memgraph/tests/unit/interpreter.cpp
Teon Banek 6427902920 Extract distributed interpretation out of Interpreter
Reviewers: mtomic, mferencevic, msantl, buda

Reviewed By: buda

Subscribers: pullbot

Differential Revision: https://phabricator.memgraph.io/D1560
2018-08-27 09:31:39 +02:00

306 lines
10 KiB
C++

#include <cstdlib>
#include "communication/result_stream_faker.hpp"
#include "database/graph_db_accessor.hpp"
#include "gmock/gmock.h"
#include "gtest/gtest.h"
#include "query/exceptions.hpp"
#include "query/interpreter.hpp"
#include "query/typed_value.hpp"
#include "query_common.hpp"
// TODO: This is not a unit test, but tests/integration dir is chaotic at the
// moment. After tests refactoring is done, move/rename this.
class InterpreterTest : public ::testing::Test {
protected:
database::SingleNode db_;
query::Interpreter interpreter_;
auto Interpret(const std::string &query,
const std::map<std::string, query::TypedValue> &params = {}) {
auto dba = db_.Access();
ResultStreamFaker<query::TypedValue> stream;
auto results = interpreter_(query, *dba, params, false);
stream.Header(results.header());
results.PullAll(stream);
stream.Summary(results.summary());
return stream;
}
};
// Run query with different ast twice to see if query executes correctly when
// ast is read from cache.
TEST_F(InterpreterTest, AstCache) {
{
auto stream = Interpret("RETURN 2 + 3");
ASSERT_EQ(stream.GetHeader().size(), 1U);
EXPECT_EQ(stream.GetHeader()[0], "2 + 3");
ASSERT_EQ(stream.GetResults().size(), 1U);
ASSERT_EQ(stream.GetResults()[0].size(), 1U);
ASSERT_EQ(stream.GetResults()[0][0].Value<int64_t>(), 5);
}
{
// Cached ast, different literals.
auto stream = Interpret("RETURN 5 + 4");
ASSERT_EQ(stream.GetResults().size(), 1U);
ASSERT_EQ(stream.GetResults()[0].size(), 1U);
ASSERT_EQ(stream.GetResults()[0][0].Value<int64_t>(), 9);
}
{
// Different ast (because of different types).
auto stream = Interpret("RETURN 5.5 + 4");
ASSERT_EQ(stream.GetResults().size(), 1U);
ASSERT_EQ(stream.GetResults()[0].size(), 1U);
ASSERT_EQ(stream.GetResults()[0][0].Value<double>(), 9.5);
}
{
// Cached ast, same literals.
auto stream = Interpret("RETURN 2 + 3");
ASSERT_EQ(stream.GetResults().size(), 1U);
ASSERT_EQ(stream.GetResults()[0].size(), 1U);
ASSERT_EQ(stream.GetResults()[0][0].Value<int64_t>(), 5);
}
{
// Cached ast, different literals.
auto stream = Interpret("RETURN 10.5 + 1");
ASSERT_EQ(stream.GetResults().size(), 1U);
ASSERT_EQ(stream.GetResults()[0].size(), 1U);
ASSERT_EQ(stream.GetResults()[0][0].Value<double>(), 11.5);
}
{
// Cached ast, same literals, different whitespaces.
auto stream = Interpret("RETURN 10.5 + 1");
ASSERT_EQ(stream.GetResults().size(), 1U);
ASSERT_EQ(stream.GetResults()[0].size(), 1U);
ASSERT_EQ(stream.GetResults()[0][0].Value<double>(), 11.5);
}
{
// Cached ast, same literals, different named header.
auto stream = Interpret("RETURN 10.5+1");
ASSERT_EQ(stream.GetHeader().size(), 1U);
EXPECT_EQ(stream.GetHeader()[0], "10.5+1");
ASSERT_EQ(stream.GetResults().size(), 1U);
ASSERT_EQ(stream.GetResults()[0].size(), 1U);
ASSERT_EQ(stream.GetResults()[0][0].Value<double>(), 11.5);
}
}
// Run query with same ast multiple times with different parameters.
TEST_F(InterpreterTest, Parameters) {
{
auto stream = Interpret("RETURN $2 + $`a b`", {{"2", 10}, {"a b", 15}});
ASSERT_EQ(stream.GetHeader().size(), 1U);
EXPECT_EQ(stream.GetHeader()[0], "$2 + $`a b`");
ASSERT_EQ(stream.GetResults().size(), 1U);
ASSERT_EQ(stream.GetResults()[0].size(), 1U);
ASSERT_EQ(stream.GetResults()[0][0].Value<int64_t>(), 25);
}
{
// Not needed parameter.
auto stream =
Interpret("RETURN $2 + $`a b`", {{"2", 10}, {"a b", 15}, {"c", 10}});
ASSERT_EQ(stream.GetHeader().size(), 1U);
EXPECT_EQ(stream.GetHeader()[0], "$2 + $`a b`");
ASSERT_EQ(stream.GetResults().size(), 1U);
ASSERT_EQ(stream.GetResults()[0].size(), 1U);
ASSERT_EQ(stream.GetResults()[0][0].Value<int64_t>(), 25);
}
{
// Cached ast, different parameters.
auto stream = Interpret("RETURN $2 + $`a b`", {{"2", "da"}, {"a b", "ne"}});
ASSERT_EQ(stream.GetResults().size(), 1U);
ASSERT_EQ(stream.GetResults()[0].size(), 1U);
ASSERT_EQ(stream.GetResults()[0][0].Value<std::string>(), "dane");
}
{
// Non-primitive literal.
auto stream = Interpret("RETURN $2",
{{"2", std::vector<query::TypedValue>{5, 2, 3}}});
ASSERT_EQ(stream.GetResults().size(), 1U);
ASSERT_EQ(stream.GetResults()[0].size(), 1U);
auto result = query::test_common::ToList<int64_t>(
stream.GetResults()[0][0].Value<std::vector<query::TypedValue>>());
ASSERT_THAT(result, testing::ElementsAre(5, 2, 3));
}
{
// Cached ast, unprovided parameter.
ASSERT_THROW(Interpret("RETURN $2 + $`a b`", {{"2", "da"}, {"ab", "ne"}}),
query::UnprovidedParameterError);
}
}
// Test bfs end to end.
TEST_F(InterpreterTest, Bfs) {
srand(0);
const auto kNumLevels = 10;
const auto kNumNodesPerLevel = 100;
const auto kNumEdgesPerNode = 100;
const auto kNumUnreachableNodes = 1000;
const auto kNumUnreachableEdges = 100000;
const auto kReachable = "reachable";
const auto kId = "id";
std::vector<std::vector<VertexAccessor>> levels(kNumLevels);
int id = 0;
// Set up.
{
auto dba = db_.Access();
auto add_node = [&](int level, bool reachable) {
auto node = dba->InsertVertex();
node.PropsSet(dba->Property(kId), id++);
node.PropsSet(dba->Property(kReachable), reachable);
levels[level].push_back(node);
return node;
};
auto add_edge = [&](VertexAccessor &v1, VertexAccessor &v2,
bool reachable) {
auto edge = dba->InsertEdge(v1, v2, dba->EdgeType("edge"));
edge.PropsSet(dba->Property(kReachable), reachable);
};
// Add source node.
add_node(0, true);
// Add reachable nodes.
for (int i = 1; i < kNumLevels; ++i) {
for (int j = 0; j < kNumNodesPerLevel; ++j) {
auto node = add_node(i, true);
for (int k = 0; k < kNumEdgesPerNode; ++k) {
auto &node2 = levels[i - 1][rand() % levels[i - 1].size()];
add_edge(node2, node, true);
}
}
}
// Add unreachable nodes.
for (int i = 0; i < kNumUnreachableNodes; ++i) {
auto node = add_node(rand() % kNumLevels, // Not really important.
false);
for (int j = 0; j < kNumEdgesPerNode; ++j) {
auto &level = levels[rand() % kNumLevels];
auto &node2 = level[rand() % level.size()];
add_edge(node2, node, true);
add_edge(node, node2, true);
}
}
// Add unreachable edges.
for (int i = 0; i < kNumUnreachableEdges; ++i) {
auto &level1 = levels[rand() % kNumLevels];
auto &node1 = level1[rand() % level1.size()];
auto &level2 = levels[rand() % kNumLevels];
auto &node2 = level2[rand() % level2.size()];
add_edge(node1, node2, false);
}
dba->Commit();
}
auto dba = db_.Access();
ResultStreamFaker<query::TypedValue> stream;
auto results = interpreter_(
"MATCH (n {id: 0})-[r *bfs..5 (e, n | n.reachable and "
"e.reachable)]->(m) RETURN r",
*dba, {}, false);
stream.Header(results.header());
results.PullAll(stream);
stream.Summary(results.summary());
ASSERT_EQ(stream.GetHeader().size(), 1U);
EXPECT_EQ(stream.GetHeader()[0], "r");
ASSERT_EQ(stream.GetResults().size(), 5 * kNumNodesPerLevel);
int expected_level = 1;
int remaining_nodes_in_level = kNumNodesPerLevel;
std::unordered_set<int64_t> matched_ids;
for (const auto &result : stream.GetResults()) {
const auto &edges =
query::test_common::ToList<EdgeAccessor>(result[0].ValueList());
// Check that path is of expected length. Returned paths should be from
// shorter to longer ones.
EXPECT_EQ(edges.size(), expected_level);
// Check that starting node is correct.
EXPECT_EQ(
edges[0].from().PropsAt(dba->Property(kId)).template Value<int64_t>(),
0);
for (int i = 1; i < static_cast<int>(edges.size()); ++i) {
// Check that edges form a connected path.
EXPECT_EQ(edges[i - 1].to(), edges[i].from());
}
auto matched_id =
edges.back().to().PropsAt(dba->Property(kId)).Value<int64_t>();
// Check that we didn't match that node already.
EXPECT_TRUE(matched_ids.insert(matched_id).second);
// Check that shortest path was found.
EXPECT_TRUE(matched_id > kNumNodesPerLevel * (expected_level - 1) &&
matched_id <= kNumNodesPerLevel * expected_level);
if (!--remaining_nodes_in_level) {
remaining_nodes_in_level = kNumNodesPerLevel;
++expected_level;
}
}
}
TEST_F(InterpreterTest, CreateIndexInMulticommandTransaction) {
ResultStreamFaker<query::TypedValue> stream;
auto dba = db_.Access();
ASSERT_THROW(
interpreter_("CREATE INDEX ON :X(y)", *dba, {}, true).PullAll(stream),
query::IndexInMulticommandTxException);
}
// Test shortest path end to end.
TEST_F(InterpreterTest, ShortestPath) {
{
ResultStreamFaker<query::TypedValue> stream;
auto dba = db_.Access();
interpreter_(
"CREATE (n:A {x: 1}), (m:B {x: 2}), (l:C {x: 1}), (n)-[:r1 {w: 1 "
"}]->(m)-[:r2 {w: 2}]->(l), (n)-[:r3 {w: 4}]->(l)",
*dba, {}, true)
.PullAll(stream);
dba->Commit();
}
ResultStreamFaker<query::TypedValue> stream;
auto dba = db_.Access();
auto results =
interpreter_("MATCH (n)-[e *wshortest 5 (e, n | e.w) ]->(m) return e",
*dba, {}, false);
stream.Header(results.header());
results.PullAll(stream);
stream.Summary(results.summary());
ASSERT_EQ(stream.GetHeader().size(), 1U);
EXPECT_EQ(stream.GetHeader()[0], "e");
ASSERT_EQ(stream.GetResults().size(), 3U);
std::vector<std::vector<std::string>> expected_results{
{"r1"}, {"r2"}, {"r1", "r2"}};
for (const auto &result : stream.GetResults()) {
const auto &edges =
query::test_common::ToList<EdgeAccessor>(result[0].ValueList());
std::vector<std::string> datum;
for (const auto &edge : edges) {
datum.push_back(dba->EdgeTypeName(edge.EdgeType()));
}
bool any_match = false;
for (const auto &expected : expected_results) {
if (expected == datum) {
any_match = true;
break;
}
}
EXPECT_TRUE(any_match);
}
}