memgraph/tests/unit/query_plan_accumulate_aggregate.cpp
Marko Budiselić 9d056e7649
Add experimental/v1 of ON_DISK_TRANSACTIONAL storage (#850)
Co-authored-by: Andi Skrgat <andi8647@gmail.com>
Co-authored-by: Aidar Samerkhanov <aidar.samerkhanov@memgraph.io>
2023-06-29 11:44:55 +02:00

1013 lines
43 KiB
C++

// Copyright 2023 Memgraph Ltd.
//
// Use of this software is governed by the Business Source License
// included in the file licenses/BSL.txt; by using this file, you agree to be bound by the terms of the Business Source
// License, and you may not use this file except in compliance with the Business Source License.
//
// As of the Change Date specified in that file, in accordance with
// the Business Source License, use of this software will be governed
// by the Apache License, Version 2.0, included in the file
// licenses/APL.txt.
#include <algorithm>
#include <iterator>
#include <memory>
#include <vector>
#include "disk_test_utils.hpp"
#include "gmock/gmock.h"
#include "gtest/gtest.h"
#include "query/context.hpp"
#include "query/exceptions.hpp"
#include "query/plan/operator.hpp"
#include "query_plan_common.hpp"
#include "storage/v2/disk/storage.hpp"
#include "storage/v2/inmemory/storage.hpp"
using namespace memgraph::query;
using namespace memgraph::query::plan;
using memgraph::query::test_common::ToIntList;
using memgraph::query::test_common::ToIntMap;
using testing::UnorderedElementsAre;
template <typename StorageType>
class QueryPlanTest : public testing::Test {
public:
const std::string testSuite = "query_plan_accumulate_aggregate";
memgraph::storage::Config config = disk_test_utils::GenerateOnDiskConfig(testSuite);
std::unique_ptr<memgraph::storage::Storage> db = std::make_unique<StorageType>(config);
AstStorage storage;
void TearDown() override { CleanStorageDirs(); }
void CleanStorageDirs() {
if (std::is_same<StorageType, memgraph::storage::DiskStorage>::value) {
disk_test_utils::RemoveRocksDbDirs(testSuite);
}
}
std::shared_ptr<Produce> MakeAggregationProduce(std::shared_ptr<LogicalOperator> input, SymbolTable &symbol_table,
const std::vector<Expression *> aggr_inputs,
const std::vector<Aggregation::Op> aggr_ops,
const std::vector<Expression *> group_by_exprs,
const std::vector<Symbol> remember, const bool distinct) {
// prepare all the aggregations
std::vector<Aggregate::Element> aggregates;
std::vector<NamedExpression *> named_expressions;
auto aggr_inputs_it = aggr_inputs.begin();
for (auto aggr_op : aggr_ops) {
// TODO change this from using IDENT to using AGGREGATION
// once AGGREGATION is handled properly in ExpressionEvaluation
auto aggr_sym = symbol_table.CreateSymbol("aggregation", true);
auto named_expr =
NEXPR("", IDENT("aggregation")->MapTo(aggr_sym))->MapTo(symbol_table.CreateSymbol("named_expression", true));
named_expressions.push_back(named_expr);
// the key expression is only used in COLLECT_MAP
Expression *key_expr_ptr = aggr_op == Aggregation::Op::COLLECT_MAP ? LITERAL("key") : nullptr;
aggregates.emplace_back(Aggregate::Element{*aggr_inputs_it++, key_expr_ptr, aggr_op, aggr_sym, distinct});
}
// Produce will also evaluate group_by expressions and return them after the
// aggregations.
for (auto group_by_expr : group_by_exprs) {
auto named_expr = NEXPR("", group_by_expr)->MapTo(symbol_table.CreateSymbol("named_expression", true));
named_expressions.push_back(named_expr);
}
auto aggregation = std::make_shared<Aggregate>(input, aggregates, group_by_exprs, remember);
return std::make_shared<Produce>(aggregation, named_expressions);
}
};
using StorageTypes = ::testing::Types<memgraph::storage::InMemoryStorage, memgraph::storage::DiskStorage>;
TYPED_TEST_CASE(QueryPlanTest, StorageTypes);
TYPED_TEST(QueryPlanTest, Accumulate) {
// simulate the following two query execution on an empty db
// CREATE ({x:0})-[:T]->({x:0})
// MATCH (n)--(m) SET n.x = n.x + 1, m.x = m.x + 1 RETURN n.x, m.x
// without accumulation we expected results to be [[1, 1], [2, 2]]
// with accumulation we expect them to be [[2, 2], [2, 2]]
auto check = [&](bool accumulate) {
this->db.reset(nullptr);
this->CleanStorageDirs();
this->db = std::make_unique<TypeParam>(this->config);
auto storage_dba = this->db->Access();
memgraph::query::DbAccessor dba(storage_dba.get());
auto prop = dba.NameToProperty("x");
auto v1 = dba.InsertVertex();
ASSERT_TRUE(v1.SetProperty(prop, memgraph::storage::PropertyValue(0)).HasValue());
auto v2 = dba.InsertVertex();
ASSERT_TRUE(v2.SetProperty(prop, memgraph::storage::PropertyValue(0)).HasValue());
ASSERT_TRUE(dba.InsertEdge(&v1, &v2, dba.NameToEdgeType("T")).HasValue());
dba.AdvanceCommand();
SymbolTable symbol_table;
auto n = MakeScanAll(this->storage, symbol_table, "n");
auto r_m = MakeExpand(this->storage, symbol_table, n.op_, n.sym_, "r", EdgeAtom::Direction::BOTH, {}, "m", false,
memgraph::storage::View::OLD);
auto one = LITERAL(1);
auto n_p = PROPERTY_LOOKUP(dba, IDENT("n")->MapTo(n.sym_), prop);
auto set_n_p = std::make_shared<plan::SetProperty>(r_m.op_, prop, n_p, ADD(n_p, one));
auto m_p = PROPERTY_LOOKUP(dba, IDENT("m")->MapTo(r_m.node_sym_), prop);
auto set_m_p = std::make_shared<plan::SetProperty>(set_n_p, prop, m_p, ADD(m_p, one));
std::shared_ptr<LogicalOperator> last_op = set_m_p;
if (accumulate) {
last_op = std::make_shared<Accumulate>(last_op, std::vector<Symbol>{n.sym_, r_m.node_sym_});
}
auto n_p_ne = NEXPR("n.p", n_p)->MapTo(symbol_table.CreateSymbol("n_p_ne", true));
auto m_p_ne = NEXPR("m.p", m_p)->MapTo(symbol_table.CreateSymbol("m_p_ne", true));
auto produce = MakeProduce(last_op, n_p_ne, m_p_ne);
auto context = MakeContext(this->storage, symbol_table, &dba);
auto results = CollectProduce(*produce, &context);
std::vector<int> results_data;
for (const auto &row : results)
for (const auto &column : row) results_data.emplace_back(column.ValueInt());
if (accumulate)
EXPECT_THAT(results_data, testing::ElementsAre(2, 2, 2, 2));
else
EXPECT_THAT(results_data, testing::ElementsAre(1, 1, 2, 2));
};
check(false);
check(true);
}
TYPED_TEST(QueryPlanTest, AccumulateAdvance) {
// we simulate 'CREATE (n) WITH n AS n MATCH (m) RETURN m'
// to get correct results we need to advance the command
auto check = [&](bool advance) {
this->db.reset();
this->CleanStorageDirs();
this->db = std::make_unique<TypeParam>(this->config);
auto storage_dba = this->db->Access();
memgraph::query::DbAccessor dba(storage_dba.get());
SymbolTable symbol_table;
NodeCreationInfo node;
node.symbol = symbol_table.CreateSymbol("n", true);
auto create = std::make_shared<CreateNode>(nullptr, node);
auto accumulate = std::make_shared<Accumulate>(create, std::vector<Symbol>{node.symbol}, advance);
auto match = MakeScanAll(this->storage, symbol_table, "m", accumulate);
auto context = MakeContext(this->storage, symbol_table, &dba);
EXPECT_EQ(advance ? 1 : 0, PullAll(*match.op_, &context));
};
check(false);
check(true);
}
/** Test fixture for all the aggregation ops in one return. */
template <typename StorageType>
class QueryPlanAggregateOps : public QueryPlanTest<StorageType> {
protected:
std::unique_ptr<memgraph::storage::Storage::Accessor> storage_dba{this->db->Access()};
memgraph::query::DbAccessor dba{storage_dba.get()};
memgraph::storage::PropertyId prop = this->db->NameToProperty("prop");
SymbolTable symbol_table;
void AddData() {
// setup is several nodes most of which have an int property set
// we will take the sum, avg, min, max and count
// we won't group by anything
ASSERT_TRUE(dba.InsertVertex().SetProperty(prop, memgraph::storage::PropertyValue(5)).HasValue());
ASSERT_TRUE(dba.InsertVertex().SetProperty(prop, memgraph::storage::PropertyValue(7)).HasValue());
ASSERT_TRUE(dba.InsertVertex().SetProperty(prop, memgraph::storage::PropertyValue(12)).HasValue());
ASSERT_TRUE(dba.InsertVertex().SetProperty(prop, memgraph::storage::PropertyValue(5)).HasValue());
ASSERT_TRUE(dba.InsertVertex().SetProperty(prop, memgraph::storage::PropertyValue(5)).HasValue());
ASSERT_TRUE(dba.InsertVertex().SetProperty(prop, memgraph::storage::PropertyValue(12)).HasValue());
// a missing property (null) gets ignored by all aggregations except
// COUNT(*)
dba.InsertVertex();
dba.AdvanceCommand();
}
auto AggregationResults(bool with_group_by, bool distinct,
std::vector<Aggregation::Op> ops = {
Aggregation::Op::COUNT, Aggregation::Op::COUNT, Aggregation::Op::MIN,
Aggregation::Op::MAX, Aggregation::Op::SUM, Aggregation::Op::AVG,
Aggregation::Op::COLLECT_LIST, Aggregation::Op::COLLECT_MAP}) {
// match all nodes and perform aggregations
auto n = MakeScanAll(this->storage, symbol_table, "n");
auto n_p = PROPERTY_LOOKUP(dba, IDENT("n")->MapTo(n.sym_), prop);
std::vector<Expression *> aggregation_expressions(ops.size(), n_p);
std::vector<Expression *> group_bys;
if (with_group_by) group_bys.push_back(n_p);
aggregation_expressions[0] = nullptr;
auto produce =
this->MakeAggregationProduce(n.op_, symbol_table, aggregation_expressions, ops, group_bys, {}, distinct);
auto context = MakeContext(this->storage, symbol_table, &dba);
return CollectProduce(*produce, &context);
}
};
TYPED_TEST_CASE(QueryPlanAggregateOps, StorageTypes);
TYPED_TEST(QueryPlanAggregateOps, WithData) {
this->AddData();
auto results = this->AggregationResults(false, false);
ASSERT_EQ(results.size(), 1);
ASSERT_EQ(results[0].size(), 8);
// count(*)
ASSERT_EQ(results[0][0].type(), TypedValue::Type::Int);
EXPECT_EQ(results[0][0].ValueInt(), 7);
// count
ASSERT_EQ(results[0][1].type(), TypedValue::Type::Int);
EXPECT_EQ(results[0][1].ValueInt(), 6);
// min
ASSERT_EQ(results[0][2].type(), TypedValue::Type::Int);
EXPECT_EQ(results[0][2].ValueInt(), 5);
// max
ASSERT_EQ(results[0][3].type(), TypedValue::Type::Int);
EXPECT_EQ(results[0][3].ValueInt(), 12);
// sum
ASSERT_EQ(results[0][4].type(), TypedValue::Type::Int);
EXPECT_EQ(results[0][4].ValueInt(), 46);
// avg
ASSERT_EQ(results[0][5].type(), TypedValue::Type::Double);
EXPECT_FLOAT_EQ(results[0][5].ValueDouble(), 46 / 6.0);
// collect list
ASSERT_EQ(results[0][6].type(), TypedValue::Type::List);
EXPECT_THAT(ToIntList(results[0][6]), UnorderedElementsAre(5, 7, 12, 5, 5, 12));
// collect map
ASSERT_EQ(results[0][7].type(), TypedValue::Type::Map);
auto map = ToIntMap(results[0][7]);
ASSERT_EQ(map.size(), 1);
EXPECT_EQ(map.begin()->first, "key");
EXPECT_FALSE(std::set<int>({5, 7, 12}).insert(map.begin()->second).second);
}
TYPED_TEST(QueryPlanAggregateOps, WithoutDataWithGroupBy) {
{
auto results = this->AggregationResults(true, false, {Aggregation::Op::COUNT});
EXPECT_EQ(results.size(), 1);
EXPECT_EQ(results[0][0].type(), TypedValue::Type::Int);
EXPECT_EQ(results[0][0].ValueInt(), 0);
}
{
auto results = this->AggregationResults(true, false, {Aggregation::Op::SUM});
EXPECT_EQ(results.size(), 1);
EXPECT_EQ(results[0][0].type(), TypedValue::Type::Int);
EXPECT_EQ(results[0][0].ValueInt(), 0);
}
{
auto results = this->AggregationResults(true, false, {Aggregation::Op::AVG});
EXPECT_EQ(results.size(), 1);
EXPECT_EQ(results[0][0].type(), TypedValue::Type::Null);
}
{
auto results = this->AggregationResults(true, false, {Aggregation::Op::MIN});
EXPECT_EQ(results.size(), 1);
EXPECT_EQ(results[0][0].type(), TypedValue::Type::Null);
}
{
auto results = this->AggregationResults(true, false, {Aggregation::Op::MAX});
EXPECT_EQ(results.size(), 1);
EXPECT_EQ(results[0][0].type(), TypedValue::Type::Null);
}
{
auto results = this->AggregationResults(true, false, {Aggregation::Op::COLLECT_LIST});
EXPECT_EQ(results.size(), 1);
EXPECT_EQ(results[0][0].type(), TypedValue::Type::List);
}
{
auto results = this->AggregationResults(true, false, {Aggregation::Op::COLLECT_MAP});
EXPECT_EQ(results.size(), 1);
EXPECT_EQ(results[0][0].type(), TypedValue::Type::Map);
}
}
TYPED_TEST(QueryPlanAggregateOps, WithoutDataWithoutGroupBy) {
auto results = this->AggregationResults(false, false);
ASSERT_EQ(results.size(), 1);
ASSERT_EQ(results[0].size(), 8);
// count(*)
ASSERT_EQ(results[0][0].type(), TypedValue::Type::Int);
EXPECT_EQ(results[0][0].ValueInt(), 0);
// count
ASSERT_EQ(results[0][1].type(), TypedValue::Type::Int);
EXPECT_EQ(results[0][1].ValueInt(), 0);
// min
EXPECT_TRUE(results[0][2].IsNull());
// max
EXPECT_TRUE(results[0][3].IsNull());
// sum
EXPECT_EQ(results[0][4].ValueInt(), 0);
// avg
EXPECT_TRUE(results[0][5].IsNull());
// collect list
ASSERT_EQ(results[0][6].type(), TypedValue::Type::List);
EXPECT_EQ(ToIntList(results[0][6]).size(), 0);
// collect map
ASSERT_EQ(results[0][7].type(), TypedValue::Type::Map);
EXPECT_EQ(ToIntMap(results[0][7]).size(), 0);
}
TYPED_TEST(QueryPlanTest, AggregateGroupByValues) {
// Tests that distinct groups are aggregated properly for values of all types.
// Also test the "remember" part of the Aggregation API as final results are
// obtained via a property lookup of a remembered node.
auto storage_dba = this->db->Access();
memgraph::query::DbAccessor dba(storage_dba.get());
// a vector of memgraph::storage::PropertyValue to be set as property values on vertices
// most of them should result in a distinct group (commented where not)
std::vector<memgraph::storage::PropertyValue> group_by_vals;
group_by_vals.emplace_back(4);
group_by_vals.emplace_back(7);
group_by_vals.emplace_back(7.3);
group_by_vals.emplace_back(7.2);
group_by_vals.emplace_back("Johhny");
group_by_vals.emplace_back("Jane");
group_by_vals.emplace_back("1");
group_by_vals.emplace_back(true);
group_by_vals.emplace_back(false);
group_by_vals.emplace_back(std::vector<memgraph::storage::PropertyValue>{memgraph::storage::PropertyValue(1)});
group_by_vals.emplace_back(std::vector<memgraph::storage::PropertyValue>{memgraph::storage::PropertyValue(1),
memgraph::storage::PropertyValue(2)});
group_by_vals.emplace_back(std::vector<memgraph::storage::PropertyValue>{memgraph::storage::PropertyValue(2),
memgraph::storage::PropertyValue(1)});
group_by_vals.emplace_back(memgraph::storage::PropertyValue());
// should NOT result in another group because 7.0 == 7
group_by_vals.emplace_back(7.0);
// should NOT result in another group
group_by_vals.emplace_back(std::vector<memgraph::storage::PropertyValue>{memgraph::storage::PropertyValue(1),
memgraph::storage::PropertyValue(2.0)});
// generate a lot of vertices and set props on them
auto prop = dba.NameToProperty("prop");
for (int i = 0; i < 1000; ++i)
ASSERT_TRUE(dba.InsertVertex().SetProperty(prop, group_by_vals[i % group_by_vals.size()]).HasValue());
dba.AdvanceCommand();
SymbolTable symbol_table;
// match all nodes and perform aggregations
auto n = MakeScanAll(this->storage, symbol_table, "n");
auto n_p = PROPERTY_LOOKUP(dba, IDENT("n")->MapTo(n.sym_), prop);
auto produce =
this->MakeAggregationProduce(n.op_, symbol_table, {n_p}, {Aggregation::Op::COUNT}, {n_p}, {n.sym_}, false);
auto context = MakeContext(this->storage, symbol_table, &dba);
auto results = CollectProduce(*produce, &context);
ASSERT_EQ(results.size(), group_by_vals.size() - 2);
std::unordered_set<TypedValue, TypedValue::Hash, TypedValue::BoolEqual> result_group_bys;
for (const auto &row : results) {
ASSERT_EQ(2, row.size());
result_group_bys.insert(row[1]);
}
ASSERT_EQ(result_group_bys.size(), group_by_vals.size() - 2);
std::vector<TypedValue> group_by_tvals;
group_by_tvals.reserve(group_by_vals.size());
for (const auto &v : group_by_vals) group_by_tvals.emplace_back(v);
EXPECT_TRUE(std::is_permutation(group_by_tvals.begin(), group_by_tvals.end() - 2, result_group_bys.begin(),
TypedValue::BoolEqual{}));
}
TYPED_TEST(QueryPlanTest, AggregateMultipleGroupBy) {
// in this test we have 3 different properties that have different values
// for different records and assert that we get the correct combination
// of values in our groups
auto storage_dba = this->db->Access();
memgraph::query::DbAccessor dba(storage_dba.get());
auto prop1 = dba.NameToProperty("prop1");
auto prop2 = dba.NameToProperty("prop2");
auto prop3 = dba.NameToProperty("prop3");
for (int i = 0; i < 2 * 3 * 5; ++i) {
auto v = dba.InsertVertex();
ASSERT_TRUE(v.SetProperty(prop1, memgraph::storage::PropertyValue(static_cast<bool>(i % 2))).HasValue());
ASSERT_TRUE(v.SetProperty(prop2, memgraph::storage::PropertyValue(i % 3)).HasValue());
ASSERT_TRUE(v.SetProperty(prop3, memgraph::storage::PropertyValue("value" + std::to_string(i % 5))).HasValue());
}
dba.AdvanceCommand();
SymbolTable symbol_table;
// match all nodes and perform aggregations
auto n = MakeScanAll(this->storage, symbol_table, "n");
auto n_p1 = PROPERTY_LOOKUP(dba, IDENT("n")->MapTo(n.sym_), prop1);
auto n_p2 = PROPERTY_LOOKUP(dba, IDENT("n")->MapTo(n.sym_), prop2);
auto n_p3 = PROPERTY_LOOKUP(dba, IDENT("n")->MapTo(n.sym_), prop3);
auto produce = this->MakeAggregationProduce(n.op_, symbol_table, {n_p1}, {Aggregation::Op::COUNT}, {n_p1, n_p2, n_p3},
{n.sym_}, false);
auto context = MakeContext(this->storage, symbol_table, &dba);
auto results = CollectProduce(*produce, &context);
EXPECT_EQ(results.size(), 2 * 3 * 5);
}
TYPED_TEST(QueryPlanTest, AggregateNoInput) {
auto storage_dba = this->db->Access();
memgraph::query::DbAccessor dba(storage_dba.get());
SymbolTable symbol_table;
auto two = LITERAL(2);
auto produce = this->MakeAggregationProduce(nullptr, symbol_table, {two}, {Aggregation::Op::COUNT}, {}, {}, false);
auto context = MakeContext(this->storage, symbol_table, &dba);
auto results = CollectProduce(*produce, &context);
EXPECT_EQ(1, results.size());
EXPECT_EQ(1, results[0].size());
EXPECT_EQ(TypedValue::Type::Int, results[0][0].type());
EXPECT_EQ(1, results[0][0].ValueInt());
}
TYPED_TEST(QueryPlanTest, AggregateCountEdgeCases) {
// tests for detected bugs in the COUNT aggregation behavior
// ensure that COUNT returns correctly for
// - 0 vertices in database
// - 1 vertex in database, property not set
// - 1 vertex in database, property set
// - 2 vertices in database, property set on one
// - 2 vertices in database, property set on both
auto storage_dba = this->db->Access();
memgraph::query::DbAccessor dba(storage_dba.get());
auto prop = dba.NameToProperty("prop");
SymbolTable symbol_table;
auto n = MakeScanAll(this->storage, symbol_table, "n");
auto n_p = PROPERTY_LOOKUP(dba, IDENT("n")->MapTo(n.sym_), prop);
// returns -1 when there are no results
// otherwise returns MATCH (n) RETURN count(n.prop)
auto count = [&]() {
auto produce = this->MakeAggregationProduce(n.op_, symbol_table, {n_p}, {Aggregation::Op::COUNT}, {}, {}, false);
auto context = MakeContext(this->storage, symbol_table, &dba);
auto results = CollectProduce(*produce, &context);
if (results.size() == 0) return -1L;
EXPECT_EQ(1, results.size());
EXPECT_EQ(1, results[0].size());
EXPECT_EQ(TypedValue::Type::Int, results[0][0].type());
return results[0][0].ValueInt();
};
// no vertices yet in database
EXPECT_EQ(0, count());
// one vertex, no property set
dba.InsertVertex();
dba.AdvanceCommand();
EXPECT_EQ(0, count());
// one vertex, property set
for (auto va : dba.Vertices(memgraph::storage::View::OLD))
ASSERT_TRUE(va.SetProperty(prop, memgraph::storage::PropertyValue(42)).HasValue());
dba.AdvanceCommand();
EXPECT_EQ(1, count());
// two vertices, one with property set
dba.InsertVertex();
dba.AdvanceCommand();
EXPECT_EQ(1, count());
// two vertices, both with property set
for (auto va : dba.Vertices(memgraph::storage::View::OLD))
ASSERT_TRUE(va.SetProperty(prop, memgraph::storage::PropertyValue(42)).HasValue());
dba.AdvanceCommand();
EXPECT_EQ(2, count());
}
TYPED_TEST(QueryPlanTest, AggregateFirstValueTypes) {
// testing exceptions that get emitted by the first-value
// type check
auto storage_dba = this->db->Access();
memgraph::query::DbAccessor dba(storage_dba.get());
auto v1 = dba.InsertVertex();
auto prop_string = dba.NameToProperty("string");
ASSERT_TRUE(v1.SetProperty(prop_string, memgraph::storage::PropertyValue("johhny")).HasValue());
auto prop_int = dba.NameToProperty("int");
ASSERT_TRUE(v1.SetProperty(prop_int, memgraph::storage::PropertyValue(12)).HasValue());
dba.AdvanceCommand();
SymbolTable symbol_table;
auto n = MakeScanAll(this->storage, symbol_table, "n");
auto n_prop_string = PROPERTY_LOOKUP(dba, IDENT("n")->MapTo(n.sym_), prop_string);
auto n_prop_int = PROPERTY_LOOKUP(dba, IDENT("n")->MapTo(n.sym_), prop_int);
auto n_id = n_prop_string->expression_;
auto aggregate = [&](Expression *expression, Aggregation::Op aggr_op) {
auto produce = this->MakeAggregationProduce(n.op_, symbol_table, {expression}, {aggr_op}, {}, {}, false);
auto context = MakeContext(this->storage, symbol_table, &dba);
CollectProduce(*produce, &context);
};
// everything except for COUNT and COLLECT fails on a Vertex
aggregate(n_id, Aggregation::Op::COUNT);
EXPECT_THROW(aggregate(n_id, Aggregation::Op::MIN), QueryRuntimeException);
EXPECT_THROW(aggregate(n_id, Aggregation::Op::MAX), QueryRuntimeException);
EXPECT_THROW(aggregate(n_id, Aggregation::Op::AVG), QueryRuntimeException);
EXPECT_THROW(aggregate(n_id, Aggregation::Op::SUM), QueryRuntimeException);
// on strings AVG and SUM fail
aggregate(n_prop_string, Aggregation::Op::COUNT);
aggregate(n_prop_string, Aggregation::Op::MIN);
aggregate(n_prop_string, Aggregation::Op::MAX);
EXPECT_THROW(aggregate(n_prop_string, Aggregation::Op::AVG), QueryRuntimeException);
EXPECT_THROW(aggregate(n_prop_string, Aggregation::Op::SUM), QueryRuntimeException);
// on ints nothing fails
aggregate(n_prop_int, Aggregation::Op::COUNT);
aggregate(n_prop_int, Aggregation::Op::MIN);
aggregate(n_prop_int, Aggregation::Op::MAX);
aggregate(n_prop_int, Aggregation::Op::AVG);
aggregate(n_prop_int, Aggregation::Op::SUM);
aggregate(n_prop_int, Aggregation::Op::COLLECT_LIST);
aggregate(n_prop_int, Aggregation::Op::COLLECT_MAP);
}
TYPED_TEST(QueryPlanTest, AggregateTypes) {
// testing exceptions that can get emitted by an aggregation
// does not check all combinations that can result in an exception
// (that logic is defined and tested by TypedValue)
auto storage_dba = this->db->Access();
memgraph::query::DbAccessor dba(storage_dba.get());
auto p1 = dba.NameToProperty("p1"); // has only string props
ASSERT_TRUE(dba.InsertVertex().SetProperty(p1, memgraph::storage::PropertyValue("string")).HasValue());
ASSERT_TRUE(dba.InsertVertex().SetProperty(p1, memgraph::storage::PropertyValue("str2")).HasValue());
auto p2 = dba.NameToProperty("p2"); // combines int and bool
ASSERT_TRUE(dba.InsertVertex().SetProperty(p2, memgraph::storage::PropertyValue(42)).HasValue());
ASSERT_TRUE(dba.InsertVertex().SetProperty(p2, memgraph::storage::PropertyValue(true)).HasValue());
dba.AdvanceCommand();
SymbolTable symbol_table;
auto n = MakeScanAll(this->storage, symbol_table, "n");
auto n_p1 = PROPERTY_LOOKUP(dba, IDENT("n")->MapTo(n.sym_), p1);
auto n_p2 = PROPERTY_LOOKUP(dba, IDENT("n")->MapTo(n.sym_), p2);
auto aggregate = [&](Expression *expression, Aggregation::Op aggr_op) {
auto produce = this->MakeAggregationProduce(n.op_, symbol_table, {expression}, {aggr_op}, {}, {}, false);
auto context = MakeContext(this->storage, symbol_table, &dba);
CollectProduce(*produce, &context);
};
// everything except for COUNT and COLLECT fails on a Vertex
auto n_id = n_p1->expression_;
aggregate(n_id, Aggregation::Op::COUNT);
aggregate(n_id, Aggregation::Op::COLLECT_LIST);
aggregate(n_id, Aggregation::Op::COLLECT_MAP);
EXPECT_THROW(aggregate(n_id, Aggregation::Op::MIN), QueryRuntimeException);
EXPECT_THROW(aggregate(n_id, Aggregation::Op::MAX), QueryRuntimeException);
EXPECT_THROW(aggregate(n_id, Aggregation::Op::AVG), QueryRuntimeException);
EXPECT_THROW(aggregate(n_id, Aggregation::Op::SUM), QueryRuntimeException);
// on strings AVG and SUM fail
aggregate(n_p1, Aggregation::Op::COUNT);
aggregate(n_p1, Aggregation::Op::COLLECT_LIST);
aggregate(n_p1, Aggregation::Op::COLLECT_MAP);
aggregate(n_p1, Aggregation::Op::MIN);
aggregate(n_p1, Aggregation::Op::MAX);
EXPECT_THROW(aggregate(n_p1, Aggregation::Op::AVG), QueryRuntimeException);
EXPECT_THROW(aggregate(n_p1, Aggregation::Op::SUM), QueryRuntimeException);
// combination of int and bool, everything except COUNT and COLLECT fails
aggregate(n_p2, Aggregation::Op::COUNT);
aggregate(n_p2, Aggregation::Op::COLLECT_LIST);
aggregate(n_p2, Aggregation::Op::COLLECT_MAP);
EXPECT_THROW(aggregate(n_p2, Aggregation::Op::MIN), QueryRuntimeException);
EXPECT_THROW(aggregate(n_p2, Aggregation::Op::MAX), QueryRuntimeException);
EXPECT_THROW(aggregate(n_p2, Aggregation::Op::AVG), QueryRuntimeException);
EXPECT_THROW(aggregate(n_p2, Aggregation::Op::SUM), QueryRuntimeException);
}
TYPED_TEST(QueryPlanTest, Unwind) {
auto storage_dba = this->db->Access();
memgraph::query::DbAccessor dba(storage_dba.get());
SymbolTable symbol_table;
// UNWIND [ [1, true, "x"], [], ["bla"] ] AS x UNWIND x as y RETURN x, y
auto input_expr = this->storage.template Create<PrimitiveLiteral>(std::vector<memgraph::storage::PropertyValue>{
memgraph::storage::PropertyValue(std::vector<memgraph::storage::PropertyValue>{
memgraph::storage::PropertyValue(1), memgraph::storage::PropertyValue(true),
memgraph::storage::PropertyValue("x")}),
memgraph::storage::PropertyValue(std::vector<memgraph::storage::PropertyValue>{}),
memgraph::storage::PropertyValue(
std::vector<memgraph::storage::PropertyValue>{memgraph::storage::PropertyValue("bla")})});
auto x = symbol_table.CreateSymbol("x", true);
auto unwind_0 = std::make_shared<plan::Unwind>(nullptr, input_expr, x);
auto x_expr = IDENT("x")->MapTo(x);
auto y = symbol_table.CreateSymbol("y", true);
auto unwind_1 = std::make_shared<plan::Unwind>(unwind_0, x_expr, y);
auto x_ne = NEXPR("x", x_expr)->MapTo(symbol_table.CreateSymbol("x_ne", true));
auto y_ne = NEXPR("y", IDENT("y")->MapTo(y))->MapTo(symbol_table.CreateSymbol("y_ne", true));
auto produce = MakeProduce(unwind_1, x_ne, y_ne);
auto context = MakeContext(this->storage, symbol_table, &dba);
auto results = CollectProduce(*produce, &context);
ASSERT_EQ(4, results.size());
const std::vector<int> expected_x_card{3, 3, 3, 1};
auto expected_x_card_it = expected_x_card.begin();
const std::vector<TypedValue> expected_y{TypedValue(1), TypedValue(true), TypedValue("x"), TypedValue("bla")};
auto expected_y_it = expected_y.begin();
for (const auto &row : results) {
ASSERT_EQ(2, row.size());
ASSERT_EQ(row[0].type(), TypedValue::Type::List);
EXPECT_EQ(row[0].ValueList().size(), *expected_x_card_it);
EXPECT_EQ(row[1].type(), expected_y_it->type());
expected_x_card_it++;
expected_y_it++;
}
}
TYPED_TEST(QueryPlanAggregateOps, WithDataDistinct) {
this->AddData();
auto results = this->AggregationResults(false, true);
ASSERT_EQ(results.size(), 1);
ASSERT_EQ(results[0].size(), 8);
// count(*)
ASSERT_EQ(results[0][0].type(), TypedValue::Type::Int);
EXPECT_EQ(results[0][0].ValueInt(), 7);
// count
ASSERT_EQ(results[0][1].type(), TypedValue::Type::Int);
EXPECT_EQ(results[0][1].ValueInt(), 3);
// min
ASSERT_EQ(results[0][2].type(), TypedValue::Type::Int);
EXPECT_EQ(results[0][2].ValueInt(), 5);
// max
ASSERT_EQ(results[0][3].type(), TypedValue::Type::Int);
EXPECT_EQ(results[0][3].ValueInt(), 12);
// sum
ASSERT_EQ(results[0][4].type(), TypedValue::Type::Int);
EXPECT_EQ(results[0][4].ValueInt(), 24);
// avg
ASSERT_EQ(results[0][5].type(), TypedValue::Type::Double);
EXPECT_FLOAT_EQ(results[0][5].ValueDouble(), 24 / 3.0);
// collect list
ASSERT_EQ(results[0][6].type(), TypedValue::Type::List);
EXPECT_THAT(ToIntList(results[0][6]), UnorderedElementsAre(5, 7, 12));
// collect map
ASSERT_EQ(results[0][7].type(), TypedValue::Type::Map);
auto map = ToIntMap(results[0][7]);
ASSERT_EQ(map.size(), 1);
EXPECT_EQ(map.begin()->first, "key");
EXPECT_FALSE(std::set<int>({5, 7, 12}).insert(map.begin()->second).second);
}
TYPED_TEST(QueryPlanAggregateOps, WithoutDataWithDistinctAndWithGroupBy) {
{
auto results = this->AggregationResults(true, true, {Aggregation::Op::COUNT});
EXPECT_EQ(results.size(), 1);
EXPECT_EQ(results[0][0].type(), TypedValue::Type::Int);
EXPECT_EQ(results[0][0].ValueInt(), 0);
}
{
auto results = this->AggregationResults(true, true, {Aggregation::Op::SUM});
EXPECT_EQ(results.size(), 1);
EXPECT_EQ(results[0][0].type(), TypedValue::Type::Int);
EXPECT_EQ(results[0][0].ValueInt(), 0);
}
{
auto results = this->AggregationResults(true, true, {Aggregation::Op::AVG});
EXPECT_EQ(results.size(), 1);
EXPECT_EQ(results[0][0].type(), TypedValue::Type::Null);
}
{
auto results = this->AggregationResults(true, true, {Aggregation::Op::MIN});
EXPECT_EQ(results.size(), 1);
EXPECT_EQ(results[0][0].type(), TypedValue::Type::Null);
}
{
auto results = this->AggregationResults(true, true, {Aggregation::Op::MAX});
EXPECT_EQ(results.size(), 1);
EXPECT_EQ(results[0][0].type(), TypedValue::Type::Null);
}
{
auto results = this->AggregationResults(true, true, {Aggregation::Op::COLLECT_LIST});
EXPECT_EQ(results.size(), 1);
EXPECT_EQ(results[0][0].type(), TypedValue::Type::List);
}
{
auto results = this->AggregationResults(true, true, {Aggregation::Op::COLLECT_MAP});
EXPECT_EQ(results.size(), 1);
EXPECT_EQ(results[0][0].type(), TypedValue::Type::Map);
}
}
TYPED_TEST(QueryPlanAggregateOps, WithoutDataWithDistinctAndWithoutGroupBy) {
auto results = this->AggregationResults(false, true);
ASSERT_EQ(results.size(), 1);
ASSERT_EQ(results[0].size(), 8);
// count(*)
ASSERT_EQ(results[0][0].type(), TypedValue::Type::Int);
EXPECT_EQ(results[0][0].ValueInt(), 0);
// count
ASSERT_EQ(results[0][1].type(), TypedValue::Type::Int);
EXPECT_EQ(results[0][1].ValueInt(), 0);
// min
EXPECT_TRUE(results[0][2].IsNull());
// max
EXPECT_TRUE(results[0][3].IsNull());
// sum
EXPECT_EQ(results[0][4].ValueInt(), 0);
// avg
EXPECT_TRUE(results[0][5].IsNull());
// collect list
ASSERT_EQ(results[0][6].type(), TypedValue::Type::List);
EXPECT_EQ(ToIntList(results[0][6]).size(), 0);
// collect map
ASSERT_EQ(results[0][7].type(), TypedValue::Type::Map);
EXPECT_EQ(ToIntMap(results[0][7]).size(), 0);
}
TYPED_TEST(QueryPlanTest, AggregateGroupByValuesWithDistinct) {
// Tests that distinct groups are aggregated properly for values of all types.
// Also test the "remember" part of the Aggregation API as final results are
// obtained via a property lookup of a remembered node.
auto storage_dba = this->db->Access();
memgraph::query::DbAccessor dba(storage_dba.get());
// a vector of memgraph::storage::PropertyValue to be set as property values on vertices
// most of them should result in a distinct group (commented where not)
std::vector<memgraph::storage::PropertyValue> group_by_vals;
group_by_vals.emplace_back(4);
group_by_vals.emplace_back(7);
group_by_vals.emplace_back(7.3);
group_by_vals.emplace_back(7.2);
group_by_vals.emplace_back("Johhny");
group_by_vals.emplace_back("Jane");
group_by_vals.emplace_back("1");
group_by_vals.emplace_back(true);
group_by_vals.emplace_back(false);
group_by_vals.emplace_back(std::vector<memgraph::storage::PropertyValue>{memgraph::storage::PropertyValue(1)});
group_by_vals.emplace_back(std::vector<memgraph::storage::PropertyValue>{memgraph::storage::PropertyValue(1),
memgraph::storage::PropertyValue(2)});
group_by_vals.emplace_back(std::vector<memgraph::storage::PropertyValue>{memgraph::storage::PropertyValue(2),
memgraph::storage::PropertyValue(1)});
group_by_vals.emplace_back(memgraph::storage::PropertyValue());
// should NOT result in another group because 7.0 == 7
group_by_vals.emplace_back(7.0);
// should NOT result in another group
group_by_vals.emplace_back(std::vector<memgraph::storage::PropertyValue>{memgraph::storage::PropertyValue(1),
memgraph::storage::PropertyValue(2.0)});
// generate a lot of vertices and set props on them
auto prop = dba.NameToProperty("prop");
for (int i = 0; i < 1000; ++i)
ASSERT_TRUE(dba.InsertVertex().SetProperty(prop, group_by_vals[i % group_by_vals.size()]).HasValue());
dba.AdvanceCommand();
SymbolTable symbol_table;
// match all nodes and perform aggregations
auto n = MakeScanAll(this->storage, symbol_table, "n");
auto n_p = PROPERTY_LOOKUP(dba, IDENT("n")->MapTo(n.sym_), prop);
auto produce =
this->MakeAggregationProduce(n.op_, symbol_table, {n_p}, {Aggregation::Op::COUNT}, {n_p}, {n.sym_}, true);
auto context = MakeContext(this->storage, symbol_table, &dba);
auto results = CollectProduce(*produce, &context);
ASSERT_EQ(results.size(), group_by_vals.size() - 2);
std::unordered_set<TypedValue, TypedValue::Hash, TypedValue::BoolEqual> result_group_bys;
for (const auto &row : results) {
ASSERT_EQ(2, row.size());
if (!row[1].IsNull()) {
ASSERT_EQ(1, row[0].ValueInt());
}
result_group_bys.insert(row[1]);
}
ASSERT_EQ(result_group_bys.size(), group_by_vals.size() - 2);
std::vector<TypedValue> group_by_tvals;
group_by_tvals.reserve(group_by_vals.size());
for (const auto &v : group_by_vals) group_by_tvals.emplace_back(v);
EXPECT_TRUE(std::is_permutation(group_by_tvals.begin(), group_by_tvals.end() - 2, result_group_bys.begin(),
TypedValue::BoolEqual{}));
}
TYPED_TEST(QueryPlanTest, AggregateMultipleGroupByWithDistinct) {
// in this test we have 3 different properties that have different values
// for different records and assert that we get the correct combination
// of values in our groups
auto storage_dba = this->db->Access();
memgraph::query::DbAccessor dba(storage_dba.get());
auto prop1 = dba.NameToProperty("prop1");
auto prop2 = dba.NameToProperty("prop2");
auto prop3 = dba.NameToProperty("prop3");
for (int i = 0; i < 2 * 3 * 5; ++i) {
auto v = dba.InsertVertex();
ASSERT_TRUE(v.SetProperty(prop1, memgraph::storage::PropertyValue(static_cast<bool>(i % 2))).HasValue());
ASSERT_TRUE(v.SetProperty(prop2, memgraph::storage::PropertyValue(i % 3)).HasValue());
ASSERT_TRUE(v.SetProperty(prop3, memgraph::storage::PropertyValue("value" + std::to_string(i % 5))).HasValue());
}
dba.AdvanceCommand();
SymbolTable symbol_table;
// match all nodes and perform aggregations
auto n = MakeScanAll(this->storage, symbol_table, "n");
auto n_p1 = PROPERTY_LOOKUP(dba, IDENT("n")->MapTo(n.sym_), prop1);
auto n_p2 = PROPERTY_LOOKUP(dba, IDENT("n")->MapTo(n.sym_), prop2);
auto produce =
this->MakeAggregationProduce(n.op_, symbol_table, {n_p1}, {Aggregation::Op::COUNT}, {n_p1, n_p2}, {n.sym_}, true);
auto context = MakeContext(this->storage, symbol_table, &dba);
auto results = CollectProduce(*produce, &context);
for (const auto &row : results) {
ASSERT_EQ(1, row[0].ValueInt());
}
}
TYPED_TEST(QueryPlanTest, AggregateNoInputWithDistinct) {
auto storage_dba = this->db->Access();
memgraph::query::DbAccessor dba(storage_dba.get());
SymbolTable symbol_table;
auto two = LITERAL(2);
auto produce = this->MakeAggregationProduce(nullptr, symbol_table, {two}, {Aggregation::Op::COUNT}, {}, {}, true);
auto context = MakeContext(this->storage, symbol_table, &dba);
auto results = CollectProduce(*produce, &context);
EXPECT_EQ(1, results.size());
EXPECT_EQ(1, results[0].size());
EXPECT_EQ(TypedValue::Type::Int, results[0][0].type());
EXPECT_EQ(1, results[0][0].ValueInt());
}
TYPED_TEST(QueryPlanTest, AggregateCountEdgeCasesWithDistinct) {
// tests for detected bugs in the COUNT aggregation behavior
// ensure that COUNT returns correctly for
// - 0 vertices in database
// - 1 vertex in database, property not set
// - 1 vertex in database, property set
// - 2 vertices in database, property set on one
// - 2 vertices in database, property set on both
auto storage_dba = this->db->Access();
memgraph::query::DbAccessor dba(storage_dba.get());
auto prop = dba.NameToProperty("prop");
SymbolTable symbol_table;
auto n = MakeScanAll(this->storage, symbol_table, "n");
auto n_p = PROPERTY_LOOKUP(dba, IDENT("n")->MapTo(n.sym_), prop);
// returns -1 when there are no results
// otherwise returns MATCH (n) RETURN count(n.prop)
auto count = [&]() {
auto produce = this->MakeAggregationProduce(n.op_, symbol_table, {n_p}, {Aggregation::Op::COUNT}, {}, {}, true);
auto context = MakeContext(this->storage, symbol_table, &dba);
auto results = CollectProduce(*produce, &context);
if (results.size() == 0) return -1L;
EXPECT_EQ(1, results.size());
EXPECT_EQ(1, results[0].size());
EXPECT_EQ(TypedValue::Type::Int, results[0][0].type());
return results[0][0].ValueInt();
};
// no vertices yet in database
EXPECT_EQ(0, count());
// one vertex, no property set
dba.InsertVertex();
dba.AdvanceCommand();
EXPECT_EQ(0, count());
// one vertex, property set
for (auto va : dba.Vertices(memgraph::storage::View::OLD))
ASSERT_TRUE(va.SetProperty(prop, memgraph::storage::PropertyValue(42)).HasValue());
dba.AdvanceCommand();
EXPECT_EQ(1, count());
// two vertices, one with property set
dba.InsertVertex();
dba.AdvanceCommand();
EXPECT_EQ(1, count());
// two vertices, both with property set
for (auto va : dba.Vertices(memgraph::storage::View::OLD))
ASSERT_TRUE(va.SetProperty(prop, memgraph::storage::PropertyValue(42)).HasValue());
dba.AdvanceCommand();
EXPECT_EQ(1, count());
}
TYPED_TEST(QueryPlanTest, AggregateFirstValueTypesWithDistinct) {
// testing exceptions that get emitted by the first-value
// type check
auto storage_dba = this->db->Access();
memgraph::query::DbAccessor dba(storage_dba.get());
auto v1 = dba.InsertVertex();
auto prop_string = dba.NameToProperty("string");
ASSERT_TRUE(v1.SetProperty(prop_string, memgraph::storage::PropertyValue("johhny")).HasValue());
auto prop_int = dba.NameToProperty("int");
ASSERT_TRUE(v1.SetProperty(prop_int, memgraph::storage::PropertyValue(12)).HasValue());
dba.AdvanceCommand();
SymbolTable symbol_table;
auto n = MakeScanAll(this->storage, symbol_table, "n");
auto n_prop_string = PROPERTY_LOOKUP(dba, IDENT("n")->MapTo(n.sym_), prop_string);
auto n_prop_int = PROPERTY_LOOKUP(dba, IDENT("n")->MapTo(n.sym_), prop_int);
auto n_id = n_prop_string->expression_;
auto aggregate = [&](Expression *expression, Aggregation::Op aggr_op) {
auto produce = this->MakeAggregationProduce(n.op_, symbol_table, {expression}, {aggr_op}, {}, {}, true);
auto context = MakeContext(this->storage, symbol_table, &dba);
CollectProduce(*produce, &context);
};
// everything except for COUNT and COLLECT fails on a Vertex
aggregate(n_id, Aggregation::Op::COUNT);
EXPECT_THROW(aggregate(n_id, Aggregation::Op::MIN), QueryRuntimeException);
EXPECT_THROW(aggregate(n_id, Aggregation::Op::MAX), QueryRuntimeException);
EXPECT_THROW(aggregate(n_id, Aggregation::Op::AVG), QueryRuntimeException);
EXPECT_THROW(aggregate(n_id, Aggregation::Op::SUM), QueryRuntimeException);
// on strings AVG and SUM fail
aggregate(n_prop_string, Aggregation::Op::COUNT);
aggregate(n_prop_string, Aggregation::Op::MIN);
aggregate(n_prop_string, Aggregation::Op::MAX);
EXPECT_THROW(aggregate(n_prop_string, Aggregation::Op::AVG), QueryRuntimeException);
EXPECT_THROW(aggregate(n_prop_string, Aggregation::Op::SUM), QueryRuntimeException);
// on ints nothing fails
aggregate(n_prop_int, Aggregation::Op::COUNT);
aggregate(n_prop_int, Aggregation::Op::MIN);
aggregate(n_prop_int, Aggregation::Op::MAX);
aggregate(n_prop_int, Aggregation::Op::AVG);
aggregate(n_prop_int, Aggregation::Op::SUM);
aggregate(n_prop_int, Aggregation::Op::COLLECT_LIST);
aggregate(n_prop_int, Aggregation::Op::COLLECT_MAP);
}
TYPED_TEST(QueryPlanTest, AggregateTypesWithDistinct) {
// testing exceptions that can get emitted by an aggregation
// does not check all combinations that can result in an exception
// (that logic is defined and tested by TypedValue)
auto storage_dba = this->db->Access();
memgraph::query::DbAccessor dba(storage_dba.get());
auto p1 = dba.NameToProperty("p1"); // has only string props
ASSERT_TRUE(dba.InsertVertex().SetProperty(p1, memgraph::storage::PropertyValue("string")).HasValue());
ASSERT_TRUE(dba.InsertVertex().SetProperty(p1, memgraph::storage::PropertyValue("str2")).HasValue());
auto p2 = dba.NameToProperty("p2"); // combines int and bool
ASSERT_TRUE(dba.InsertVertex().SetProperty(p2, memgraph::storage::PropertyValue(42)).HasValue());
ASSERT_TRUE(dba.InsertVertex().SetProperty(p2, memgraph::storage::PropertyValue(true)).HasValue());
dba.AdvanceCommand();
SymbolTable symbol_table;
auto n = MakeScanAll(this->storage, symbol_table, "n");
auto n_p1 = PROPERTY_LOOKUP(dba, IDENT("n")->MapTo(n.sym_), p1);
auto n_p2 = PROPERTY_LOOKUP(dba, IDENT("n")->MapTo(n.sym_), p2);
auto aggregate = [&](Expression *expression, Aggregation::Op aggr_op) {
auto produce = this->MakeAggregationProduce(n.op_, symbol_table, {expression}, {aggr_op}, {}, {}, true);
auto context = MakeContext(this->storage, symbol_table, &dba);
CollectProduce(*produce, &context);
};
// everything except for COUNT and COLLECT fails on a Vertex
auto n_id = n_p1->expression_;
aggregate(n_id, Aggregation::Op::COUNT);
aggregate(n_id, Aggregation::Op::COLLECT_LIST);
aggregate(n_id, Aggregation::Op::COLLECT_MAP);
EXPECT_THROW(aggregate(n_id, Aggregation::Op::MIN), QueryRuntimeException);
EXPECT_THROW(aggregate(n_id, Aggregation::Op::MAX), QueryRuntimeException);
EXPECT_THROW(aggregate(n_id, Aggregation::Op::AVG), QueryRuntimeException);
EXPECT_THROW(aggregate(n_id, Aggregation::Op::SUM), QueryRuntimeException);
// on strings AVG and SUM fail
aggregate(n_p1, Aggregation::Op::COUNT);
aggregate(n_p1, Aggregation::Op::COLLECT_LIST);
aggregate(n_p1, Aggregation::Op::COLLECT_MAP);
aggregate(n_p1, Aggregation::Op::MIN);
aggregate(n_p1, Aggregation::Op::MAX);
EXPECT_THROW(aggregate(n_p1, Aggregation::Op::AVG), QueryRuntimeException);
EXPECT_THROW(aggregate(n_p1, Aggregation::Op::SUM), QueryRuntimeException);
// combination of int and bool, everything except COUNT and COLLECT fails
aggregate(n_p2, Aggregation::Op::COUNT);
aggregate(n_p2, Aggregation::Op::COLLECT_LIST);
aggregate(n_p2, Aggregation::Op::COLLECT_MAP);
EXPECT_THROW(aggregate(n_p2, Aggregation::Op::MIN), QueryRuntimeException);
EXPECT_THROW(aggregate(n_p2, Aggregation::Op::MAX), QueryRuntimeException);
EXPECT_THROW(aggregate(n_p2, Aggregation::Op::AVG), QueryRuntimeException);
EXPECT_THROW(aggregate(n_p2, Aggregation::Op::SUM), QueryRuntimeException);
}