926 lines
36 KiB
Python
Executable File
926 lines
36 KiB
Python
Executable File
#!/usr/bin/env python3
|
|
|
|
# Copyright 2023 Memgraph Ltd.
|
|
#
|
|
# Use of this software is governed by the Business Source License
|
|
# included in the file licenses/BSL.txt; by using this file, you agree to be bound by the terms of the Business Source
|
|
# License, and you may not use this file except in compliance with the Business Source License.
|
|
#
|
|
# As of the Change Date specified in that file, in accordance with
|
|
# the Business Source License, use of this software will be governed
|
|
# by the Apache License, Version 2.0, included in the file
|
|
# licenses/APL.txt.
|
|
|
|
import argparse
|
|
import json
|
|
import multiprocessing
|
|
import pathlib
|
|
import platform
|
|
import random
|
|
import sys
|
|
import time
|
|
from copy import deepcopy
|
|
from typing import Dict, List
|
|
|
|
import helpers
|
|
import log
|
|
import runners
|
|
import setup
|
|
from benchmark_context import BenchmarkContext
|
|
from benchmark_results import BenchmarkResults
|
|
from constants import *
|
|
from workload_mode import BENCHMARK_MODE_MIXED, BENCHMARK_MODE_REALISTIC
|
|
from workloads import *
|
|
|
|
WARMUP_TO_HOT_QUERIES = [
|
|
("CREATE ();", {}),
|
|
("CREATE ()-[:TempEdge]->();", {}),
|
|
("MATCH (n) RETURN count(n.prop) LIMIT 1;", {}),
|
|
]
|
|
|
|
SETUP_AUTH_QUERIES = [
|
|
("CREATE USER user IDENTIFIED BY 'test';", {}),
|
|
("GRANT ALL PRIVILEGES TO user;", {}),
|
|
("GRANT CREATE_DELETE ON EDGE_TYPES * TO user;", {}),
|
|
("GRANT CREATE_DELETE ON LABELS * TO user;", {}),
|
|
]
|
|
|
|
CLEANUP_AUTH_QUERIES = [
|
|
("REVOKE LABELS * FROM user;", {}),
|
|
("REVOKE EDGE_TYPES * FROM user;", {}),
|
|
("DROP USER user;", {}),
|
|
]
|
|
|
|
SETUP_DISK_STORAGE = [
|
|
("STORAGE MODE ON_DISK_TRANSACTIONAL;", {}),
|
|
]
|
|
|
|
SETUP_IN_MEMORY_ANALYTICAL_STORAGE_MODE = [
|
|
("STORAGE MODE IN_MEMORY_ANALYTICAL;", {}),
|
|
]
|
|
|
|
|
|
def parse_args():
|
|
parser = argparse.ArgumentParser(description="Main parser.", add_help=False)
|
|
benchmark_parser = argparse.ArgumentParser(description="Benchmark arguments parser", add_help=False)
|
|
|
|
benchmark_parser.add_argument(
|
|
"benchmarks",
|
|
nargs="*",
|
|
default=None,
|
|
help="descriptions of benchmarks that should be run; "
|
|
"multiple descriptions can be specified to run multiple "
|
|
"benchmarks; the description is specified as "
|
|
"dataset/variant/group/query; Unix shell-style wildcards "
|
|
"can be used in the descriptions; variant, group and query "
|
|
"are optional and they can be left out; the default "
|
|
"variant is '' which selects the default dataset variant; "
|
|
"the default group is '*' which selects all groups; the"
|
|
"default query is '*' which selects all queries",
|
|
)
|
|
|
|
benchmark_parser.add_argument(
|
|
"--num-workers-for-import",
|
|
type=int,
|
|
default=multiprocessing.cpu_count() // 2,
|
|
help="number of workers used to import the dataset",
|
|
)
|
|
benchmark_parser.add_argument(
|
|
"--num-workers-for-benchmark",
|
|
type=int,
|
|
default=1,
|
|
help="number of workers used to execute the benchmark",
|
|
)
|
|
benchmark_parser.add_argument(
|
|
"--single-threaded-runtime-sec",
|
|
type=int,
|
|
default=10,
|
|
help="single threaded duration of each query",
|
|
)
|
|
benchmark_parser.add_argument(
|
|
"--query-count-lower-bound",
|
|
type=int,
|
|
default=30,
|
|
help="Lower bound for query count, minimum number of queries that will be executed. If approximated --single-threaded-runtime-sec query count is lower than this value, lower bound is used.",
|
|
)
|
|
benchmark_parser.add_argument(
|
|
"--no-load-query-counts",
|
|
action="store_true",
|
|
default=False,
|
|
help="disable loading of cached query counts",
|
|
)
|
|
benchmark_parser.add_argument(
|
|
"--no-save-query-counts",
|
|
action="store_true",
|
|
default=False,
|
|
help="disable storing of cached query counts",
|
|
)
|
|
|
|
benchmark_parser.add_argument(
|
|
"--export-results",
|
|
default=None,
|
|
help="file path into which results for in_memory_transactional storage mode should be exported",
|
|
)
|
|
|
|
benchmark_parser.add_argument(
|
|
"--export-results-in-memory-analytical",
|
|
default=None,
|
|
help="File path into which results for in_memory_analytical storage mode should be exported. If set, benchmarks for analytical mode will be run.",
|
|
)
|
|
|
|
benchmark_parser.add_argument(
|
|
"--export-results-on-disk-txn",
|
|
default=None,
|
|
help="File path into which results for on_disk_transactional storage mode should be exported. If set, benchmarks for disk storage will be run.",
|
|
)
|
|
|
|
benchmark_parser.add_argument(
|
|
"--no-authorization",
|
|
action="store_false",
|
|
default=True,
|
|
help="Run each query with authorization",
|
|
)
|
|
|
|
benchmark_parser.add_argument(
|
|
"--warm-up",
|
|
default="cold",
|
|
choices=["cold", "hot", "vulcanic"],
|
|
help="Run different warmups before benchmarks sample starts",
|
|
)
|
|
|
|
benchmark_parser.add_argument(
|
|
"--workload-realistic",
|
|
nargs="*",
|
|
type=int,
|
|
default=None,
|
|
help="""Define combination that defines the realistic workload.
|
|
Realistic workload can be run as a single configuration for all groups of queries,
|
|
Pass the positional arguments as values of what percentage of
|
|
write/read/update/analytical queries you want to have in your workload.
|
|
Example: --workload-realistic 1000 20 70 10 0 will execute 1000 queries, 20% write,
|
|
70% read, 10% update and 0% analytical.""",
|
|
)
|
|
|
|
benchmark_parser.add_argument(
|
|
"--workload-mixed",
|
|
nargs="*",
|
|
type=int,
|
|
default=None,
|
|
help="""Mixed workload can be run on each query under some defined load.
|
|
By passing one more positional argument, you are defining what percentage of that query
|
|
will be in mixed workload, and this is executed for each query. The rest of the queries will be
|
|
selected from the appropriate groups
|
|
Running --mixed-workload 1000 30 0 0 0 70, will execute each query 700 times or 70%,
|
|
with the presence of 300 write queries from write type or 30%""",
|
|
)
|
|
|
|
benchmark_parser.add_argument(
|
|
"--time-depended-execution",
|
|
type=int,
|
|
default=0,
|
|
help="Execute defined number of queries (based on single-threaded-runtime-sec) for a defined duration in of wall-clock time",
|
|
)
|
|
|
|
benchmark_parser.add_argument(
|
|
"--performance-tracking",
|
|
action="store_true",
|
|
default=False,
|
|
help="Flag for runners performance tracking, this logs RES through time and vendor specific performance tracking.",
|
|
)
|
|
|
|
benchmark_parser.add_argument("--customer-workloads", default=None, help="Path to customers workloads")
|
|
|
|
benchmark_parser.add_argument(
|
|
"--vendor-specific",
|
|
nargs="*",
|
|
default=[],
|
|
help="Vendor specific arguments that can be applied to each vendor, format: [key=value, key=value ...]",
|
|
)
|
|
|
|
subparsers = parser.add_subparsers(help="Subparsers", dest="run_option")
|
|
|
|
parser_vendor_native = subparsers.add_parser(
|
|
"vendor-native",
|
|
help="Running database in binary native form",
|
|
parents=[benchmark_parser],
|
|
)
|
|
parser_vendor_native.add_argument(
|
|
"--vendor-name",
|
|
default="memgraph",
|
|
choices=["memgraph", "neo4j"],
|
|
help="Input vendor binary name (memgraph, neo4j)",
|
|
)
|
|
parser_vendor_native.add_argument(
|
|
"--vendor-binary",
|
|
help="Vendor binary used for benchmarking, by default it is memgraph",
|
|
default=helpers.get_binary_path("memgraph"),
|
|
)
|
|
|
|
parser_vendor_native.add_argument(
|
|
"--client-binary",
|
|
default=helpers.get_binary_path("tests/mgbench/client"),
|
|
help="Client binary used for benchmarking",
|
|
)
|
|
|
|
parser_vendor_docker = subparsers.add_parser(
|
|
"vendor-docker", help="Running database in docker", parents=[benchmark_parser]
|
|
)
|
|
parser_vendor_docker.add_argument(
|
|
"--vendor-name",
|
|
default="memgraph",
|
|
choices=["memgraph-docker", "neo4j-docker"],
|
|
help="Input vendor name to run in docker (memgraph-docker, neo4j-docker)",
|
|
)
|
|
|
|
return parser.parse_args()
|
|
|
|
|
|
def sanitize_args(args):
|
|
assert args.benchmarks != None, helpers.list_available_workloads()
|
|
assert args.num_workers_for_import > 0
|
|
assert args.num_workers_for_benchmark > 0
|
|
assert args.export_results != None, "Pass where will results be saved"
|
|
assert args.single_threaded_runtime_sec >= 1, "Low runtime value, consider extending time for more accurate results"
|
|
assert (
|
|
args.workload_realistic == None or args.workload_mixed == None
|
|
), "Cannot run both realistic and mixed workload, only one mode run at the time"
|
|
|
|
|
|
def get_queries(gen, count):
|
|
random.seed(gen.__name__)
|
|
ret = []
|
|
for _ in range(count):
|
|
ret.append(gen())
|
|
return ret
|
|
|
|
|
|
def validate_workload_distribution(percentage_distribution, queries_by_type):
|
|
percentages_by_type = {
|
|
WRITE_TYPE_QUERY: percentage_distribution[0],
|
|
READ_TYPE_QUERY: percentage_distribution[1],
|
|
UPDATE_TYPE_QUERY: percentage_distribution[2],
|
|
ANALYTICAL_TYPE_QUERY: percentage_distribution[3],
|
|
}
|
|
|
|
for key, percentage in percentages_by_type.items():
|
|
if percentage != 0 and len(queries_by_type[key]) == 0:
|
|
raise Exception(
|
|
"There is a missing query in group (write, read, update or analytical) for given workload distribution."
|
|
)
|
|
|
|
|
|
def prepare_for_workload(benchmark_context, dataset, group, queries):
|
|
num_of_queries = benchmark_context.mode_config[0]
|
|
percentage_distribution = benchmark_context.mode_config[1:]
|
|
if sum(percentage_distribution) != 100:
|
|
raise Exception(
|
|
"Please make sure that passed arguments % sum to 100% percent!, passed: ",
|
|
percentage_distribution,
|
|
)
|
|
s = [str(i) for i in benchmark_context.mode_config]
|
|
config_distribution = "_".join(s)
|
|
|
|
queries_by_type = {
|
|
WRITE_TYPE_QUERY: [],
|
|
READ_TYPE_QUERY: [],
|
|
UPDATE_TYPE_QUERY: [],
|
|
ANALYTICAL_TYPE_QUERY: [],
|
|
}
|
|
|
|
for _, funcname in queries[group]:
|
|
for key in queries_by_type.keys():
|
|
if key in funcname:
|
|
queries_by_type[key].append(funcname)
|
|
|
|
percentages_by_type = {
|
|
"write": percentage_distribution[0],
|
|
"read": percentage_distribution[1],
|
|
"update": percentage_distribution[2],
|
|
"analytical": percentage_distribution[3],
|
|
}
|
|
|
|
for key, percentage in percentages_by_type.items():
|
|
if percentage != 0 and len(queries_by_type[key]) == 0:
|
|
raise Exception(
|
|
"There is a missing query in group (write, read, update or analytical) for given workload distribution."
|
|
)
|
|
|
|
validate_workload_distribution(percentage_distribution, queries_by_type)
|
|
random.seed(config_distribution)
|
|
|
|
return config_distribution, queries_by_type, percentages_by_type, percentage_distribution, num_of_queries
|
|
|
|
|
|
def realistic_workload(
|
|
vendor: runners.BaseRunner,
|
|
client: runners.BaseClient,
|
|
dataset,
|
|
group,
|
|
queries,
|
|
benchmark_context: BenchmarkContext,
|
|
results,
|
|
):
|
|
log.log("Executing realistic workload...")
|
|
config_distribution, queries_by_type, _, percentage_distribution, num_of_queries = prepare_for_workload(
|
|
benchmark_context, dataset, group, queries
|
|
)
|
|
|
|
options = [WRITE_TYPE_QUERY, READ_TYPE_QUERY, UPDATE_TYPE_QUERY, ANALYTICAL_TYPE_QUERY]
|
|
function_type = random.choices(population=options, weights=percentage_distribution, k=num_of_queries)
|
|
|
|
prepared_queries = []
|
|
for t in function_type:
|
|
# Get the appropriate functions with same probability
|
|
funcname = random.choices(queries_by_type[t], k=1)[0]
|
|
additional_query = getattr(dataset, funcname)
|
|
prepared_queries.append(additional_query())
|
|
|
|
rss_db = dataset.NAME + dataset.get_variant() + "_" + "realistic" + "_" + config_distribution
|
|
vendor.start_db(rss_db)
|
|
warmup(benchmark_context.warm_up, client=client)
|
|
|
|
ret = client.execute(
|
|
queries=prepared_queries,
|
|
num_workers=benchmark_context.num_workers_for_benchmark,
|
|
)[0]
|
|
|
|
usage_workload = vendor.stop_db(rss_db)
|
|
|
|
realistic_workload_res = {
|
|
COUNT: ret[COUNT],
|
|
DURATION: ret[DURATION],
|
|
RETRIES: ret[RETRIES],
|
|
THROUGHPUT: ret[THROUGHPUT],
|
|
NUM_WORKERS: ret[NUM_WORKERS],
|
|
DATABASE: usage_workload,
|
|
}
|
|
results_key = [
|
|
dataset.NAME,
|
|
dataset.get_variant(),
|
|
group,
|
|
config_distribution,
|
|
WITHOUT_FINE_GRAINED_AUTHORIZATION,
|
|
]
|
|
results.set_value(*results_key, value=realistic_workload_res)
|
|
|
|
|
|
def mixed_workload(
|
|
vendor: runners.BaseRunner,
|
|
client: runners.BaseClient,
|
|
dataset,
|
|
group,
|
|
queries,
|
|
benchmark_context: BenchmarkContext,
|
|
results,
|
|
):
|
|
log.log("Executing mixed workload...")
|
|
(
|
|
config_distribution,
|
|
queries_by_type,
|
|
percentages_by_type,
|
|
percentage_distribution,
|
|
num_of_queries,
|
|
) = prepare_for_workload(benchmark_context, dataset, group, queries)
|
|
|
|
options = [WRITE_TYPE_QUERY, READ_TYPE_QUERY, UPDATE_TYPE_QUERY, ANALYTICAL_TYPE_QUERY, QUERY]
|
|
|
|
for query, funcname in queries[group]:
|
|
log.info(
|
|
"Running query in mixed workload: {}/{}/{}".format(
|
|
group,
|
|
query,
|
|
funcname,
|
|
),
|
|
)
|
|
base_query_type = funcname.rsplit("_", 1)[1]
|
|
if percentages_by_type.get(base_query_type, 0) > 0:
|
|
continue
|
|
|
|
function_type = random.choices(population=options, weights=percentage_distribution, k=num_of_queries)
|
|
|
|
prepared_queries = []
|
|
base_query = getattr(dataset, funcname)
|
|
for t in function_type:
|
|
if t == QUERY:
|
|
prepared_queries.append(base_query())
|
|
else:
|
|
funcname = random.choices(queries_by_type[t], k=1)[0]
|
|
additional_query = getattr(dataset, funcname)
|
|
prepared_queries.append(additional_query())
|
|
|
|
rss_db = dataset.NAME + dataset.get_variant() + "_" + "mixed" + "_" + query + "_" + config_distribution
|
|
vendor.start_db(rss_db)
|
|
warmup(benchmark_context.warm_up, client=client)
|
|
|
|
ret = client.execute(
|
|
queries=prepared_queries,
|
|
num_workers=benchmark_context.num_workers_for_benchmark,
|
|
)[0]
|
|
|
|
usage_workload = vendor.stop_db(rss_db)
|
|
|
|
ret[DATABASE] = usage_workload
|
|
|
|
results_key = [
|
|
dataset.NAME,
|
|
dataset.get_variant(),
|
|
group,
|
|
query + "_" + config_distribution,
|
|
WITHOUT_FINE_GRAINED_AUTHORIZATION,
|
|
]
|
|
results.set_value(*results_key, value=ret)
|
|
|
|
|
|
def warmup(condition: str, client: runners.BaseRunner, queries: list = None):
|
|
if condition == DATABASE_CONDITION_HOT:
|
|
log.log("Execute warm-up to match condition: {} ".format(condition))
|
|
client.execute(
|
|
queries=WARMUP_TO_HOT_QUERIES,
|
|
num_workers=1,
|
|
)
|
|
elif condition == DATABASE_CONDITION_VULCANIC:
|
|
log.log("Execute warm-up to match condition: {} ".format(condition))
|
|
client.execute(queries=queries)
|
|
else:
|
|
log.log("No warm-up on condition: {} ".format(condition))
|
|
log.log("Finished warm-up procedure to match database condition: {} ".format(condition))
|
|
|
|
|
|
def get_query_cache_count(
|
|
vendor: runners.BaseRunner,
|
|
client: runners.BaseClient,
|
|
queries: List,
|
|
benchmark_context: BenchmarkContext,
|
|
workload: str,
|
|
group: str,
|
|
query: str,
|
|
func: str,
|
|
):
|
|
log.init(
|
|
f"Determining query count for benchmark based on --single-threaded-runtime argument = {benchmark_context.single_threaded_runtime_sec}s"
|
|
)
|
|
config_key = [workload.NAME, workload.get_variant(), group, query]
|
|
cached_count = config.get_value(*config_key)
|
|
if cached_count is None:
|
|
vendor.start_db(CACHE)
|
|
client.execute(queries=queries, num_workers=1)
|
|
count = 1
|
|
while True:
|
|
ret = client.execute(queries=get_queries(func, count), num_workers=1)
|
|
duration = ret[0][DURATION]
|
|
should_execute = int(benchmark_context.single_threaded_runtime_sec / (duration / count))
|
|
log.log(
|
|
"Executed_queries={}, total_duration={}, query_duration={}, estimated_count={}".format(
|
|
count, duration, duration / count, should_execute
|
|
)
|
|
)
|
|
if should_execute / (count * 10) < 10:
|
|
count = should_execute
|
|
break
|
|
else:
|
|
count = count * 10
|
|
|
|
vendor.stop_db(CACHE)
|
|
|
|
if count < benchmark_context.query_count_lower_bound:
|
|
count = benchmark_context.query_count_lower_bound
|
|
|
|
config.set_value(
|
|
*config_key,
|
|
value={
|
|
COUNT: count,
|
|
DURATION: benchmark_context.single_threaded_runtime_sec,
|
|
},
|
|
)
|
|
else:
|
|
log.log(
|
|
"Using cached query count of {} queries for {} seconds of single-threaded runtime to extrapolate .".format(
|
|
cached_count[COUNT], cached_count[DURATION]
|
|
),
|
|
)
|
|
count = int(cached_count[COUNT] * benchmark_context.single_threaded_runtime_sec / cached_count[DURATION])
|
|
return count
|
|
|
|
|
|
def check_benchmark_requirements(benchmark_context):
|
|
if setup.check_requirements(benchmark_context):
|
|
log.success("Requirements for starting benchmark satisfied!")
|
|
else:
|
|
log.warning("Requirements for starting benchmark not satisfied!")
|
|
sys.exit(1)
|
|
|
|
|
|
def setup_cache_config(benchmark_context, cache):
|
|
if not benchmark_context.no_load_query_counts:
|
|
log.log("Using previous cached query count data from cache directory.")
|
|
return cache.load_config()
|
|
else:
|
|
return helpers.RecursiveDict()
|
|
|
|
|
|
def save_import_results(workload, results, import_results, rss_usage):
|
|
log.info("Summarized importing benchmark results:")
|
|
import_key = [workload.NAME, workload.get_variant(), IMPORT]
|
|
if import_results != None and rss_usage != None:
|
|
# Display import statistics.
|
|
for row in import_results:
|
|
log.success(
|
|
f"Executed {row[COUNT]} queries in {row[DURATION]} seconds using {row[NUM_WORKERS]} workers with a total throughput of {row[THROUGHPUT]} Q/S."
|
|
)
|
|
|
|
log.success(
|
|
f"The database used {rss_usage[CPU]} seconds of CPU time and peaked at {rss_usage[MEMORY] / (1024 * 1024)} MiB of RAM"
|
|
)
|
|
|
|
results.set_value(*import_key, value={CLIENT: import_results, DATABASE: rss_usage})
|
|
else:
|
|
results.set_value(*import_key, value={CLIENT: CUSTOM_LOAD, DATABASE: CUSTOM_LOAD})
|
|
|
|
|
|
def save_to_results(results, ret, workload, group, query, authorization_mode):
|
|
results_key = [
|
|
workload.NAME,
|
|
workload.get_variant(),
|
|
group,
|
|
query,
|
|
authorization_mode,
|
|
]
|
|
results.set_value(*results_key, value=ret)
|
|
|
|
|
|
def run_isolated_workload_with_authorization(vendor_runner, client, queries, group, workload, results):
|
|
log.init("Running isolated workload with authorization")
|
|
|
|
log.info("Running preprocess AUTH queries")
|
|
vendor_runner.start_db(VENDOR_RUNNER_AUTHORIZATION)
|
|
client.execute(queries=SETUP_AUTH_QUERIES)
|
|
client.set_credentials(username=USERNAME, password=PASSWORD)
|
|
vendor_runner.stop_db(VENDOR_RUNNER_AUTHORIZATION)
|
|
|
|
for query, funcname in queries[group]:
|
|
log.init("Running query:" + "{}/{}/{}/{}".format(group, query, funcname, WITH_FINE_GRAINED_AUTHORIZATION))
|
|
func = getattr(workload, funcname)
|
|
count = get_query_cache_count(
|
|
vendor_runner, client, get_queries(func, 1), benchmark_context, workload, group, query, func
|
|
)
|
|
|
|
vendor_runner.start_db(VENDOR_RUNNER_AUTHORIZATION)
|
|
start_time = time.time()
|
|
warmup(condition=benchmark_context.warm_up, client=client, queries=get_queries(func, count))
|
|
|
|
ret = client.execute(
|
|
queries=get_queries(func, count),
|
|
num_workers=benchmark_context.num_workers_for_benchmark,
|
|
)[0]
|
|
usage = vendor_runner.stop_db(VENDOR_RUNNER_AUTHORIZATION)
|
|
time_elapsed = time.time() - start_time
|
|
log.info(f"Benchmark execution of query {funcname} finished in {time_elapsed} seconds.")
|
|
|
|
ret[DATABASE] = usage
|
|
log_metrics_summary(ret, usage)
|
|
log_metadata_summary(ret)
|
|
log.success("Throughput: {:02f} QPS".format(ret[THROUGHPUT]))
|
|
save_to_results(results, ret, workload, group, query, WITH_FINE_GRAINED_AUTHORIZATION)
|
|
|
|
vendor_runner.start_db(VENDOR_RUNNER_AUTHORIZATION)
|
|
log.info("Running cleanup of auth queries")
|
|
ret = client.execute(queries=CLEANUP_AUTH_QUERIES)
|
|
vendor_runner.stop_db(VENDOR_RUNNER_AUTHORIZATION)
|
|
|
|
|
|
def run_isolated_workload_without_authorization(vendor_runner, client, queries, group, workload, results):
|
|
log.init("Running isolated workload without authorization")
|
|
for query, funcname in queries[group]:
|
|
log.init(
|
|
"Running query:" + "{}/{}/{}/{}".format(group, query, funcname, WITHOUT_FINE_GRAINED_AUTHORIZATION),
|
|
)
|
|
func = getattr(workload, funcname)
|
|
count = get_query_cache_count(
|
|
vendor_runner, client, get_queries(func, 1), benchmark_context, workload, group, query, func
|
|
)
|
|
|
|
# Benchmark run.
|
|
sample_query = get_queries(func, 1)[0][0]
|
|
log.info("Sample query:{}".format(sample_query))
|
|
log.log(
|
|
"Executing benchmark with {} queries that should yield a single-threaded runtime of {} seconds.".format(
|
|
count, benchmark_context.single_threaded_runtime_sec
|
|
)
|
|
)
|
|
log.log("Queries are executed using {} concurrent clients".format(benchmark_context.num_workers_for_benchmark))
|
|
|
|
start_time = time.time()
|
|
rss_db = workload.NAME + workload.get_variant() + "_" + "_" + benchmark_context.mode + "_" + query
|
|
vendor_runner.start_db(rss_db)
|
|
warmup(condition=benchmark_context.warm_up, client=client, queries=get_queries(func, count))
|
|
log.init("Executing benchmark queries...")
|
|
ret = client.execute(
|
|
queries=get_queries(func, count),
|
|
num_workers=benchmark_context.num_workers_for_benchmark,
|
|
time_dependent_execution=benchmark_context.time_dependent_execution,
|
|
)[0]
|
|
|
|
time_elapsed = time.time() - start_time
|
|
|
|
log.info(f"Benchmark execution of query {funcname} finished in {time_elapsed} seconds.")
|
|
usage = vendor_runner.stop_db(rss_db)
|
|
|
|
ret[DATABASE] = usage
|
|
log_output_summary(benchmark_context, ret, usage, funcname, sample_query)
|
|
|
|
save_to_results(results, ret, workload, group, query, WITHOUT_FINE_GRAINED_AUTHORIZATION)
|
|
|
|
|
|
def setup_indices_and_import_dataset(client, vendor_runner, generated_queries, workload, storage_mode):
|
|
if benchmark_context.vendor_name == "memgraph":
|
|
# Neo4j will get started just before import -> without this if statement it would try to start it twice
|
|
vendor_runner.start_db_init(VENDOR_RUNNER_IMPORT)
|
|
log.info("Executing database index setup")
|
|
start_time = time.time()
|
|
import_results = None
|
|
if generated_queries:
|
|
client.execute(queries=workload.indexes_generator(), num_workers=1)
|
|
log.info("Finished setting up indexes.")
|
|
log.info("Started importing dataset")
|
|
import_results = client.execute(queries=generated_queries, num_workers=benchmark_context.num_workers_for_import)
|
|
else:
|
|
log.info("Using workload information for importing dataset and creating indices")
|
|
log.info("Preparing workload: " + workload.NAME + "/" + workload.get_variant())
|
|
workload.prepare(cache.cache_directory("datasets", workload.NAME, workload.get_variant()))
|
|
imported = workload.custom_import()
|
|
if not imported:
|
|
client.execute(file_path=workload.get_index(), num_workers=1)
|
|
log.info("Finished setting up indexes.")
|
|
log.info("Started importing dataset")
|
|
if storage_mode == ON_DISK_TRANSACTIONAL:
|
|
import_results = client.execute(file_path=workload.get_node_file(), num_workers=1)
|
|
import_results = client.execute(file_path=workload.get_edge_file(), num_workers=1)
|
|
else:
|
|
import_results = client.execute(
|
|
file_path=workload.get_file(), num_workers=benchmark_context.num_workers_for_import
|
|
)
|
|
else:
|
|
log.info("Custom import executed")
|
|
|
|
log.info(f"Finished importing dataset in {time.time() - start_time}s")
|
|
rss_usage = vendor_runner.stop_db_init(VENDOR_RUNNER_IMPORT)
|
|
|
|
return import_results, rss_usage
|
|
|
|
|
|
def run_target_workload(benchmark_context, workload, bench_queries, vendor_runner, client, results, storage_mode):
|
|
generated_queries = workload.dataset_generator()
|
|
import_results, rss_usage = setup_indices_and_import_dataset(
|
|
client, vendor_runner, generated_queries, workload, storage_mode
|
|
)
|
|
save_import_results(workload, results, import_results, rss_usage)
|
|
|
|
for group in sorted(bench_queries.keys()):
|
|
log.init(f"\nRunning benchmark in {benchmark_context.mode} workload mode for {group} group")
|
|
if benchmark_context.mode == BENCHMARK_MODE_MIXED:
|
|
mixed_workload(vendor_runner, client, workload, group, bench_queries, benchmark_context, results)
|
|
elif benchmark_context.mode == BENCHMARK_MODE_REALISTIC:
|
|
realistic_workload(vendor_runner, client, workload, group, bench_queries, benchmark_context, results)
|
|
else:
|
|
run_isolated_workload_without_authorization(vendor_runner, client, bench_queries, group, workload, results)
|
|
|
|
if benchmark_context.no_authorization:
|
|
run_isolated_workload_with_authorization(vendor_runner, client, bench_queries, group, workload, results)
|
|
|
|
|
|
# TODO: (andi) Reorder functions in top-down notion in order to improve readibility
|
|
def run_target_workloads(benchmark_context, target_workloads, bench_results):
|
|
for workload, bench_queries in target_workloads:
|
|
log.info(f"Started running {str(workload.NAME)} workload")
|
|
|
|
benchmark_context.set_active_workload(workload.NAME)
|
|
benchmark_context.set_active_variant(workload.get_variant())
|
|
|
|
if workload.is_disk_workload() and benchmark_context.export_results_on_disk_txn:
|
|
run_on_disk_transactional_benchmark(benchmark_context, workload, bench_queries, bench_results.disk_results)
|
|
else:
|
|
run_in_memory_transactional_benchmark(
|
|
benchmark_context, workload, bench_queries, bench_results.in_memory_txn_results
|
|
)
|
|
|
|
if benchmark_context.export_results_in_memory_analytical:
|
|
run_in_memory_analytical_benchmark(
|
|
benchmark_context, workload, bench_queries, bench_results.in_memory_analytical_results
|
|
)
|
|
|
|
|
|
def run_on_disk_transactional_benchmark(benchmark_context, workload, bench_queries, disk_results):
|
|
log.info(f"Running benchmarks for {ON_DISK_TRANSACTIONAL} storage mode.")
|
|
disk_vendor_runner, disk_client = client_runner_factory(benchmark_context)
|
|
disk_vendor_runner.start_db(DISK_PREPARATION_RSS)
|
|
disk_client.execute(queries=SETUP_DISK_STORAGE)
|
|
disk_vendor_runner.stop_db(DISK_PREPARATION_RSS)
|
|
run_target_workload(
|
|
benchmark_context, workload, bench_queries, disk_vendor_runner, disk_client, disk_results, ON_DISK_TRANSACTIONAL
|
|
)
|
|
log.info(f"Finished running benchmarks for {ON_DISK_TRANSACTIONAL} storage mode.")
|
|
|
|
|
|
def run_in_memory_analytical_benchmark(benchmark_context, workload, bench_queries, in_memory_analytical_results):
|
|
log.info(f"Running benchmarks for {IN_MEMORY_ANALYTICAL} storage mode.")
|
|
in_memory_analytical_vendor_runner, in_memory_analytical_client = client_runner_factory(benchmark_context)
|
|
in_memory_analytical_vendor_runner.start_db(IN_MEMORY_ANALYTICAL_RSS)
|
|
in_memory_analytical_client.execute(queries=SETUP_IN_MEMORY_ANALYTICAL_STORAGE_MODE)
|
|
in_memory_analytical_vendor_runner.stop_db(IN_MEMORY_ANALYTICAL_RSS)
|
|
run_target_workload(
|
|
benchmark_context,
|
|
workload,
|
|
bench_queries,
|
|
in_memory_analytical_vendor_runner,
|
|
in_memory_analytical_client,
|
|
in_memory_analytical_results,
|
|
IN_MEMORY_ANALYTICAL,
|
|
)
|
|
log.info(f"Finished running benchmarks for {IN_MEMORY_ANALYTICAL} storage mode.")
|
|
|
|
|
|
def run_in_memory_transactional_benchmark(benchmark_context, workload, bench_queries, in_memory_txn_results):
|
|
log.info(f"Running benchmarks for {IN_MEMORY_TRANSACTIONAL} storage mode.")
|
|
in_memory_txn_vendor_runner, in_memory_txn_client = client_runner_factory(benchmark_context)
|
|
run_target_workload(
|
|
benchmark_context,
|
|
workload,
|
|
bench_queries,
|
|
in_memory_txn_vendor_runner,
|
|
in_memory_txn_client,
|
|
in_memory_txn_results,
|
|
IN_MEMORY_TRANSACTIONAL,
|
|
)
|
|
log.info(f"Finished running benchmarks for {IN_MEMORY_TRANSACTIONAL} storage mode.")
|
|
|
|
|
|
def client_runner_factory(benchmark_context):
|
|
vendor_runner = runners.BaseRunner.create(benchmark_context=benchmark_context)
|
|
vendor_runner.clean_db()
|
|
log.log("Database cleaned from any previous data")
|
|
client = vendor_runner.fetch_client()
|
|
return vendor_runner, client
|
|
|
|
|
|
def validate_target_workloads(benchmark_context, target_workloads):
|
|
if len(target_workloads) == 0:
|
|
log.error("No workloads matched the pattern: " + str(benchmark_context.benchmark_target_workload))
|
|
log.error("Please check the pattern and workload NAME property, query group and query name.")
|
|
log.info("Currently available workloads: ")
|
|
log.log(helpers.list_available_workloads(benchmark_context.customer_workloads))
|
|
sys.exit(1)
|
|
|
|
|
|
def log_benchmark_summary(results: Dict, storage_mode):
|
|
log.log("\n")
|
|
log.summary(f"Benchmark summary of {storage_mode} mode")
|
|
log.log("-" * 120)
|
|
log.summary("{:<20} {:>30} {:>30}".format("Query name", "Throughput", "Peak Memory usage"))
|
|
for dataset, variants in results.items():
|
|
if dataset == RUN_CONFIGURATION:
|
|
continue
|
|
for groups in variants.values():
|
|
for group, queries in groups.items():
|
|
if group == IMPORT:
|
|
continue
|
|
for query, auth in queries.items():
|
|
for value in auth.values():
|
|
log.log("-" * 120)
|
|
log.summary(
|
|
"{:<20} {:>26.2f} QPS {:>27.2f} MB".format(
|
|
query, value[THROUGHPUT], value[DATABASE][MEMORY] / (1024.0 * 1024.0)
|
|
)
|
|
)
|
|
log.log("-" * 90)
|
|
|
|
|
|
def log_benchmark_arguments(benchmark_context):
|
|
log.init("Executing benchmark with following arguments: ")
|
|
for key, value in benchmark_context.__dict__.items():
|
|
log.log("{:<30} : {:<30}".format(str(key), str(value)))
|
|
|
|
|
|
def log_metrics_summary(ret, usage):
|
|
log.log("Executed {} queries in {} seconds.".format(ret[COUNT], ret[DURATION]))
|
|
log.log("Queries have been retried {} times".format(ret[RETRIES]))
|
|
log.log("Database used {:.3f} seconds of CPU time.".format(usage[CPU]))
|
|
log.info("Database peaked at {:.3f} MiB of memory.".format(usage[MEMORY] / (1024.0 * 1024.0)))
|
|
|
|
|
|
def log_metadata_summary(ret):
|
|
log.log("{:<31} {:>20} {:>20} {:>20}".format("Metadata:", "min", "avg", "max"))
|
|
metadata = ret[METADATA]
|
|
for key in sorted(metadata.keys()):
|
|
log.log(
|
|
"{name:>30}: {minimum:>20.06f} {average:>20.06f} " "{maximum:>20.06f}".format(name=key, **metadata[key])
|
|
)
|
|
|
|
|
|
def log_output_summary(benchmark_context, ret, usage, funcname, sample_query):
|
|
log_metrics_summary(ret, usage)
|
|
if DOCKER not in benchmark_context.vendor_name:
|
|
log_metadata_summary(ret)
|
|
|
|
log.info("\nResult:")
|
|
log.info(funcname)
|
|
log.info(sample_query)
|
|
log.success("Latency statistics:")
|
|
for key, value in ret[LATENCY_STATS].items():
|
|
if key == ITERATIONS:
|
|
log.success("{:<10} {:>10}".format(key, value))
|
|
else:
|
|
log.success("{:<10} {:>10.06f} seconds".format(key, value))
|
|
log.success("Throughput: {:02f} QPS\n\n".format(ret[THROUGHPUT]))
|
|
|
|
|
|
if __name__ == "__main__":
|
|
args = parse_args()
|
|
sanitize_args(args)
|
|
vendor_specific_args = helpers.parse_kwargs(args.vendor_specific)
|
|
|
|
temp_dir = pathlib.Path.cwd() / ".temp"
|
|
temp_dir.mkdir(parents=True, exist_ok=True)
|
|
|
|
benchmark_context = BenchmarkContext(
|
|
benchmark_target_workload=args.benchmarks,
|
|
vendor_binary=args.vendor_binary if args.run_option == "vendor-native" else None,
|
|
vendor_name=args.vendor_name.replace("-", ""),
|
|
client_binary=args.client_binary if args.run_option == "vendor-native" else None,
|
|
num_workers_for_import=args.num_workers_for_import,
|
|
num_workers_for_benchmark=args.num_workers_for_benchmark,
|
|
single_threaded_runtime_sec=args.single_threaded_runtime_sec,
|
|
query_count_lower_bound=args.query_count_lower_bound,
|
|
no_load_query_counts=args.no_load_query_counts,
|
|
export_results=args.export_results,
|
|
export_results_in_memory_analytical=args.export_results_in_memory_analytical,
|
|
export_results_on_disk_txn=args.export_results_on_disk_txn,
|
|
temporary_directory=temp_dir.absolute(),
|
|
workload_mixed=args.workload_mixed,
|
|
workload_realistic=args.workload_realistic,
|
|
time_dependent_execution=args.time_depended_execution,
|
|
warm_up=args.warm_up,
|
|
performance_tracking=args.performance_tracking,
|
|
no_authorization=args.no_authorization,
|
|
customer_workloads=args.customer_workloads,
|
|
vendor_args=vendor_specific_args,
|
|
)
|
|
|
|
log_benchmark_arguments(benchmark_context)
|
|
check_benchmark_requirements(benchmark_context)
|
|
|
|
cache = helpers.Cache()
|
|
log.log("Creating cache folder for dataset, configurations, indexes and results.")
|
|
log.log("Cache folder in use: " + cache.get_default_cache_directory())
|
|
config = setup_cache_config(benchmark_context, cache)
|
|
|
|
in_memory_txn_run_config = {
|
|
VENDOR: benchmark_context.vendor_name,
|
|
CONDITION: benchmark_context.warm_up,
|
|
NUM_WORKERS_FOR_BENCHMARK: benchmark_context.num_workers_for_benchmark,
|
|
SINGLE_THREADED_RUNTIME_SEC: benchmark_context.single_threaded_runtime_sec,
|
|
BENCHMARK_MODE: benchmark_context.mode,
|
|
BENCHMARK_MODE_CONFIG: benchmark_context.mode_config,
|
|
PLATFORM: platform.platform(),
|
|
STORAGE_MODE: IN_MEMORY_TRANSACTIONAL,
|
|
}
|
|
|
|
in_memory_analytical_run_config = deepcopy(in_memory_txn_run_config)
|
|
in_memory_analytical_run_config[STORAGE_MODE] = IN_MEMORY_ANALYTICAL
|
|
|
|
on_disk_transactional_run_config = deepcopy(in_memory_txn_run_config)
|
|
on_disk_transactional_run_config[STORAGE_MODE] = ON_DISK_TRANSACTIONAL
|
|
|
|
bench_results = BenchmarkResults()
|
|
bench_results.in_memory_txn_results.set_value(RUN_CONFIGURATION, value=in_memory_txn_run_config)
|
|
bench_results.in_memory_analytical_results.set_value(RUN_CONFIGURATION, value=in_memory_analytical_run_config)
|
|
bench_results.disk_results.set_value(RUN_CONFIGURATION, value=on_disk_transactional_run_config)
|
|
|
|
available_workloads = helpers.get_available_workloads(benchmark_context.customer_workloads)
|
|
|
|
# Filter out the workloads based on the pattern
|
|
# TODO (andi) Maybe here filter workloads if working on disk storage.
|
|
target_workloads = helpers.filter_workloads(
|
|
available_workloads=available_workloads, benchmark_context=benchmark_context
|
|
)
|
|
|
|
validate_target_workloads(benchmark_context, target_workloads)
|
|
run_target_workloads(benchmark_context, target_workloads, bench_results)
|
|
|
|
if not benchmark_context.no_save_query_counts:
|
|
cache.save_config(config)
|
|
|
|
log_benchmark_summary(bench_results.in_memory_txn_results.get_data(), IN_MEMORY_TRANSACTIONAL)
|
|
if benchmark_context.export_results:
|
|
with open(benchmark_context.export_results, "w") as f:
|
|
json.dump(bench_results.in_memory_txn_results.get_data(), f)
|
|
|
|
log_benchmark_summary(bench_results.in_memory_analytical_results.get_data(), IN_MEMORY_ANALYTICAL)
|
|
if benchmark_context.export_results_in_memory_analytical:
|
|
with open(benchmark_context.export_results_in_memory_analytical, "w") as f:
|
|
json.dump(bench_results.in_memory_analytical_results.get_data(), f)
|
|
|
|
log_benchmark_summary(bench_results.disk_results.get_data(), ON_DISK_TRANSACTIONAL)
|
|
if benchmark_context.export_results_on_disk_txn:
|
|
with open(benchmark_context.export_results_on_disk_txn, "w") as f:
|
|
json.dump(bench_results.disk_results.get_data(), f)
|