memgraph/tests/mgbench/benchmark.py
2020-09-22 18:55:28 +02:00

280 lines
12 KiB
Python
Executable File

#!/usr/bin/env python3
import argparse
import collections
import copy
import fnmatch
import inspect
import json
import multiprocessing
import random
import sys
import datasets
import log
import helpers
import runners
def get_queries(gen, count):
# Make the generator deterministic.
random.seed(gen.__name__)
# Generate queries.
ret = []
for i in range(count):
ret.append(gen())
return ret
def match_patterns(dataset, variant, group, test, is_default_variant,
patterns):
for pattern in patterns:
verdict = [fnmatch.fnmatchcase(dataset, pattern[0])]
if pattern[1] != "":
verdict.append(fnmatch.fnmatchcase(variant, pattern[1]))
else:
verdict.append(is_default_variant)
verdict.append(fnmatch.fnmatchcase(group, pattern[2]))
verdict.append(fnmatch.fnmatchcase(test, pattern[3]))
if all(verdict):
return True
return False
def filter_benchmarks(generators, patterns):
patterns = copy.deepcopy(patterns)
for i in range(len(patterns)):
pattern = patterns[i].split("/")
if len(pattern) > 4 or len(pattern) == 0:
raise Exception("Invalid benchmark description '" + pattern + "'!")
pattern.extend(["", "*", "*"][len(pattern) - 1:])
patterns[i] = pattern
filtered = []
for dataset in sorted(generators.keys()):
generator, tests = generators[dataset]
for variant in generator.VARIANTS:
is_default_variant = variant == generator.DEFAULT_VARIANT
current = collections.defaultdict(list)
for group in tests:
for test_name, test_func in tests[group]:
if match_patterns(dataset, variant, group, test_name,
is_default_variant, patterns):
current[group].append((test_name, test_func))
if len(current) > 0:
filtered.append((generator(variant), dict(current)))
return filtered
# Parse options.
parser = argparse.ArgumentParser(
description="Memgraph benchmark executor.",
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument("benchmarks", nargs="*", default="",
help="descriptions of benchmarks that should be run; "
"multiple descriptions can be specified to run multiple "
"benchmarks; the description is specified as "
"dataset/variant/group/test; Unix shell-style wildcards "
"can be used in the descriptions; variant, group and test "
"are optional and they can be left out; the default "
"variant is '' which selects the default dataset variant; "
"the default group is '*' which selects all groups; the "
"default test is '*' which selects all tests")
parser.add_argument("--memgraph-binary",
default=helpers.get_binary_path("memgraph"),
help="Memgraph binary used for benchmarking")
parser.add_argument("--client-binary",
default=helpers.get_binary_path("tests/mgbench/client"),
help="client binary used for benchmarking")
parser.add_argument("--num-workers-for-import", type=int,
default=multiprocessing.cpu_count() // 2,
help="number of workers used to import the dataset")
parser.add_argument("--num-workers-for-benchmark", type=int,
default=1,
help="number of workers used to execute the benchmark")
parser.add_argument("--single-threaded-runtime-sec", type=int,
default=10,
help="single threaded duration of each test")
parser.add_argument("--no-load-query-counts", action="store_true",
help="disable loading of cached query counts")
parser.add_argument("--no-save-query-counts", action="store_true",
help="disable storing of cached query counts")
parser.add_argument("--export-results", default="",
help="file path into which results should be exported")
parser.add_argument("--temporary-directory", default="/tmp",
help="directory path where temporary data should "
"be stored")
parser.add_argument("--no-properties-on-edges", action="store_true",
help="disable properties on edges")
args = parser.parse_args()
# Detect available datasets.
generators = {}
for key in dir(datasets):
if key.startswith("_"):
continue
dataset = getattr(datasets, key)
if not inspect.isclass(dataset) or dataset == datasets.Dataset or \
not issubclass(dataset, datasets.Dataset):
continue
tests = collections.defaultdict(list)
for funcname in dir(dataset):
if not funcname.startswith("benchmark__"):
continue
group, test = funcname.split("__")[1:]
tests[group].append((test, funcname))
generators[dataset.NAME] = (dataset, dict(tests))
if dataset.PROPERTIES_ON_EDGES and args.no_properties_on_edges:
raise Exception("The \"{}\" dataset requires properties on edges, "
"but you have disabled them!".format(dataset.NAME))
# List datasets if there is no specified dataset.
if len(args.benchmarks) == 0:
log.init("Available tests")
for name in sorted(generators.keys()):
print("Dataset:", name)
dataset, tests = generators[name]
print(" Variants:", ", ".join(dataset.VARIANTS),
"(default: " + dataset.DEFAULT_VARIANT + ")")
for group in sorted(tests.keys()):
print(" Group:", group)
for test_name, test_func in tests[group]:
print(" Test:", test_name)
sys.exit(0)
# Create cache, config and results objects.
cache = helpers.Cache()
if not args.no_load_query_counts:
config = cache.load_config()
else:
config = helpers.RecursiveDict()
results = helpers.RecursiveDict()
# Filter out the generators.
benchmarks = filter_benchmarks(generators, args.benchmarks)
# Run all specified benchmarks.
for dataset, tests in benchmarks:
log.init("Preparing", dataset.NAME + "/" + dataset.get_variant(),
"dataset")
dataset.prepare(cache.cache_directory("datasets", dataset.NAME,
dataset.get_variant()))
# Prepare runners and import the dataset.
memgraph = runners.Memgraph(args.memgraph_binary, args.temporary_directory,
not args.no_properties_on_edges)
client = runners.Client(args.client_binary, args.temporary_directory)
memgraph.start_preparation()
ret = client.execute(file_path=dataset.get_file(),
num_workers=args.num_workers_for_import)
usage = memgraph.stop()
# Display import statistics.
print()
for row in ret:
print("Executed", row["count"], "queries in", row["duration"],
"seconds using", row["num_workers"],
"workers with a total throughput of", row["throughput"],
"queries/second.")
print()
print("The database used", usage["cpu"],
"seconds of CPU time and peaked at",
usage["memory"] / 1024 / 1024, "MiB of RAM.")
# Save import results.
import_key = [dataset.NAME, dataset.get_variant(), "__import__"]
results.set_value(*import_key, value={"client": ret, "database": usage})
# TODO: cache import data
# Run all benchmarks in all available groups.
for group in sorted(tests.keys()):
for test, funcname in tests[group]:
log.info("Running test:", "{}/{}".format(group, test))
func = getattr(dataset, funcname)
# Get number of queries to execute.
# TODO: implement minimum number of queries, `max(10, num_workers)`
config_key = [dataset.NAME, dataset.get_variant(), group, test]
cached_count = config.get_value(*config_key)
if cached_count is None:
print("Determining the number of queries necessary for",
args.single_threaded_runtime_sec,
"seconds of single-threaded runtime...")
# First run to prime the query caches.
memgraph.start_benchmark()
client.execute(queries=get_queries(func, 1), num_workers=1)
# Get a sense of the runtime.
count = 1
while True:
ret = client.execute(queries=get_queries(func, count),
num_workers=1)
duration = ret[0]["duration"]
should_execute = int(args.single_threaded_runtime_sec /
(duration / count))
print("executed_queries={}, total_duration={}, "
"query_duration={}, estimated_count={}".format(
count, duration, duration / count,
should_execute))
# We don't have to execute the next iteration when
# `should_execute` becomes the same order of magnitude as
# `count * 10`.
if should_execute / (count * 10) < 10:
count = should_execute
break
else:
count = count * 10
memgraph.stop()
config.set_value(*config_key, value={
"count": count,
"duration": args.single_threaded_runtime_sec})
else:
print("Using cached query count of", cached_count["count"],
"queries for", cached_count["duration"],
"seconds of single-threaded runtime.")
count = int(cached_count["count"] *
args.single_threaded_runtime_sec /
cached_count["duration"])
# Benchmark run.
print("Sample query:", get_queries(func, 1)[0][0])
print("Executing benchmark with", count, "queries that should "
"yield a single-threaded runtime of",
args.single_threaded_runtime_sec, "seconds.")
print("Queries are executed using", args.num_workers_for_benchmark,
"concurrent clients.")
memgraph.start_benchmark()
ret = client.execute(queries=get_queries(func, count),
num_workers=args.num_workers_for_benchmark)[0]
usage = memgraph.stop()
ret["database"] = usage
# Output summary.
print()
print("Executed", ret["count"], "queries in",
ret["duration"], "seconds.")
print("Queries have been retried", ret["retries"], "times.")
print("Database used {:.3f} seconds of CPU time.".format(
usage["cpu"]))
print("Database peaked at {:.3f} MiB of memory.".format(
usage["memory"] / 1024.0 / 1024.0))
print("{:<31} {:>20} {:>20} {:>20}".format("Metadata:", "min",
"avg", "max"))
metadata = ret["metadata"]
for key in sorted(metadata.keys()):
print("{name:>30}: {minimum:>20.06f} {average:>20.06f} "
"{maximum:>20.06f}".format(name=key, **metadata[key]))
log.success("Throughput: {:02f} QPS".format(ret["throughput"]))
# Save results.
results_key = [dataset.NAME, dataset.get_variant(), group, test]
results.set_value(*results_key, value=ret)
# Save configuration.
if not args.no_save_query_counts:
cache.save_config(config)
# Export results.
if args.export_results:
with open(args.export_results, "w") as f:
json.dump(results.get_data(), f)