memgraph/data_structures/skiplist/skiplist.hpp
2015-06-28 11:43:52 +02:00

260 lines
6.8 KiB
C++

#ifndef MEMGRAPH_DATA_STRUCTURES_SKIPLIST_SKIPLIST_HPP
#define MEMGRAPH_DATA_STRUCTURES_SKIPLIST_SKIPLIST_HPP
#include <algorithm>
#include <cstdlib>
#include <array>
#include "new_height.hpp"
#include "skipnode.hpp"
// concurrent skiplist based on the implementation described in
// "A Provably Correct Scalable Concurrent Skip List"
// https://www.cs.tau.ac.il/~shanir/nir-pubs-web/Papers/OPODIS2006-BA.pdf
template <class K,
class T,
size_t MAX_HEIGHT = 24,
class compare=std::less<K>,
class lock_type=SpinLock>
class SkipList
{
using Node = SkipNode<K, T, lock_type>;
public:
SkipList()
: size_(0),
header(Node::create(MAX_HEIGHT, nullptr, nullptr)) {}
~SkipList()
{
for(Node* current = header.load(std::memory_order_relaxed); current;)
{
Node* next = current->forward(0);
Node::destroy(current);
current = next;
}
}
size_t size() const
{
return size_.load(std::memory_order_relaxed);
}
uint8_t height() const
{
return MAX_HEIGHT;
}
//private:
bool greater(const K* const key, const Node* node)
{
return node && compare()(*node->key, *key);
}
bool less(const K* const key, const Node* node)
{
return (node == nullptr) || compare()(*key, *node->key);
}
size_t increment_size(size_t delta)
{
return size_.fetch_add(delta, std::memory_order_relaxed) + delta;
}
int find_path(Node* from,
int start_level,
const K* const key,
Node* preds[],
Node* succs[])
{
int lfound = -1;
Node* pred = from;
for(int level = start_level; level >= 0; --level)
{
Node* node = pred->forward(level);
while(greater(key, node))
pred = node, node = pred->forward(level);
if(lfound == -1 && !less(key, node))
lfound = level;
preds[level] = pred;
succs[level] = node; // TODO what's FB doing here?
}
//std::cout << "lfound = " << lfound << std::endl;
return lfound;
}
Node* find(const K* const key)
{
Node* pred = header.load(std::memory_order_consume);
Node* node = nullptr;
uint8_t level = pred->height;
bool found = false;
while(!found)
{
// descend down first, facebook says it works better xD but make
// some tests when you have time to determine the best strategy
for(; level > 0 &&
less(key, node = pred->forward(level - 1)); --level) {}
if(level == 0)
return nullptr;
--level;
while(greater(key, node))
pred = node, node = node->forward(level);
found = !less(key, node);
}
return node;
}
template <bool ADDING>
bool lock_nodes(uint8_t height,
std::unique_lock<lock_type> guards[MAX_HEIGHT],
Node* preds[MAX_HEIGHT],
Node* succs[MAX_HEIGHT])
{
Node *prepred, *pred, *succ = nullptr;
bool valid = true;
for(int level = 0; valid && level < height; ++level)
{
pred = preds[level], succ = succs[level];
if(pred != prepred)
guards[level] = pred->guard(), prepred = pred;
valid = !pred->marked() && pred->forward(level) == succ;
if(ADDING)
valid = valid && (succ == nullptr || !succ->marked());
}
return valid;
}
bool insert(K* key, T* item)
{
Node *preds[MAX_HEIGHT], *succs[MAX_HEIGHT];
while(true)
{
auto head = header.load(std::memory_order_consume);
auto lfound = find_path(head, MAX_HEIGHT - 1, key, preds, succs);
if(lfound != -1)
{
auto found = succs[lfound];
if(!found->marked())
{
while(!found->fully_linked()) {}
return false;
}
continue;
}
auto node_height = new_height(MAX_HEIGHT);
std::unique_lock<lock_type> guards[MAX_HEIGHT];
// try to acquire the locks for predecessors up to the height of
// the new node. release the locks and try again if someone else
// has the locks
if(!lock_nodes<true>(node_height, guards, preds, succs))
continue;
// you have the locks, create a new node
auto new_node = Node::create(node_height, key, item);
// link the predecessors and successors, e.g.
//
// 4 HEAD ... P ------------------------> S ... NULL
// 3 HEAD ... ... P -----> NEW ---------> S ... NULL
// 2 HEAD ... ... P -----> NEW -----> S ... ... NULL
// 1 HEAD ... ... ... P -> NEW -> S ... ... ... NULL
for(uint8_t level = 0; level < node_height; ++level)
{
new_node->forward(level, succs[level]);
preds[level]->forward(level, new_node);
}
new_node->set_fully_linked();
increment_size(1);
return true;
}
}
bool ok_delete(Node* node, int level)
{
return node->fully_linked()
&& node->height - 1 == level
&& !node->marked();
}
bool remove(const K* const key)
{
Node* node = nullptr;
std::unique_lock<lock_type> node_guard;
bool marked = false;
int node_height = 0;
Node* preds[MAX_HEIGHT], *succs[MAX_HEIGHT];
while(true)
{
auto head = header.load(std::memory_order_consume);
auto lfound = find_path(head, MAX_HEIGHT - 1, key, preds, succs);
if(!marked && (lfound == -1 || !ok_delete(succs[lfound], lfound)))
return false;
if(!marked)
{
node = succs[lfound];
node_height = node->height;
node_guard = node->guard();
if(node->marked())
return false;
node->set_marked();
}
std::unique_lock<lock_type> guards[MAX_HEIGHT];
if(!lock_nodes<false>(node_height, guards, preds, succs))
continue;
for(int level = node_height - 1; level >= 0; --level)
preds[level]->forward(level, node->forward(level));
increment_size(-1);
break;
}
// TODO recyclee(node);
return true;
}
std::atomic<size_t> size_;
std::atomic<Node*> header;
};
#endif