memgraph/tests/unit/utils_memory.cpp
Teon Banek 54247fb266 Implement MonotonicBufferResource
Reviewers: mtomic, mferencevic, msantl

Reviewed By: mtomic

Subscribers: pullbot

Differential Revision: https://phabricator.memgraph.io/D1997
2019-05-06 16:02:30 +02:00

149 lines
5.2 KiB
C++

#include <cstdint>
#include <cstring>
#include <limits>
#include <gtest/gtest.h>
#include "utils/memory.hpp"
class TestMemory final : public utils::MemoryResource {
public:
size_t new_count_{0};
size_t delete_count_{0};
private:
void *DoAllocate(size_t bytes, size_t alignment) override {
new_count_++;
EXPECT_TRUE(alignment != 0U && (alignment & (alignment - 1U)) == 0U)
<< "Alignment must be power of 2";
EXPECT_TRUE(alignment <= alignof(std::max_align_t));
EXPECT_NE(bytes, 0);
const size_t pad_size = 32;
EXPECT_TRUE(bytes + pad_size > bytes) << "TestMemory size overflow";
EXPECT_TRUE(bytes + pad_size + alignment > bytes + alignment)
<< "TestMemory size overflow";
EXPECT_TRUE(2U * alignment > alignment) << "TestMemory alignment overflow";
// Allocate a block containing extra alignment and pad_size bytes, but
// aligned to 2 * alignment. Then we can offset the ptr so that it's never
// aligned to 2 * alignment. This ought to make allocator alignment issues
// more obvious.
void *ptr = utils::NewDeleteResource()->Allocate(
alignment + bytes + pad_size, 2U * alignment);
// Clear allocated memory to 0xFF, marking the invalid region.
memset(ptr, 0xFF, alignment + bytes + pad_size);
// Offset the ptr so it's not aligned to 2 * alignment, but still aligned to
// alignment.
ptr = static_cast<char *>(ptr) + alignment;
// Clear the valid region to 0x00, so that we can more easily test that the
// allocator is doing the right thing.
memset(ptr, 0, bytes);
return ptr;
}
void DoDeallocate(void *ptr, size_t bytes, size_t alignment) override {
delete_count_++;
// Dealloate the original ptr, before alignment adjustment.
return utils::NewDeleteResource()->Deallocate(
static_cast<char *>(ptr) - alignment, bytes, alignment);
}
bool DoIsEqual(const utils::MemoryResource &other) const noexcept override {
return this == &other;
}
};
void *CheckAllocation(utils::MemoryResource *mem, size_t bytes,
size_t alignment = alignof(std::max_align_t)) {
void *ptr = mem->Allocate(bytes, alignment);
if (alignment > alignof(std::max_align_t))
alignment = alignof(std::max_align_t);
EXPECT_TRUE(ptr);
EXPECT_EQ(reinterpret_cast<uintptr_t>(ptr) % alignment, 0)
<< "Allocated misaligned pointer!";
// There should be no 0xFF bytes because they are either padded at the end of
// the allocated block or are found in already checked allocations.
EXPECT_FALSE(memchr(ptr, 0xFF, bytes)) << "Invalid memory region!";
// Mark the checked allocation with 0xFF bytes.
memset(ptr, 0xFF, bytes);
return ptr;
}
TEST(MonotonicBufferResource, AllocationWithinInitialSize) {
TestMemory test_mem;
{
utils::MonotonicBufferResource mem(1024, &test_mem);
void *fst_ptr = CheckAllocation(&mem, 24, 1);
void *snd_ptr = CheckAllocation(&mem, 1000, 1);
EXPECT_EQ(test_mem.new_count_, 1);
EXPECT_EQ(test_mem.delete_count_, 0);
mem.Deallocate(snd_ptr, 1000, 1);
mem.Deallocate(fst_ptr, 24, 1);
EXPECT_EQ(test_mem.delete_count_, 0);
mem.Release();
EXPECT_EQ(test_mem.delete_count_, 1);
CheckAllocation(&mem, 1024);
EXPECT_EQ(test_mem.new_count_, 2);
EXPECT_EQ(test_mem.delete_count_, 1);
}
EXPECT_EQ(test_mem.delete_count_, 2);
}
TEST(MonotonicBufferResource, AllocationOverInitialSize) {
TestMemory test_mem;
{
utils::MonotonicBufferResource mem(1024, &test_mem);
CheckAllocation(&mem, 1025, 1);
EXPECT_EQ(test_mem.new_count_, 1);
}
EXPECT_EQ(test_mem.delete_count_, 1);
{
utils::MonotonicBufferResource mem(1024, &test_mem);
// Test with large alignment
CheckAllocation(&mem, 1024, 1024);
EXPECT_EQ(test_mem.new_count_, 2);
}
EXPECT_EQ(test_mem.delete_count_, 2);
}
TEST(MonotonicBufferResource, AllocationOverCapacity) {
TestMemory test_mem;
{
utils::MonotonicBufferResource mem(1024, &test_mem);
CheckAllocation(&mem, 24, 1);
EXPECT_EQ(test_mem.new_count_, 1);
CheckAllocation(&mem, 1000, 64);
EXPECT_EQ(test_mem.new_count_, 2);
EXPECT_EQ(test_mem.delete_count_, 0);
mem.Release();
EXPECT_EQ(test_mem.new_count_, 2);
EXPECT_EQ(test_mem.delete_count_, 2);
CheckAllocation(&mem, 1025, 1);
EXPECT_EQ(test_mem.new_count_, 3);
CheckAllocation(&mem, 1023, 1);
// MonotonicBufferResource state after Release is called may or may not
// allocate a larger block right from the start (i.e. tracked buffer sizes
// before Release may be retained).
EXPECT_TRUE(test_mem.new_count_ >= 3);
}
EXPECT_TRUE(test_mem.delete_count_ >= 3);
}
TEST(MonotonicBufferResource, AllocationWithAlignmentNotPowerOf2) {
utils::MonotonicBufferResource mem(1024);
EXPECT_THROW(mem.Allocate(24, 3), std::bad_alloc);
EXPECT_THROW(mem.Allocate(24, 0), std::bad_alloc);
}
TEST(MonotonicBufferResource, AllocationWithSize0) {
utils::MonotonicBufferResource mem(1024);
EXPECT_THROW(mem.Allocate(0), std::bad_alloc);
}
TEST(MonotonicBufferResource, AllocationWithSizeOverflow) {
size_t max_size = std::numeric_limits<size_t>::max();
utils::MonotonicBufferResource mem(1024);
// Setup so that the next allocation aligning max_size causes overflow.
mem.Allocate(1, 1);
EXPECT_THROW(mem.Allocate(max_size, 4), std::bad_alloc);
}