDecoderBuffer
* This class provides a dummy Buffer used for testing the Decoder.
* It's Read function is the necessary public interface for the Decoder.
* It's Write and Clear methods are used for testing. Through the Write
* method you can store data in the buffer, and throgh the Clear method
* you can clear the buffer. The decoder uses the Read function to get
* data from the buffer.
*/
class TestDecoderBuffer {
public:
bool Read(uint8_t *data, size_t len) {
if (len > buffer_.size()) return false;
memcpy(data, buffer_.data(), len);
buffer_.erase(buffer_.begin(), buffer_.begin() + len);
return true;
}
void Write(const uint8_t *data, size_t len) {
for (size_t i = 0; i < len; ++i) buffer_.push_back(data[i]);
}
void Clear() { buffer_.clear(); }
private:
std::vector<uint8_t> buffer_;
};
using DecoderT = communication::bolt::Decoder<TestDecoderBuffer>;
struct BoltDecoder : ::testing::Test {
// In newer gtest library (1.8.1+) this is changed to SetUpTestSuite
static void SetUpTestCase() { InitializeData(data, SIZE); }
};
TEST_F(BoltDecoder, NullAndBool) {
TestDecoderBuffer buffer;
DecoderT decoder(buffer);
Value dv;
// test null
buffer.Write((const uint8_t *)"\xC0", 1);
ASSERT_EQ(decoder.ReadValue(&dv), true);
ASSERT_EQ(dv.type(), Value::Type::Null);
// test true
buffer.Write((const uint8_t *)"\xC3", 1);
ASSERT_EQ(decoder.ReadValue(&dv), true);
ASSERT_EQ(dv.type(), Value::Type::Bool);
ASSERT_EQ(dv.ValueBool(), true);
// test false
buffer.Write((const uint8_t *)"\xC2", 1);
ASSERT_EQ(decoder.ReadValue(&dv), true);
ASSERT_EQ(dv.type(), Value::Type::Bool);
ASSERT_EQ(dv.ValueBool(), false);
}
TEST_F(BoltDecoder, Int) {
TestDecoderBuffer buffer;
DecoderT decoder(buffer);
Value dv;
// test invalid marker
buffer.Clear();
buffer.Write((uint8_t *)"\xCD", 1); // 0xCD is reserved in the protocol
ASSERT_EQ(decoder.ReadValue(&dv), false);
for (int i = 0; i < 28; ++i) {
// test missing data
buffer.Clear();
buffer.Write(int_encoded[i], int_encoded_len[i] - 1);
ASSERT_EQ(decoder.ReadValue(&dv), false);
// test all ok
buffer.Clear();
buffer.Write(int_encoded[i], int_encoded_len[i]);
ASSERT_EQ(decoder.ReadValue(&dv), true);
ASSERT_EQ(dv.type(), Value::Type::Int);
ASSERT_EQ(dv.ValueInt(), int_decoded[i]);
}
}
TEST_F(BoltDecoder, Double) {
TestDecoderBuffer buffer;
DecoderT decoder(buffer);
Value dv;
for (int i = 0; i < 4; ++i) {
// test missing data
buffer.Clear();
buffer.Write(double_encoded[i], 8);
ASSERT_EQ(decoder.ReadValue(&dv), false);
// test all ok
buffer.Clear();
buffer.Write(double_encoded[i], 9);
ASSERT_EQ(decoder.ReadValue(&dv), true);
ASSERT_EQ(dv.type(), Value::Type::Double);
ASSERT_EQ(dv.ValueDouble(), double_decoded[i]);
}
}
TEST_F(BoltDecoder, String) {
TestDecoderBuffer buffer;
DecoderT decoder(buffer);
Value dv;
uint8_t headers[][6] = {"\x8F", "\xD0\x0F", "\xD1\x00\x0F", "\xD2\x00\x00\x00\x0F"};
int headers_len[] = {1, 2, 3, 5};
for (int i = 0; i < 4; ++i) {
// test missing data in header
buffer.Clear();
buffer.Write(headers[i], headers_len[i] - 1);
ASSERT_EQ(decoder.ReadValue(&dv), false);
// test missing elements
buffer.Clear();
buffer.Write(headers[i], headers_len[i]);
buffer.Write(data, 14);
ASSERT_EQ(decoder.ReadValue(&dv), false);
// test all ok
buffer.Clear();
buffer.Write(headers[i], headers_len[i]);
buffer.Write(data, 15);
ASSERT_EQ(decoder.ReadValue(&dv), true);
ASSERT_EQ(dv.type(), Value::Type::String);
std::string &str = dv.ValueString();
for (int j = 0; j < 15; ++j) EXPECT_EQ((uint8_t)str[j], data[j]);
}
}
TEST_F(BoltDecoder, StringLarge) {
TestDecoderBuffer buffer;
DecoderT decoder(buffer);
Value dv;
uint8_t header[6] = "\xD2\x00\x01\x86\xA0";
// test missing data
buffer.Clear();
buffer.Write(header, 5);
buffer.Write(data, 10);
ASSERT_EQ(decoder.ReadValue(&dv), false);
// test all ok
buffer.Clear();
buffer.Write(header, 5);
buffer.Write(data, 100000);
ASSERT_EQ(decoder.ReadValue(&dv), true);
ASSERT_EQ(dv.type(), Value::Type::String);
std::string &str = dv.ValueString();
for (int j = 0; j < 100000; ++j) EXPECT_EQ((uint8_t)str[j], data[j]);
}
TEST_F(BoltDecoder, List) {
TestDecoderBuffer buffer;
DecoderT decoder(buffer);
Value dv;
uint8_t headers[][6] = {"\x9F", "\xD4\x0F", "\xD5\x00\x0F", "\xD6\x00\x00\x00\x0F"};
int headers_len[] = {1, 2, 3, 5};
for (int i = 0; i < 4; ++i) {
// test missing data in header
buffer.Clear();
buffer.Write(headers[i], headers_len[i] - 1);
ASSERT_EQ(decoder.ReadValue(&dv), false);
// test missing elements
buffer.Clear();
buffer.Write(headers[i], headers_len[i]);
for (uint8_t j = 0; j < 14; ++j) buffer.Write(&j, 1);
ASSERT_EQ(decoder.ReadValue(&dv), false);
// test all ok
buffer.Clear();
buffer.Write(headers[i], headers_len[i]);
for (uint8_t j = 0; j < 15; ++j) buffer.Write(&j, 1);
ASSERT_EQ(decoder.ReadValue(&dv), true);
ASSERT_EQ(dv.type(), Value::Type::List);
std::vector<Value> &val = dv.ValueList();
ASSERT_EQ(val.size(), 15);
for (int j = 0; j < 15; ++j) EXPECT_EQ(val[j].ValueInt(), j);
}
}
TEST_F(BoltDecoder, Map) {
TestDecoderBuffer buffer;
DecoderT decoder(buffer);
Value dv;
uint8_t headers[][6] = {"\xAF", "\xD8\x0F", "\xD9\x00\x0F", "\xDA\x00\x00\x00\x0F"};
int headers_len[] = {1, 2, 3, 5};
uint8_t index[] = "\x81\x61";
uint8_t wrong_index = 1;
for (int i = 0; i < 4; ++i) {
// test missing data in header
buffer.Clear();
buffer.Write(headers[i], headers_len[i] - 1);
ASSERT_EQ(decoder.ReadValue(&dv), false);
// test wrong index type
buffer.Clear();
buffer.Write(headers[i], headers_len[i]);
buffer.Write(&wrong_index, 1);
buffer.Write(&wrong_index, 1);
ASSERT_EQ(decoder.ReadValue(&dv), false);
// test missing element data
buffer.Clear();
buffer.Write(headers[i], headers_len[i]);
buffer.Write(index, 2);
ASSERT_EQ(decoder.ReadValue(&dv), false);
// test missing elements
buffer.Clear();
buffer.Write(headers[i], headers_len[i]);
for (uint8_t j = 0; j < 14; ++j) {
buffer.Write(index, 2);
buffer.Write(&j, 1);
}
ASSERT_EQ(decoder.ReadValue(&dv), false);
// test elements with same index
buffer.Clear();
buffer.Write(headers[i], headers_len[i]);
for (uint8_t j = 0; j < 15; ++j) {
buffer.Write(index, 2);
buffer.Write(&j, 1);
}
ASSERT_EQ(decoder.ReadValue(&dv), false);
// test all ok
buffer.Clear();
buffer.Write(headers[i], headers_len[i]);
for (uint8_t j = 0; j < 15; ++j) {
uint8_t tmp = 'a' + j;
buffer.Write(index, 1);
buffer.Write(&tmp, 1);
buffer.Write(&j, 1);
}
ASSERT_EQ(decoder.ReadValue(&dv), true);
ASSERT_EQ(dv.type(), Value::Type::Map);
std::map<std::string, Value> &val = dv.ValueMap();
ASSERT_EQ(val.size(), 15);
for (int j = 0; j < 15; ++j) {
char tmp_chr = 'a' + j;
Value tmp_dv = val[std::string(1, tmp_chr)];
EXPECT_EQ(tmp_dv.type(), Value::Type::Int);
EXPECT_EQ(tmp_dv.ValueInt(), j);
}
}
}
TEST_F(BoltDecoder, Vertex) {
TestDecoderBuffer buffer;
DecoderT decoder(buffer);
Value dv;
uint8_t header[] = "\xB3\x4E";
uint8_t wrong_header[] = "\x00\x00";
uint8_t test_int[] = "\x01";
uint8_t test_str[] = "\x81\x61";
uint8_t test_list[] = "\x91";
uint8_t test_map[] = "\xA1";
// test missing signature
buffer.Clear();
buffer.Write(wrong_header, 1);
ASSERT_EQ(decoder.ReadValue(&dv, Value::Type::Vertex), false);
// test wrong marker
buffer.Clear();
buffer.Write(wrong_header, 2);
ASSERT_EQ(decoder.ReadValue(&dv, Value::Type::Vertex), false);
// test wrong signature
buffer.Clear();
buffer.Write(header, 1);
buffer.Write(wrong_header, 1);
ASSERT_EQ(decoder.ReadValue(&dv, Value::Type::Vertex), false);
// test ID wrong type
buffer.Clear();
buffer.Write(header, 2);
buffer.Write(test_str, 2);
ASSERT_EQ(decoder.ReadValue(&dv, Value::Type::Vertex), false);
// test labels wrong outer type
buffer.Clear();
buffer.Write(header, 2);
buffer.Write(test_int, 1);
buffer.Write(test_int, 1);
ASSERT_EQ(decoder.ReadValue(&dv, Value::Type::Vertex), false);
// test labels wrong inner type
buffer.Clear();
buffer.Write(header, 2);
buffer.Write(test_int, 1);
buffer.Write(test_list, 1);
buffer.Write(test_int, 1);
ASSERT_EQ(decoder.ReadValue(&dv, Value::Type::Vertex), false);
// test properties wrong outer type
buffer.Clear();
buffer.Write(header, 2);
buffer.Write(test_int, 1);
buffer.Write(test_list, 1);
buffer.Write(test_str, 2);
ASSERT_EQ(decoder.ReadValue(&dv, Value::Type::Vertex), false);
// test all ok
buffer.Clear();
buffer.Write(header, 2);
buffer.Write(test_int, 1);
buffer.Write(test_list, 1);
buffer.Write(test_str, 2);
buffer.Write(test_map, 1);
buffer.Write(test_str, 2);
buffer.Write(test_int, 1);
ASSERT_EQ(decoder.ReadValue(&dv, Value::Type::Vertex), true);
auto &vertex = dv.ValueVertex();
ASSERT_EQ(vertex.id.AsUint(), 1);
ASSERT_EQ(vertex.labels[0], std::string("a"));
ASSERT_EQ(vertex.properties[std::string("a")].ValueInt(), 1);
}
TEST_F(BoltDecoder, Edge) {
TestDecoderBuffer buffer;
DecoderT decoder(buffer);
Value de;
uint8_t header[] = "\xB5\x52";
uint8_t wrong_header[] = "\x00\x00";
uint8_t test_int1[] = "\x01";
uint8_t test_int2[] = "\x02";
uint8_t test_int3[] = "\x03";
uint8_t test_str[] = "\x81\x61";
uint8_t test_map[] = "\xA1";
// test missing signature
buffer.Clear();
buffer.Write(wrong_header, 1);
ASSERT_EQ(decoder.ReadValue(&de, Value::Type::Edge), false);
// test wrong marker
buffer.Clear();
buffer.Write(wrong_header, 2);
ASSERT_EQ(decoder.ReadValue(&de, Value::Type::Edge), false);
// test wrong signature
buffer.Clear();
buffer.Write(header, 1);
buffer.Write(wrong_header, 1);
ASSERT_EQ(decoder.ReadValue(&de, Value::Type::Edge), false);
// test ID wrong type
buffer.Clear();
buffer.Write(header, 2);
buffer.Write(test_str, 2);
ASSERT_EQ(decoder.ReadValue(&de, Value::Type::Edge), false);
// test from_id wrong type
buffer.Clear();
buffer.Write(header, 2);
buffer.Write(test_int1, 1);
buffer.Write(test_str, 2);
ASSERT_EQ(decoder.ReadValue(&de, Value::Type::Edge), false);
// test to_id wrong type
buffer.Clear();
buffer.Write(header, 2);
buffer.Write(test_int1, 1);
buffer.Write(test_int2, 1);
buffer.Write(test_str, 2);
ASSERT_EQ(decoder.ReadValue(&de, Value::Type::Edge), false);
// test type wrong type
buffer.Clear();
buffer.Write(header, 2);
buffer.Write(test_int1, 1);
buffer.Write(test_int2, 1);
buffer.Write(test_int3, 1);
buffer.Write(test_int1, 1);
ASSERT_EQ(decoder.ReadValue(&de, Value::Type::Edge), false);
// test properties wrong outer type
buffer.Clear();
buffer.Write(header, 2);
buffer.Write(test_int1, 1);
buffer.Write(test_int2, 1);
buffer.Write(test_int3, 1);
buffer.Write(test_str, 2);
buffer.Write(test_int1, 1);
ASSERT_EQ(decoder.ReadValue(&de, Value::Type::Edge), false);
// test all ok
buffer.Clear();
buffer.Write(header, 2);
buffer.Write(test_int1, 1);
buffer.Write(test_int2, 1);
buffer.Write(test_int3, 1);
buffer.Write(test_str, 2);
buffer.Write(test_map, 1);
buffer.Write(test_str, 2);
buffer.Write(test_int1, 1);
ASSERT_EQ(decoder.ReadValue(&de, Value::Type::Edge), true);
auto &edge = de.ValueEdge();
ASSERT_EQ(edge.id.AsUint(), 1);
ASSERT_EQ(edge.from.AsUint(), 2);
ASSERT_EQ(edge.to.AsUint(), 3);
ASSERT_EQ(edge.type, std::string("a"));
ASSERT_EQ(edge.properties[std::string("a")].ValueInt(), 1);
}
// Temporal types testing starts here
template <typename T>
constexpr uint8_t Cast(T marker) {
return static_cast<uint8_t>(marker);
}
void AssertThatDatesAreEqual(const utils::Date &d1, const utils::Date &d2) {
ASSERT_EQ(d1.day, d2.day);
ASSERT_EQ(d1.month, d2.month);
ASSERT_EQ(d1.year, d2.year);
}
TEST_F(BoltDecoder, DateOld) {
TestDecoderBuffer buffer;
DecoderT decoder(buffer);
Value dv;
using Marker = communication::bolt::Marker;
using Sig = communication::bolt::Signature;
const auto date = utils::Date({1970, 1, 1});
const auto days = date.DaysSinceEpoch();
ASSERT_EQ(days, 0);
// clang-format off
std::array<uint8_t, 3> data = {
Cast(Marker::TinyStruct1),
Cast(Sig::Date),
0x0 };
// clang-format on
buffer.Clear();
buffer.Write(data.data(), data.size());
ASSERT_EQ(decoder.ReadValue(&dv, Value::Type::Date), true);
AssertThatDatesAreEqual(dv.ValueDate(), date);
}
TEST_F(BoltDecoder, DateRecent) {
TestDecoderBuffer buffer;
DecoderT decoder(buffer);
Value dv;
using Marker = communication::bolt::Marker;
using Sig = communication::bolt::Signature;
const auto date = utils::Date({2021, 7, 20});
const auto days = date.DaysSinceEpoch();
ASSERT_EQ(days, 18828);
const auto *d_bytes = std::bit_cast<const uint8_t *>(&days);
// clang-format off
std::array<uint8_t, 7> data = {
Cast(Marker::TinyStruct1),
Cast(Sig::Date),
Cast(Marker::Int32),
d_bytes[3],
d_bytes[2],
d_bytes[1],
d_bytes[0] };
// clang-format on
buffer.Clear();
buffer.Write(data.data(), data.size());
ASSERT_EQ(decoder.ReadValue(&dv, Value::Type::Date), true);
AssertThatDatesAreEqual(dv.ValueDate(), date);
}
TEST_F(BoltDecoder, DurationOneSec) {
TestDecoderBuffer buffer;
DecoderT decoder(buffer);
Value dv;
const auto value = Value(utils::Duration(1));
const auto &dur = value.ValueDuration();
const auto nanos = dur.SubSecondsAsNanoseconds();
ASSERT_EQ(dur.Days(), 0);
ASSERT_EQ(dur.SubDaysAsSeconds(), 0);
ASSERT_EQ(nanos, 1000);
const auto *n_bytes = std::bit_cast<const uint8_t *>(&nanos);
using Marker = communication::bolt::Marker;
using Sig = communication::bolt::Signature;
// clang-format off
std::array<uint8_t, 8> data = {
Cast(Marker::TinyStruct4),
Cast(Sig::Duration),
0x0,
0x0,
0x0,
Cast(Marker::Int16),
n_bytes[1], n_bytes[0] };
// clang-format on
buffer.Clear();
buffer.Write(data.data(), data.size());
ASSERT_EQ(decoder.ReadValue(&dv, Value::Type::Duration), true);
ASSERT_EQ(dv.ValueDuration().microseconds, dur.microseconds);
}
TEST_F(BoltDecoder, DurationMinusOneSec) {
TestDecoderBuffer buffer;
DecoderT decoder(buffer);
Value dv;
const auto value = Value(utils::Duration(-1));
const auto &dur = value.ValueDuration();
const auto nanos = dur.SubSecondsAsNanoseconds();
ASSERT_EQ(dur.Days(), 0);
ASSERT_EQ(dur.SubDaysAsSeconds(), 0);
ASSERT_EQ(nanos, -1000);
const auto *n_bytes = std::bit_cast<const uint8_t *>(&nanos);
using Marker = communication::bolt::Marker;
using Sig = communication::bolt::Signature;
// clang-format off
std::array<uint8_t, 8> data = {
Cast(Marker::TinyStruct4),
Cast(Sig::Duration),
0x0,
0x0,
0x0,
Cast(Marker::Int16),
n_bytes[1], n_bytes[0] };
// clang-format on
buffer.Clear();
buffer.Write(data.data(), data.size());
ASSERT_EQ(decoder.ReadValue(&dv, Value::Type::Duration), true);
ASSERT_EQ(dv.ValueDuration().microseconds, dur.microseconds);
}
TEST_F(BoltDecoder, ArbitraryDuration) {
TestDecoderBuffer buffer;
DecoderT decoder(buffer);
Value dv;
const auto value = Value(utils::Duration({15, 1, 2, 3, 5, 0}));
const auto &dur = value.ValueDuration();
ASSERT_EQ(dur.Days(), 15);
const auto secs = dur.SubDaysAsSeconds();
ASSERT_EQ(secs, 3723);
const auto *sec_bytes = std::bit_cast<const uint8_t *>(&secs);
const auto nanos = dur.SubSecondsAsNanoseconds();
ASSERT_EQ(nanos, 5000000);
const auto *nano_bytes = std::bit_cast<const uint8_t *>(&nanos);
using Marker = communication::bolt::Marker;
using Sig = communication::bolt::Signature;
// clang-format off
std::array<uint8_t, 12> data = {
Cast(Marker::TinyStruct4),
Cast(Sig::Duration),
0x0,
0xF,
Cast(Marker::Int16),
sec_bytes[1],
sec_bytes[0],
Cast(Marker::Int32),
nano_bytes[3],
nano_bytes[2],
nano_bytes[1],
nano_bytes[0] };
// clang-format on
buffer.Clear();
buffer.Write(data.data(), data.size());
ASSERT_EQ(decoder.ReadValue(&dv, Value::Type::Duration), true);
ASSERT_EQ(dv.ValueDuration().microseconds, dur.microseconds);
}
void AssertThatLocalTimeIsEqual(utils::LocalTime t1, utils::LocalTime t2) {
ASSERT_EQ(t1.hour, t2.hour);
ASSERT_EQ(t1.minute, t2.minute);
ASSERT_EQ(t1.second, t2.second);
ASSERT_EQ(t1.microsecond, t2.microsecond);
ASSERT_EQ(t1.millisecond, t2.millisecond);
}
TEST_F(BoltDecoder, LocalTimeOneMicro) {
TestDecoderBuffer buffer;
DecoderT decoder(buffer);
Value dv;
const auto value = Value(utils::LocalTime(1));
const auto &local_time = value.ValueLocalTime();
const auto nanos = local_time.NanosecondsSinceEpoch();
ASSERT_EQ(nanos, 1000);
const auto *n_bytes = std::bit_cast<const uint8_t *>(&nanos);
using Marker = communication::bolt::Marker;
using Sig = communication::bolt::Signature;
// clang-format off
std::array<uint8_t, 5> data = {
Cast(Marker::TinyStruct1),
Cast(Sig::LocalTime),
Cast(Marker::Int16),
n_bytes[1],
n_bytes[0] };
// clang-format on
buffer.Clear();
buffer.Write(data.data(), data.size());
ASSERT_EQ(decoder.ReadValue(&dv, Value::Type::LocalTime), true);
AssertThatLocalTimeIsEqual(dv.ValueLocalTime(), local_time);
}
TEST_F(BoltDecoder, LocalTimeOneThousandMicro) {
TestDecoderBuffer buffer;
DecoderT decoder(buffer);
Value dv;
const auto value = Value(utils::LocalTime(1000));
const auto &local_time = value.ValueLocalTime();
const auto nanos = local_time.NanosecondsSinceEpoch();
ASSERT_EQ(nanos, 1000000);
const auto *n_bytes = std::bit_cast<const uint8_t *>(&nanos);
using Marker = communication::bolt::Marker;
using Sig = communication::bolt::Signature;
// clang-format off
std::array<uint8_t, 7> data = {
Cast(Marker::TinyStruct1),
Cast(Sig::LocalTime),
Cast(Marker::Int32),
n_bytes[3], n_bytes[2],
n_bytes[1], n_bytes[0] };
// clang-format on
buffer.Clear();
buffer.Write(data.data(), data.size());
ASSERT_EQ(decoder.ReadValue(&dv, Value::Type::LocalTime), true);
AssertThatLocalTimeIsEqual(dv.ValueLocalTime(), local_time);
}
TEST_F(BoltDecoder, LocalDateTime) {
TestDecoderBuffer buffer;
DecoderT decoder(buffer);
Value dv;
const auto local_time = utils::LocalTime(utils::LocalTimeParameters({0, 0, 30, 1, 0}));
const auto date = utils::Date(1);
const auto value = Value(utils::LocalDateTime(date, local_time));
const auto local_date_time = value.ValueLocalDateTime();
const auto secs = local_date_time.SecondsSinceEpoch();
ASSERT_EQ(secs, 30);
const auto *sec_bytes = std::bit_cast<const uint8_t *>(&secs);
const auto nanos = local_date_time.SubSecondsAsNanoseconds();
ASSERT_EQ(nanos, 1000000);
const auto *nano_bytes = std::bit_cast<const uint8_t *>(&nanos);
using Marker = communication::bolt::Marker;
using Sig = communication::bolt::Signature;
// clang-format off
std::array<uint8_t, 8> data = {
Cast(Marker::TinyStruct2),
Cast(Sig::LocalDateTime),
// Seconds
sec_bytes[0],
// Nanoseconds
Cast(Marker::Int32),
nano_bytes[3], nano_bytes[2],
nano_bytes[1], nano_bytes[0] };
// clang-format on
buffer.Clear();
buffer.Write(data.data(), data.size());
ASSERT_EQ(decoder.ReadValue(&dv, Value::Type::LocalDateTime), true);
AssertThatDatesAreEqual(dv.ValueLocalDateTime().date, local_date_time.date);
AssertThatLocalTimeIsEqual(dv.ValueLocalDateTime().local_time, local_date_time.local_time);
}