memgraph/tests/unit/bolt_decoder.cpp
Matej Ferencevic e5c814e022 First version of new bolt decoder and tests.
Summary:
Extracted constants to codes.hpp.

Extracted bolt constants.

Extracted StreamBuffer and fixed data type.

Extracted bolt testdata.

Added bolt buffer and tests.

Added bolt decoder buffer and tests.

Renamed bolt testdata.

Reviewers: dgleich, buda, matej.gradicek

Reviewed By: buda

Subscribers: pullbot

Differential Revision: https://phabricator.memgraph.io/D220
2017-04-06 14:30:19 +02:00

423 lines
11 KiB
C++

#include "bolt_common.hpp"
#include "bolt_testdata.hpp"
#include "communication/bolt/v1/decoder/decoder.hpp"
#include "query/backend/cpp/typed_value.hpp"
constexpr const int SIZE = 131072;
uint8_t data[SIZE];
/**
* TestDecoderBuffer
* This class provides a dummy Buffer used for testing the Decoder.
* It's Read function is the necessary public interface for the Decoder.
* It's Write and Clear methods are used for testing. Through the Write
* method you can store data in the buffer, and throgh the Clear method
* you can clear the buffer. The decoder uses the Read function to get
* data from the buffer.
*/
class TestDecoderBuffer {
public:
bool Read(uint8_t *data, size_t len) {
if (len > buffer_.size()) return false;
memcpy(data, buffer_.data(), len);
buffer_.erase(buffer_.begin(), buffer_.begin() + len);
return true;
}
void Write(const uint8_t *data, size_t len) {
for (size_t i = 0; i < len; ++i)
buffer_.push_back(data[i]);
}
void Clear() {
buffer_.clear();
}
private:
std::vector<uint8_t> buffer_;
};
using DecoderT = communication::bolt::Decoder<TestDecoderBuffer>;
TEST(BoltDecoder, NullAndBool) {
TestDecoderBuffer buffer;
DecoderT decoder(buffer);
TypedValue tv;
// test null
buffer.Write((const uint8_t *)"\xC0", 1);
ASSERT_EQ(decoder.ReadTypedValue(&tv), true);
ASSERT_EQ(tv.type(), TypedValue::Type::Null);
// test true
buffer.Write((const uint8_t *)"\xC3", 1);
ASSERT_EQ(decoder.ReadTypedValue(&tv), true);
ASSERT_EQ(tv.type(), TypedValue::Type::Bool);
ASSERT_EQ(tv.Value<bool>(), true);
// test false
buffer.Write((const uint8_t *)"\xC2", 1);
ASSERT_EQ(decoder.ReadTypedValue(&tv), true);
ASSERT_EQ(tv.type(), TypedValue::Type::Bool);
ASSERT_EQ(tv.Value<bool>(), false);
}
TEST(BoltDecoder, Int) {
TestDecoderBuffer buffer;
DecoderT decoder(buffer);
TypedValue tv;
// test invalid marker
buffer.Clear();
buffer.Write((uint8_t *)"\xCD", 1); // 0xCD is reserved in the protocol
ASSERT_EQ(decoder.ReadTypedValue(&tv), false);
for (int i = 0; i < 28; ++i) {
// test missing data
buffer.Clear();
buffer.Write(int_encoded[i], int_encoded_len[i] - 1);
ASSERT_EQ(decoder.ReadTypedValue(&tv), false);
// test all ok
buffer.Clear();
buffer.Write(int_encoded[i], int_encoded_len[i]);
ASSERT_EQ(decoder.ReadTypedValue(&tv), true);
ASSERT_EQ(tv.type(), TypedValue::Type::Int);
ASSERT_EQ(tv.Value<int64_t>(), int_decoded[i]);
}
}
TEST(BoltDecoder, Double) {
TestDecoderBuffer buffer;
DecoderT decoder(buffer);
TypedValue tv;
for (int i = 0; i < 4; ++i) {
// test missing data
buffer.Clear();
buffer.Write(double_encoded[i], 8);
ASSERT_EQ(decoder.ReadTypedValue(&tv), false);
// test all ok
buffer.Clear();
buffer.Write(double_encoded[i], 9);
ASSERT_EQ(decoder.ReadTypedValue(&tv), true);
ASSERT_EQ(tv.type(), TypedValue::Type::Double);
ASSERT_EQ(tv.Value<double>(), double_decoded[i]);
}
}
TEST(BoltDecoder, String) {
TestDecoderBuffer buffer;
DecoderT decoder(buffer);
TypedValue tv;
uint8_t headers[][6] = {"\x8F", "\xD0\x0F", "\xD1\x00\x0F", "\xD2\x00\x00\x00\x0F"};
int headers_len[] = {1, 2, 3, 5};
for (int i = 0; i < 4; ++i) {
// test missing data in header
buffer.Clear();
buffer.Write(headers[i], headers_len[i] - 1);
ASSERT_EQ(decoder.ReadTypedValue(&tv), false);
// test missing elements
buffer.Clear();
buffer.Write(headers[i], headers_len[i]);
buffer.Write(data, 14);
ASSERT_EQ(decoder.ReadTypedValue(&tv), false);
// test all ok
buffer.Clear();
buffer.Write(headers[i], headers_len[i]);
buffer.Write(data, 15);
ASSERT_EQ(decoder.ReadTypedValue(&tv), true);
ASSERT_EQ(tv.type(), TypedValue::Type::String);
std::string &str = tv.Value<std::string>();
for (int j = 0; j < 15; ++j)
EXPECT_EQ((uint8_t)str[j], data[j]);
}
}
TEST(BoltDecoder, List) {
TestDecoderBuffer buffer;
DecoderT decoder(buffer);
TypedValue tv;
uint8_t headers[][6] = {"\x9F", "\xD4\x0F", "\xD5\x00\x0F", "\xD6\x00\x00\x00\x0F"};
int headers_len[] = {1, 2, 3, 5};
for (int i = 0; i < 4; ++i) {
// test missing data in header
buffer.Clear();
buffer.Write(headers[i], headers_len[i] - 1);
ASSERT_EQ(decoder.ReadTypedValue(&tv), false);
// test missing elements
buffer.Clear();
buffer.Write(headers[i], headers_len[i]);
for (uint8_t j = 0; j < 14; ++j)
buffer.Write(&j, 1);
ASSERT_EQ(decoder.ReadTypedValue(&tv), false);
// test all ok
buffer.Clear();
buffer.Write(headers[i], headers_len[i]);
for (uint8_t j = 0; j < 15; ++j)
buffer.Write(&j, 1);
ASSERT_EQ(decoder.ReadTypedValue(&tv), true);
ASSERT_EQ(tv.type(), TypedValue::Type::List);
std::vector<TypedValue> &val = tv.Value<std::vector<TypedValue>>();
ASSERT_EQ(val.size(), 15);
for (int j = 0; j < 15; ++j)
EXPECT_EQ(val[j].Value<int64_t>(), j);
}
}
TEST(BoltDecoder, Map) {
TestDecoderBuffer buffer;
DecoderT decoder(buffer);
TypedValue tv;
uint8_t headers[][6] = {"\xAF", "\xD8\x0F", "\xD9\x00\x0F", "\xDA\x00\x00\x00\x0F"};
int headers_len[] = {1, 2, 3, 5};
uint8_t index[] = "\x81\x61";
uint8_t wrong_index = 1;
for (int i = 0; i < 4; ++i) {
// test missing data in header
buffer.Clear();
buffer.Write(headers[i], headers_len[i] - 1);
ASSERT_EQ(decoder.ReadTypedValue(&tv), false);
// test wrong index type
buffer.Clear();
buffer.Write(headers[i], headers_len[i]);
buffer.Write(&wrong_index, 1);
buffer.Write(&wrong_index, 1);
ASSERT_EQ(decoder.ReadTypedValue(&tv), false);
// test missing element data
buffer.Clear();
buffer.Write(headers[i], headers_len[i]);
buffer.Write(index, 2);
ASSERT_EQ(decoder.ReadTypedValue(&tv), false);
// test missing elements
buffer.Clear();
buffer.Write(headers[i], headers_len[i]);
for (uint8_t j = 0; j < 14; ++j) {
buffer.Write(index, 2);
buffer.Write(&j, 1);
}
ASSERT_EQ(decoder.ReadTypedValue(&tv), false);
// test elements with same index
buffer.Clear();
buffer.Write(headers[i], headers_len[i]);
for (uint8_t j = 0; j < 15; ++j) {
uint8_t tmp = 'a' + j;
buffer.Write(index, 2);
buffer.Write(&j, 1);
}
ASSERT_EQ(decoder.ReadTypedValue(&tv), false);
// test all ok
buffer.Clear();
buffer.Write(headers[i], headers_len[i]);
for (uint8_t j = 0; j < 15; ++j) {
uint8_t tmp = 'a' + j;
buffer.Write(index, 1);
buffer.Write(&tmp, 1);
buffer.Write(&j, 1);
}
ASSERT_EQ(decoder.ReadTypedValue(&tv), true);
ASSERT_EQ(tv.type(), TypedValue::Type::Map);
std::map<std::string, TypedValue> &val = tv.Value<std::map<std::string, TypedValue>>();
ASSERT_EQ(val.size(), 15);
for (int j = 0; j < 15; ++j) {
char tmp_chr = 'a' + j;
TypedValue tmp_tv = val[std::string(1, tmp_chr)];
EXPECT_EQ(tmp_tv.type(), TypedValue::Type::Int);
EXPECT_EQ(tmp_tv.Value<int64_t>(), j);
}
}
}
TEST(BoltDecoder, Vertex) {
TestDecoderBuffer buffer;
DecoderT decoder(buffer);
communication::bolt::DecodedVertex dv;
uint8_t header[] = "\xB3\x4E";
uint8_t wrong_header[] = "\x00\x00";
uint8_t test_int[] = "\x01";
uint8_t test_str[] = "\x81\x61";
uint8_t test_list[] = "\x91";
uint8_t test_map[] = "\xA1";
// test missing signature
buffer.Clear();
buffer.Write(wrong_header, 1);
ASSERT_EQ(decoder.ReadVertex(&dv), false);
// test wrong marker
buffer.Clear();
buffer.Write(wrong_header, 2);
ASSERT_EQ(decoder.ReadVertex(&dv), false);
// test wrong signature
buffer.Clear();
buffer.Write(header, 1);
buffer.Write(wrong_header, 1);
ASSERT_EQ(decoder.ReadVertex(&dv), false);
// test ID wrong type
buffer.Clear();
buffer.Write(header, 2);
buffer.Write(test_str, 2);
ASSERT_EQ(decoder.ReadVertex(&dv), false);
// test labels wrong outer type
buffer.Clear();
buffer.Write(header, 2);
buffer.Write(test_int, 1);
buffer.Write(test_int, 1);
ASSERT_EQ(decoder.ReadVertex(&dv), false);
// test labels wrong inner type
buffer.Clear();
buffer.Write(header, 2);
buffer.Write(test_int, 1);
buffer.Write(test_list, 1);
buffer.Write(test_int, 1);
ASSERT_EQ(decoder.ReadVertex(&dv), false);
// test properties wrong outer type
buffer.Clear();
buffer.Write(header, 2);
buffer.Write(test_int, 1);
buffer.Write(test_list, 1);
buffer.Write(test_str, 2);
ASSERT_EQ(decoder.ReadVertex(&dv), false);
// test all ok
buffer.Clear();
buffer.Write(header, 2);
buffer.Write(test_int, 1);
buffer.Write(test_list, 1);
buffer.Write(test_str, 2);
buffer.Write(test_map, 1);
buffer.Write(test_str, 2);
buffer.Write(test_int, 1);
ASSERT_EQ(decoder.ReadVertex(&dv), true);
ASSERT_EQ(dv.id, 1);
ASSERT_EQ(dv.labels[0], std::string("a"));
ASSERT_EQ(dv.properties[std::string("a")].Value<int64_t>(), 1);
}
TEST(BoltDecoder, Edge) {
TestDecoderBuffer buffer;
DecoderT decoder(buffer);
communication::bolt::DecodedEdge de;
uint8_t header[] = "\xB5\x52";
uint8_t wrong_header[] = "\x00\x00";
uint8_t test_int1[] = "\x01";
uint8_t test_int2[] = "\x02";
uint8_t test_int3[] = "\x03";
uint8_t test_str[] = "\x81\x61";
uint8_t test_list[] = "\x91";
uint8_t test_map[] = "\xA1";
// test missing signature
buffer.Clear();
buffer.Write(wrong_header, 1);
ASSERT_EQ(decoder.ReadEdge(&de), false);
// test wrong marker
buffer.Clear();
buffer.Write(wrong_header, 2);
ASSERT_EQ(decoder.ReadEdge(&de), false);
// test wrong signature
buffer.Clear();
buffer.Write(header, 1);
buffer.Write(wrong_header, 1);
ASSERT_EQ(decoder.ReadEdge(&de), false);
// test ID wrong type
buffer.Clear();
buffer.Write(header, 2);
buffer.Write(test_str, 2);
ASSERT_EQ(decoder.ReadEdge(&de), false);
// test from_id wrong type
buffer.Clear();
buffer.Write(header, 2);
buffer.Write(test_int1, 1);
buffer.Write(test_str, 2);
ASSERT_EQ(decoder.ReadEdge(&de), false);
// test to_id wrong type
buffer.Clear();
buffer.Write(header, 2);
buffer.Write(test_int1, 1);
buffer.Write(test_int2, 1);
buffer.Write(test_str, 2);
ASSERT_EQ(decoder.ReadEdge(&de), false);
// test type wrong type
buffer.Clear();
buffer.Write(header, 2);
buffer.Write(test_int1, 1);
buffer.Write(test_int2, 1);
buffer.Write(test_int3, 1);
buffer.Write(test_int1, 1);
ASSERT_EQ(decoder.ReadEdge(&de), false);
// test properties wrong outer type
buffer.Clear();
buffer.Write(header, 2);
buffer.Write(test_int1, 1);
buffer.Write(test_int2, 1);
buffer.Write(test_int3, 1);
buffer.Write(test_str, 2);
buffer.Write(test_int1, 1);
ASSERT_EQ(decoder.ReadEdge(&de), false);
// test all ok
buffer.Clear();
buffer.Write(header, 2);
buffer.Write(test_int1, 1);
buffer.Write(test_int2, 1);
buffer.Write(test_int3, 1);
buffer.Write(test_str, 2);
buffer.Write(test_map, 1);
buffer.Write(test_str, 2);
buffer.Write(test_int1, 1);
ASSERT_EQ(decoder.ReadEdge(&de), true);
ASSERT_EQ(de.id, 1);
ASSERT_EQ(de.from, 2);
ASSERT_EQ(de.to, 3);
ASSERT_EQ(de.type, std::string("a"));
ASSERT_EQ(de.properties[std::string("a")].Value<int64_t>(), 1);
}
int main(int argc, char **argv) {
InitializeData(data, SIZE);
logging::init_sync();
logging::log->pipe(std::make_unique<Stdout>());
::testing::InitGoogleTest(&argc, argv);
return RUN_ALL_TESTS();
}