memgraph/tests/simulation/shard_rsm.cpp

1256 lines
47 KiB
C++

// Copyright 2022 Memgraph Ltd.
//
// Use of this software is governed by the Business Source License
// included in the file licenses/BSL.txt; by using this file, you agree to be bound by the terms of the Business Source
// License, and you may not use this file except in compliance with the Business Source License.
//
// As of the Change Date specified in that file, in accordance with
// the Business Source License, use of this software will be governed
// by the Apache License, Version 2.0, included in the file
// licenses/APL.txt.
#include <chrono>
#include <cstdint>
#include <iostream>
#include <optional>
#include <thread>
#include <utility>
#include <vector>
#include "io/address.hpp"
#include "io/errors.hpp"
#include "io/rsm/raft.hpp"
#include "io/rsm/rsm_client.hpp"
#include "io/simulator/simulator.hpp"
#include "io/simulator/simulator_transport.hpp"
#include "query/v2/requests.hpp"
#include "storage/v3/id_types.hpp"
#include "storage/v3/key_store.hpp"
#include "storage/v3/property_value.hpp"
#include "storage/v3/shard.hpp"
#include "storage/v3/shard_rsm.hpp"
#include "storage/v3/view.hpp"
#include "utils/result.hpp"
namespace memgraph::storage::v3::tests {
using io::Address;
using io::Io;
using io::ResponseEnvelope;
using io::ResponseFuture;
using io::Time;
using io::TimedOut;
using io::rsm::Raft;
using io::rsm::ReadRequest;
using io::rsm::ReadResponse;
using io::rsm::RsmClient;
using io::rsm::WriteRequest;
using io::rsm::WriteResponse;
using io::simulator::Simulator;
using io::simulator::SimulatorConfig;
using io::simulator::SimulatorStats;
using io::simulator::SimulatorTransport;
using utils::BasicResult;
using msgs::ReadRequests;
using msgs::ReadResponses;
using msgs::WriteRequests;
using msgs::WriteResponses;
using ShardClient = RsmClient<SimulatorTransport, WriteRequests, WriteResponses, ReadRequests, ReadResponses>;
using ConcreteShardRsm = Raft<SimulatorTransport, ShardRsm, WriteRequests, WriteResponses, ReadRequests, ReadResponses>;
// TODO(gvolfing) test vertex deletion with DETACH_DELETE as well
template <typename IoImpl>
void RunShardRaft(Raft<IoImpl, ShardRsm, WriteRequests, WriteResponses, ReadRequests, ReadResponses> server) {
server.Run();
}
namespace {
uint64_t GetTransactionId() {
static uint64_t transaction_id = 0;
return transaction_id++;
}
uint64_t GetUniqueInteger() {
static uint64_t prop_val_val = 1001;
return prop_val_val++;
}
constexpr LabelId get_primary_label() { return LabelId::FromUint(1); }
constexpr SchemaProperty get_schema_property() {
return {.property_id = PropertyId::FromUint(2), .type = common::SchemaType::INT};
}
msgs::PrimaryKey GetPrimaryKey(int64_t value) {
msgs::Value prop_val(static_cast<int64_t>(value));
msgs::PrimaryKey primary_key = {prop_val};
return primary_key;
}
msgs::NewVertex GetNewVertex(int64_t value) {
// Specify Labels.
msgs::Label label1 = {.id = LabelId::FromUint(3)};
std::vector<msgs::Label> label_ids = {label1};
// Specify primary key.
msgs::PrimaryKey primary_key = GetPrimaryKey(value);
// Specify properties
auto val1 = msgs::Value(static_cast<int64_t>(value));
auto prop1 = std::make_pair(PropertyId::FromUint(4), val1);
auto val3 = msgs::Value(static_cast<int64_t>(value));
auto prop3 = std::make_pair(PropertyId::FromUint(5), val3);
//(VERIFY) does the schema has to be specified with the properties or the primarykey?
auto val2 = msgs::Value(static_cast<int64_t>(value));
auto prop2 = std::make_pair(PropertyId::FromUint(6), val2);
std::vector<std::pair<PropertyId, msgs::Value>> properties{prop1, prop2, prop3};
// NewVertex
return {.label_ids = label_ids, .primary_key = primary_key, .properties = properties};
}
// TODO(gvolfing) maybe rename that something that makes sense.
std::vector<std::vector<msgs::Value>> GetValuePrimaryKeysWithValue(int64_t value) {
msgs::Value val(static_cast<int64_t>(value));
return {{val}};
}
void Commit(ShardClient &client, const coordinator::Hlc &transaction_timestamp) {
coordinator::Hlc commit_timestamp{.logical_id = GetTransactionId()};
msgs::CommitRequest commit_req{};
commit_req.transaction_id = transaction_timestamp;
commit_req.commit_timestamp = commit_timestamp;
while (true) {
auto write_res = client.SendWriteRequest(commit_req);
if (write_res.HasError()) {
continue;
}
auto write_response_result = write_res.GetValue();
auto write_response = std::get<msgs::CommitResponse>(write_response_result);
MG_ASSERT(write_response.success, "Commit expected to be successful, but it is failed");
break;
}
}
} // namespace
// attempts to sending different requests
namespace {
bool AttemptToCreateVertex(ShardClient &client, int64_t value) {
msgs::NewVertex vertex = GetNewVertex(value);
auto create_req = msgs::CreateVerticesRequest{};
create_req.new_vertices = {vertex};
create_req.transaction_id.logical_id = GetTransactionId();
auto write_res = client.SendWriteRequest(create_req);
MG_ASSERT(write_res.HasValue() && std::get<msgs::CreateVerticesResponse>(write_res.GetValue()).success,
"Unexpected failure");
Commit(client, create_req.transaction_id);
return true;
}
bool AttemptToDeleteVertex(ShardClient &client, int64_t value) {
auto delete_req = msgs::DeleteVerticesRequest{};
delete_req.deletion_type = msgs::DeleteVerticesRequest::DeletionType::DELETE;
delete_req.primary_keys = GetValuePrimaryKeysWithValue(value);
delete_req.transaction_id.logical_id = GetTransactionId();
while (true) {
auto write_res = client.SendWriteRequest(delete_req);
if (write_res.HasError()) {
continue;
}
auto write_response_result = write_res.GetValue();
auto write_response = std::get<msgs::DeleteVerticesResponse>(write_response_result);
Commit(client, delete_req.transaction_id);
return write_response.success;
}
}
bool AttemptToUpdateVertex(ShardClient &client, int64_t value) {
auto vertex_id = GetValuePrimaryKeysWithValue(value)[0];
std::vector<std::pair<PropertyId, msgs::Value>> property_updates;
auto property_update = std::make_pair(PropertyId::FromUint(5), msgs::Value(static_cast<int64_t>(10000)));
auto vertex_prop = msgs::UpdateVertexProp{};
vertex_prop.primary_key = vertex_id;
vertex_prop.property_updates = {property_update};
auto update_req = msgs::UpdateVerticesRequest{};
update_req.transaction_id.logical_id = GetTransactionId();
update_req.new_properties = {vertex_prop};
while (true) {
auto write_res = client.SendWriteRequest(update_req);
if (write_res.HasError()) {
continue;
}
auto write_response_result = write_res.GetValue();
auto write_response = std::get<msgs::UpdateVerticesResponse>(write_response_result);
Commit(client, update_req.transaction_id);
return write_response.success;
}
}
bool AttemptToAddEdge(ShardClient &client, int64_t value_of_vertex_1, int64_t value_of_vertex_2, int64_t edge_gid,
EdgeTypeId edge_type_id) {
auto id = msgs::EdgeId{};
msgs::Label label = {.id = get_primary_label()};
auto src = std::make_pair(label, GetPrimaryKey(value_of_vertex_1));
auto dst = std::make_pair(label, GetPrimaryKey(value_of_vertex_2));
id.gid = edge_gid;
auto type = msgs::EdgeType{};
type.id = edge_type_id;
msgs::NewExpand edge;
edge.id = id;
edge.type = type;
edge.src_vertex = src;
edge.dest_vertex = dst;
msgs::CreateExpandRequest create_req{};
create_req.new_expands = {edge};
create_req.transaction_id.logical_id = GetTransactionId();
while (true) {
auto write_res = client.SendWriteRequest(create_req);
if (write_res.HasError()) {
continue;
}
auto write_response_result = write_res.GetValue();
auto write_response = std::get<msgs::CreateExpandResponse>(write_response_result);
Commit(client, create_req.transaction_id);
return write_response.success;
}
return true;
}
bool AttemptToAddEdgeWithProperties(ShardClient &client, int64_t value_of_vertex_1, int64_t value_of_vertex_2,
int64_t edge_gid, uint64_t edge_prop_id, int64_t edge_prop_val,
const std::vector<EdgeTypeId> &edge_type_id) {
msgs::EdgeId id1;
msgs::Label label = {.id = get_primary_label()};
auto src = std::make_pair(label, GetPrimaryKey(value_of_vertex_1));
auto dst = std::make_pair(label, GetPrimaryKey(value_of_vertex_2));
id1.gid = edge_gid;
auto type1 = msgs::EdgeType{};
type1.id = edge_type_id[0];
auto edge_prop = std::make_pair(PropertyId::FromUint(edge_prop_id), msgs::Value(edge_prop_val));
auto expand = msgs::NewExpand{};
expand.id = id1;
expand.type = type1;
expand.src_vertex = src;
expand.dest_vertex = dst;
expand.properties = {edge_prop};
msgs::CreateExpandRequest create_req{};
create_req.new_expands = {expand};
create_req.transaction_id.logical_id = GetTransactionId();
auto write_res = client.SendWriteRequest(create_req);
MG_ASSERT(write_res.HasValue() && std::get<msgs::CreateExpandResponse>(write_res.GetValue()).success,
"Unexpected failure");
Commit(client, create_req.transaction_id);
return true;
}
bool AttemptToDeleteEdge(ShardClient &client, int64_t value_of_vertex_1, int64_t value_of_vertex_2, int64_t edge_gid,
EdgeTypeId edge_type_id) {
auto id = msgs::EdgeId{};
msgs::Label label = {.id = get_primary_label()};
auto src = std::make_pair(label, GetPrimaryKey(value_of_vertex_1));
auto dst = std::make_pair(label, GetPrimaryKey(value_of_vertex_2));
id.gid = edge_gid;
auto type = msgs::EdgeType{};
type.id = edge_type_id;
auto edge = msgs::Edge{};
edge.id = id;
edge.type = type;
edge.src = {src};
edge.dst = {dst};
msgs::DeleteEdgesRequest delete_req{};
delete_req.edges = {edge};
delete_req.transaction_id.logical_id = GetTransactionId();
while (true) {
auto write_res = client.SendWriteRequest(delete_req);
if (write_res.HasError()) {
continue;
}
auto write_response_result = write_res.GetValue();
auto write_response = std::get<msgs::DeleteEdgesResponse>(write_response_result);
Commit(client, delete_req.transaction_id);
return write_response.success;
}
}
bool AttemptToUpdateEdge(ShardClient &client, int64_t value_of_vertex_1, int64_t value_of_vertex_2, int64_t edge_gid,
EdgeTypeId edge_type_id, uint64_t edge_prop_id, int64_t edge_prop_val) {
auto id = msgs::EdgeId{};
msgs::Label label = {.id = get_primary_label()};
auto src = std::make_pair(label, GetPrimaryKey(value_of_vertex_1));
auto dst = std::make_pair(label, GetPrimaryKey(value_of_vertex_2));
id.gid = edge_gid;
auto type = msgs::EdgeType{};
type.id = edge_type_id;
auto edge = msgs::Edge{};
edge.id = id;
edge.type = type;
auto edge_prop = std::vector<std::pair<PropertyId, msgs::Value>>{
std::make_pair(PropertyId::FromUint(edge_prop_id), msgs::Value(edge_prop_val))};
msgs::UpdateEdgeProp update_props{.edge_id = id, .src = src, .dst = dst, .property_updates = edge_prop};
msgs::UpdateEdgesRequest update_req{};
update_req.transaction_id.logical_id = GetTransactionId();
update_req.new_properties = {update_props};
while (true) {
auto write_res = client.SendWriteRequest(update_req);
if (write_res.HasError()) {
continue;
}
auto write_response_result = write_res.GetValue();
auto write_response = std::get<msgs::UpdateEdgesResponse>(write_response_result);
Commit(client, update_req.transaction_id);
return write_response.success;
}
}
std::tuple<size_t, std::optional<msgs::VertexId>> AttemptToScanAllWithoutBatchLimit(ShardClient &client,
msgs::VertexId start_id) {
msgs::ScanVerticesRequest scan_req{};
scan_req.batch_limit = {};
scan_req.filter_expressions.clear();
scan_req.props_to_return = std::nullopt;
scan_req.start_id = start_id;
scan_req.storage_view = msgs::StorageView::OLD;
scan_req.transaction_id.logical_id = GetTransactionId();
while (true) {
auto read_res = client.SendReadRequest(scan_req);
if (read_res.HasError()) {
continue;
}
auto write_response_result = read_res.GetValue();
auto write_response = std::get<msgs::ScanVerticesResponse>(write_response_result);
MG_ASSERT(write_response.success);
return {write_response.results.size(), write_response.next_start_id};
}
}
std::tuple<size_t, std::optional<msgs::VertexId>> AttemptToScanAllWithBatchLimit(ShardClient &client,
msgs::VertexId start_id,
uint64_t batch_limit) {
msgs::ScanVerticesRequest scan_req{};
scan_req.batch_limit = batch_limit;
scan_req.filter_expressions.clear();
scan_req.props_to_return = std::nullopt;
scan_req.start_id = start_id;
scan_req.storage_view = msgs::StorageView::OLD;
scan_req.transaction_id.logical_id = GetTransactionId();
while (true) {
auto read_res = client.SendReadRequest(scan_req);
if (read_res.HasError()) {
continue;
}
auto write_response_result = read_res.GetValue();
auto write_response = std::get<msgs::ScanVerticesResponse>(write_response_result);
MG_ASSERT(write_response.success);
return {write_response.results.size(), write_response.next_start_id};
}
}
std::tuple<size_t, std::optional<msgs::VertexId>> AttemptToScanAllWithExpression(ShardClient &client,
msgs::VertexId start_id,
uint64_t batch_limit,
uint64_t prop_val_to_check_against) {
std::string filter_expr1 = "MG_SYMBOL_NODE.prop1 = " + std::to_string(prop_val_to_check_against);
std::vector<std::string> filter_expressions = {filter_expr1};
std::string regular_expr1 = "2+2";
std::vector<std::string> vertex_expressions = {regular_expr1};
msgs::ScanVerticesRequest scan_req{};
scan_req.batch_limit = batch_limit;
scan_req.filter_expressions = filter_expressions;
scan_req.vertex_expressions = vertex_expressions;
scan_req.props_to_return = std::nullopt;
scan_req.start_id = start_id;
scan_req.storage_view = msgs::StorageView::NEW;
scan_req.transaction_id.logical_id = GetTransactionId();
while (true) {
auto read_res = client.SendReadRequest(scan_req);
if (read_res.HasError()) {
continue;
}
auto write_response_result = read_res.GetValue();
auto write_response = std::get<msgs::ScanVerticesResponse>(write_response_result);
MG_ASSERT(write_response.success);
MG_ASSERT(!write_response.results.empty(), "There are no results!");
MG_ASSERT(write_response.results[0].evaluated_vertex_expressions[0].int_v == 4);
return {write_response.results.size(), write_response.next_start_id};
}
}
void AttemptToScanAllWithOrderByOnPrimaryProperty(ShardClient &client, msgs::VertexId start_id, uint64_t batch_limit) {
msgs::ScanVerticesRequest scan_req;
scan_req.batch_limit = batch_limit;
scan_req.order_bys = {{msgs::Expression{"MG_SYMBOL_NODE.prop1"}, msgs::OrderingDirection::DESCENDING}};
scan_req.props_to_return = std::nullopt;
scan_req.start_id = start_id;
scan_req.storage_view = msgs::StorageView::NEW;
scan_req.transaction_id.logical_id = GetTransactionId();
while (true) {
auto read_res = client.SendReadRequest(scan_req);
if (read_res.HasError()) {
continue;
}
auto write_response_result = read_res.GetValue();
auto write_response = std::get<msgs::ScanVerticesResponse>(write_response_result);
MG_ASSERT(write_response.success);
MG_ASSERT(write_response.results.size() == 5, "Expecting 5 results!");
for (int64_t i{0}; i < 5; ++i) {
const auto expected_primary_key = std::vector{msgs::Value(1023 - i)};
const auto actual_primary_key = write_response.results[i].vertex.id.second;
MG_ASSERT(expected_primary_key == actual_primary_key, "The order of vertices is not correct");
}
break;
}
}
void AttemptToScanAllWithOrderByOnSecondaryProperty(ShardClient &client, msgs::VertexId start_id,
uint64_t batch_limit) {
msgs::ScanVerticesRequest scan_req;
scan_req.batch_limit = batch_limit;
scan_req.order_bys = {{msgs::Expression{"MG_SYMBOL_NODE.prop4"}, msgs::OrderingDirection::DESCENDING}};
scan_req.props_to_return = std::nullopt;
scan_req.start_id = start_id;
scan_req.storage_view = msgs::StorageView::NEW;
scan_req.transaction_id.logical_id = GetTransactionId();
while (true) {
auto read_res = client.SendReadRequest(scan_req);
if (read_res.HasError()) {
continue;
}
auto write_response_result = read_res.GetValue();
auto write_response = std::get<msgs::ScanVerticesResponse>(write_response_result);
MG_ASSERT(write_response.success);
MG_ASSERT(write_response.results.size() == 5, "Expecting 5 results!");
for (int64_t i{0}; i < 5; ++i) {
const auto expected_prop4 = std::vector{msgs::Value(1023 - i)};
const auto actual_prop4 = std::invoke([&write_response, i]() {
const auto res = std::ranges::find_if(write_response.results[i].props, [](const auto &id_value_prop_pair) {
return id_value_prop_pair.first.AsInt() == 4;
});
MG_ASSERT(res != write_response.results[i].props.end(), "Property does not exist!");
return std::vector{res->second};
});
MG_ASSERT(expected_prop4 == actual_prop4, "The order of vertices is not correct");
}
break;
}
}
void AttemptToExpandOneWithWrongEdgeType(ShardClient &client, uint64_t src_vertex_val, EdgeTypeId edge_type_id) {
// Source vertex
msgs::Label label = {.id = get_primary_label()};
auto src_vertex = std::make_pair(label, GetPrimaryKey(src_vertex_val));
// Edge type
auto edge_type = msgs::EdgeType{};
edge_type.id = edge_type_id;
// Edge direction
auto edge_direction = msgs::EdgeDirection::OUT;
// Source Vertex properties to look for
std::optional<std::vector<PropertyId>> src_vertex_properties = {};
// Edge properties to look for
std::optional<std::vector<PropertyId>> edge_properties = {};
std::vector<std::string> expressions;
std::vector<msgs::OrderBy> order_by = {};
std::optional<size_t> limit = {};
std::vector<std::string> filter = {};
msgs::ExpandOneRequest expand_one_req{};
expand_one_req.direction = edge_direction;
expand_one_req.edge_properties = edge_properties;
expand_one_req.edge_types = {edge_type};
expand_one_req.vertex_expressions = expressions;
expand_one_req.filters = filter;
expand_one_req.limit = limit;
expand_one_req.order_by = order_by;
expand_one_req.src_vertex_properties = src_vertex_properties;
expand_one_req.src_vertices = {src_vertex};
expand_one_req.transaction_id.logical_id = GetTransactionId();
while (true) {
auto read_res = client.SendReadRequest(expand_one_req);
if (read_res.HasError()) {
continue;
}
auto write_response_result = read_res.GetValue();
auto write_response = std::get<msgs::ExpandOneResponse>(write_response_result);
MG_ASSERT(write_response.result.size() == 1);
MG_ASSERT(write_response.result[0].in_edges_with_all_properties.empty());
MG_ASSERT(write_response.result[0].out_edges_with_all_properties.empty());
MG_ASSERT(write_response.result[0].in_edges_with_specific_properties.empty());
MG_ASSERT(write_response.result[0].out_edges_with_specific_properties.empty());
break;
}
}
void AttemptToExpandOneSimple(ShardClient &client, uint64_t src_vertex_val, EdgeTypeId edge_type_id) {
// Source vertex
msgs::Label label = {.id = get_primary_label()};
auto src_vertex = std::make_pair(label, GetPrimaryKey(src_vertex_val));
// Edge type
auto edge_type = msgs::EdgeType{};
edge_type.id = edge_type_id;
// Edge direction
auto edge_direction = msgs::EdgeDirection::OUT;
// Source Vertex properties to look for
std::optional<std::vector<PropertyId>> src_vertex_properties = {};
// Edge properties to look for
std::optional<std::vector<PropertyId>> edge_properties = {};
std::vector<std::string> expressions;
std::vector<msgs::OrderBy> order_by = {};
std::optional<size_t> limit = {};
std::vector<std::string> filter = {};
msgs::ExpandOneRequest expand_one_req{};
expand_one_req.direction = edge_direction;
expand_one_req.edge_properties = edge_properties;
expand_one_req.edge_types = {edge_type};
expand_one_req.vertex_expressions = expressions;
expand_one_req.filters = filter;
expand_one_req.limit = limit;
expand_one_req.order_by = order_by;
expand_one_req.src_vertex_properties = src_vertex_properties;
expand_one_req.src_vertices = {src_vertex};
expand_one_req.transaction_id.logical_id = GetTransactionId();
while (true) {
auto read_res = client.SendReadRequest(expand_one_req);
if (read_res.HasError()) {
continue;
}
auto write_response_result = read_res.GetValue();
auto write_response = std::get<msgs::ExpandOneResponse>(write_response_result);
MG_ASSERT(write_response.result.size() == 1);
MG_ASSERT(write_response.result[0].out_edges_with_all_properties.size() == 2);
MG_ASSERT(write_response.result[0].in_edges_with_all_properties.empty());
MG_ASSERT(write_response.result[0].in_edges_with_specific_properties.empty());
MG_ASSERT(write_response.result[0].out_edges_with_specific_properties.empty());
const auto number_of_properties_on_edge =
(write_response.result[0].out_edges_with_all_properties[0]).properties.size();
MG_ASSERT(number_of_properties_on_edge == 1);
break;
}
}
void AttemptToExpandOneWithUniqueEdges(ShardClient &client, uint64_t src_vertex_val, EdgeTypeId edge_type_id) {
// Source vertex
msgs::Label label = {.id = get_primary_label()};
auto src_vertex = std::make_pair(label, GetPrimaryKey(src_vertex_val));
// Edge type
auto edge_type = msgs::EdgeType{};
edge_type.id = edge_type_id;
// Edge direction
auto edge_direction = msgs::EdgeDirection::OUT;
// Source Vertex properties to look for
std::optional<std::vector<PropertyId>> src_vertex_properties = {};
// Edge properties to look for
std::optional<std::vector<PropertyId>> edge_properties = {};
std::vector<std::string> expressions;
std::vector<msgs::OrderBy> order_by = {};
std::optional<size_t> limit = {};
std::vector<std::string> filter = {};
msgs::ExpandOneRequest expand_one_req{};
expand_one_req.direction = edge_direction;
expand_one_req.edge_properties = edge_properties;
expand_one_req.edge_types = {edge_type};
expand_one_req.vertex_expressions = expressions;
expand_one_req.filters = filter;
expand_one_req.limit = limit;
expand_one_req.order_by = order_by;
expand_one_req.src_vertex_properties = src_vertex_properties;
expand_one_req.src_vertices = {src_vertex};
expand_one_req.only_unique_neighbor_rows = true;
expand_one_req.transaction_id.logical_id = GetTransactionId();
while (true) {
auto read_res = client.SendReadRequest(expand_one_req);
if (read_res.HasError()) {
continue;
}
auto write_response_result = read_res.GetValue();
auto write_response = std::get<msgs::ExpandOneResponse>(write_response_result);
MG_ASSERT(write_response.result.size() == 1);
MG_ASSERT(write_response.result[0].out_edges_with_all_properties.size() == 1);
MG_ASSERT(write_response.result[0].in_edges_with_all_properties.empty());
MG_ASSERT(write_response.result[0].in_edges_with_specific_properties.empty());
MG_ASSERT(write_response.result[0].out_edges_with_specific_properties.empty());
const auto number_of_properties_on_edge =
(write_response.result[0].out_edges_with_all_properties[0]).properties.size();
MG_ASSERT(number_of_properties_on_edge == 1);
break;
}
}
void AttemptToExpandOneLimitAndOrderBy(ShardClient &client, uint64_t src_vertex_val, uint64_t other_src_vertex_val,
EdgeTypeId edge_type_id) {
// Source vertex
msgs::Label label = {.id = get_primary_label()};
auto src_vertex = std::make_pair(label, GetPrimaryKey(src_vertex_val));
auto other_src_vertex = std::make_pair(label, GetPrimaryKey(other_src_vertex_val));
// Edge type
auto edge_type = msgs::EdgeType{};
edge_type.id = edge_type_id;
// Edge direction
auto edge_direction = msgs::EdgeDirection::OUT;
// Source Vertex properties to look for
std::optional<std::vector<PropertyId>> src_vertex_properties = {};
// Edge properties to look for
std::optional<std::vector<PropertyId>> edge_properties = {};
std::vector<msgs::OrderBy> order_by = {
{msgs::Expression{"MG_SYMBOL_NODE.prop1"}, msgs::OrderingDirection::ASCENDING},
{msgs::Expression{"MG_SYMBOL_EDGE.prop4"}, msgs::OrderingDirection::DESCENDING}};
size_t limit = 1;
std::vector<std::string> filters = {"MG_SYMBOL_NODE.prop1 != -1"};
msgs::ExpandOneRequest expand_one_req{};
expand_one_req.direction = edge_direction;
expand_one_req.edge_properties = edge_properties;
expand_one_req.edge_types = {edge_type};
expand_one_req.filters = filters;
expand_one_req.limit = limit;
expand_one_req.order_by = order_by;
expand_one_req.src_vertex_properties = src_vertex_properties;
expand_one_req.src_vertices = {src_vertex, other_src_vertex};
expand_one_req.transaction_id.logical_id = GetTransactionId();
while (true) {
auto read_res = client.SendReadRequest(expand_one_req);
if (read_res.HasError()) {
continue;
}
auto write_response_result = read_res.GetValue();
auto write_response = std::get<msgs::ExpandOneResponse>(write_response_result);
// We check that we do not have more results than the limit. Based on the data in the graph, we know that we should
// receive exactly limit responses.
auto expected_number_of_rows = std::min(expand_one_req.src_vertices.size(), limit);
MG_ASSERT(expected_number_of_rows == 1);
MG_ASSERT(write_response.result.size() == expected_number_of_rows);
// We know there are 1 out-going edges from V1->V2
// We know there are 10 out-going edges from V2->V3
// Since we sort on prop1 and limit 1, we will have a single response
// with two edges corresponding to V1->V2 and V1->V3
const auto expected_number_of_edges = 2;
MG_ASSERT(write_response.result[0].out_edges_with_all_properties.size() == expected_number_of_edges);
MG_ASSERT(write_response.result[0]
.out_edges_with_specific_properties.empty()); // We are not asking for specific properties
// We also check that the vertices are ordered by prop1 DESC
auto is_sorted = std::is_sorted(write_response.result.cbegin(), write_response.result.cend(),
[](const auto &vertex, const auto &other_vertex) {
const auto primary_key = vertex.src_vertex.id.second;
const auto other_primary_key = other_vertex.src_vertex.id.second;
MG_ASSERT(primary_key.size() == 1);
MG_ASSERT(other_primary_key.size() == 1);
return primary_key[0].int_v > other_primary_key[0].int_v;
});
MG_ASSERT(is_sorted);
break;
}
}
void AttemptToExpandOneWithSpecifiedSrcVertexProperties(ShardClient &client, uint64_t src_vertex_val,
EdgeTypeId edge_type_id) {
// Source vertex
msgs::Label label = {.id = get_primary_label()};
auto src_vertex = std::make_pair(label, GetPrimaryKey(src_vertex_val));
// Edge type
auto edge_type = msgs::EdgeType{};
edge_type.id = edge_type_id;
// Edge direction
auto edge_direction = msgs::EdgeDirection::OUT;
// Source Vertex properties to look for
std::vector<PropertyId> desired_src_vertex_props{PropertyId::FromUint(2)};
std::optional<std::vector<PropertyId>> src_vertex_properties = desired_src_vertex_props;
// Edge properties to look for
std::optional<std::vector<PropertyId>> edge_properties = {};
std::vector<std::string> expressions;
std::vector<msgs::OrderBy> order_by = {};
std::optional<size_t> limit = {};
std::vector<std::string> filter = {};
msgs::ExpandOneRequest expand_one_req{};
expand_one_req.direction = edge_direction;
expand_one_req.edge_properties = edge_properties;
expand_one_req.edge_types = {edge_type};
expand_one_req.vertex_expressions = expressions;
expand_one_req.filters = filter;
expand_one_req.limit = limit;
expand_one_req.order_by = order_by;
expand_one_req.src_vertex_properties = src_vertex_properties;
expand_one_req.src_vertices = {src_vertex};
expand_one_req.transaction_id.logical_id = GetTransactionId();
while (true) {
auto read_res = client.SendReadRequest(expand_one_req);
if (read_res.HasError()) {
continue;
}
auto write_response_result = read_res.GetValue();
auto write_response = std::get<msgs::ExpandOneResponse>(write_response_result);
MG_ASSERT(write_response.result.size() == 1);
auto src_vertex_props_size = write_response.result[0].src_vertex_properties.size();
MG_ASSERT(src_vertex_props_size == 1);
MG_ASSERT(write_response.result[0].out_edges_with_all_properties.size() == 2);
MG_ASSERT(write_response.result[0].in_edges_with_all_properties.empty());
MG_ASSERT(write_response.result[0].in_edges_with_specific_properties.empty());
MG_ASSERT(write_response.result[0].out_edges_with_specific_properties.empty());
const auto number_of_properties_on_edge =
(write_response.result[0].out_edges_with_all_properties[0]).properties.size();
MG_ASSERT(number_of_properties_on_edge == 1);
break;
}
}
void AttemptToExpandOneWithSpecifiedEdgeProperties(ShardClient &client, uint64_t src_vertex_val,
EdgeTypeId edge_type_id, uint64_t edge_prop_id) {
// Source vertex
msgs::Label label = {.id = get_primary_label()};
auto src_vertex = std::make_pair(label, GetPrimaryKey(src_vertex_val));
// Edge type
auto edge_type = msgs::EdgeType{};
edge_type.id = edge_type_id;
// Edge direction
auto edge_direction = msgs::EdgeDirection::OUT;
// Source Vertex properties to look for
std::optional<std::vector<PropertyId>> src_vertex_properties = {};
// Edge properties to look for
std::vector<PropertyId> specified_edge_prop{PropertyId::FromUint(edge_prop_id)};
std::optional<std::vector<PropertyId>> edge_properties = {specified_edge_prop};
std::vector<std::string> expressions;
std::vector<msgs::OrderBy> order_by = {};
std::optional<size_t> limit = {};
std::vector<std::string> filter = {};
msgs::ExpandOneRequest expand_one_req{};
expand_one_req.direction = edge_direction;
expand_one_req.edge_properties = edge_properties;
expand_one_req.edge_types = {edge_type};
expand_one_req.vertex_expressions = expressions;
expand_one_req.filters = filter;
expand_one_req.limit = limit;
expand_one_req.order_by = order_by;
expand_one_req.src_vertex_properties = src_vertex_properties;
expand_one_req.src_vertices = {src_vertex};
expand_one_req.transaction_id.logical_id = GetTransactionId();
while (true) {
auto read_res = client.SendReadRequest(expand_one_req);
if (read_res.HasError()) {
continue;
}
auto write_response_result = read_res.GetValue();
auto write_response = std::get<msgs::ExpandOneResponse>(write_response_result);
MG_ASSERT(write_response.result.size() == 1);
MG_ASSERT(write_response.result[0].out_edges_with_specific_properties.size() == 2);
MG_ASSERT(write_response.result[0].in_edges_with_specific_properties.empty());
MG_ASSERT(write_response.result[0].in_edges_with_all_properties.empty());
MG_ASSERT(write_response.result[0].out_edges_with_all_properties.empty());
const auto specific_properties_size =
(write_response.result[0].out_edges_with_specific_properties[0]).properties.size();
MG_ASSERT(specific_properties_size == 1);
break;
}
}
void AttemptToExpandOneWithFilters(ShardClient &client, uint64_t src_vertex_val, EdgeTypeId edge_type_id,
uint64_t edge_prop_id, uint64_t prop_val_to_check_against) {
std::string filter_expr1 = "MG_SYMBOL_NODE.prop1 = " + std::to_string(prop_val_to_check_against);
// Source vertex
msgs::Label label = {.id = get_primary_label()};
auto src_vertex = std::make_pair(label, GetPrimaryKey(src_vertex_val));
// Edge type
auto edge_type = msgs::EdgeType{};
edge_type.id = edge_type_id;
// Edge direction
auto edge_direction = msgs::EdgeDirection::OUT;
// Source Vertex properties to look for
std::optional<std::vector<PropertyId>> src_vertex_properties = {};
// Edge properties to look for
std::optional<std::vector<PropertyId>> edge_properties = {};
std::vector<std::string> expressions;
std::vector<msgs::OrderBy> order_by = {};
std::optional<size_t> limit = {};
std::vector<std::string> filter = {};
msgs::ExpandOneRequest expand_one_req{};
expand_one_req.direction = edge_direction;
expand_one_req.edge_properties = edge_properties;
expand_one_req.edge_types = {edge_type};
expand_one_req.vertex_expressions = expressions;
expand_one_req.filters = {filter_expr1};
expand_one_req.limit = limit;
expand_one_req.order_by = order_by;
expand_one_req.src_vertex_properties = src_vertex_properties;
expand_one_req.src_vertices = {src_vertex};
expand_one_req.transaction_id.logical_id = GetTransactionId();
while (true) {
auto read_res = client.SendReadRequest(expand_one_req);
if (read_res.HasError()) {
continue;
}
auto write_response_result = read_res.GetValue();
auto write_response = std::get<msgs::ExpandOneResponse>(write_response_result);
MG_ASSERT(write_response.result.size() == 1);
MG_ASSERT(write_response.result[0].out_edges_with_specific_properties.empty());
MG_ASSERT(write_response.result[0].in_edges_with_specific_properties.empty());
MG_ASSERT(write_response.result[0].in_edges_with_all_properties.empty());
MG_ASSERT(write_response.result[0].out_edges_with_all_properties.size() == 2);
break;
}
}
} // namespace
// tests
namespace {
void TestCreateVertices(ShardClient &client) { MG_ASSERT(AttemptToCreateVertex(client, GetUniqueInteger())); }
void TestCreateAndDeleteVertices(ShardClient &client) {
auto unique_prop_val = GetUniqueInteger();
MG_ASSERT(AttemptToCreateVertex(client, unique_prop_val));
MG_ASSERT(AttemptToDeleteVertex(client, unique_prop_val));
}
void TestCreateAndUpdateVertices(ShardClient &client) {
auto unique_prop_val = GetUniqueInteger();
MG_ASSERT(AttemptToCreateVertex(client, unique_prop_val));
MG_ASSERT(AttemptToUpdateVertex(client, unique_prop_val));
}
void TestCreateEdge(ShardClient &client) {
auto unique_prop_val_1 = GetUniqueInteger();
auto unique_prop_val_2 = GetUniqueInteger();
MG_ASSERT(AttemptToCreateVertex(client, unique_prop_val_1));
MG_ASSERT(AttemptToCreateVertex(client, unique_prop_val_2));
auto edge_gid = GetUniqueInteger();
auto edge_type_id = EdgeTypeId::FromUint(GetUniqueInteger());
MG_ASSERT(AttemptToAddEdge(client, unique_prop_val_1, unique_prop_val_2, edge_gid, edge_type_id));
}
void TestCreateAndDeleteEdge(ShardClient &client) {
// Add the Edge
auto unique_prop_val_1 = GetUniqueInteger();
auto unique_prop_val_2 = GetUniqueInteger();
MG_ASSERT(AttemptToCreateVertex(client, unique_prop_val_1));
MG_ASSERT(AttemptToCreateVertex(client, unique_prop_val_2));
auto edge_gid = GetUniqueInteger();
auto edge_type_id = EdgeTypeId::FromUint(GetUniqueInteger());
MG_ASSERT(AttemptToAddEdge(client, unique_prop_val_1, unique_prop_val_2, edge_gid, edge_type_id));
// Delete the Edge
MG_ASSERT(AttemptToDeleteEdge(client, unique_prop_val_1, unique_prop_val_2, edge_gid, edge_type_id));
}
void TestUpdateEdge(ShardClient &client) {
// Add the Edge
auto unique_prop_val_1 = GetUniqueInteger();
auto unique_prop_val_2 = GetUniqueInteger();
MG_ASSERT(AttemptToCreateVertex(client, unique_prop_val_1));
MG_ASSERT(AttemptToCreateVertex(client, unique_prop_val_2));
auto edge_gid = GetUniqueInteger();
auto edge_type_id = EdgeTypeId::FromUint(GetUniqueInteger());
auto edge_prop_id = GetUniqueInteger();
auto edge_prop_val_old = GetUniqueInteger();
auto edge_prop_val_new = GetUniqueInteger();
MG_ASSERT(AttemptToAddEdgeWithProperties(client, unique_prop_val_1, unique_prop_val_2, edge_gid, edge_prop_id,
edge_prop_val_old, {edge_type_id}));
// Update the Edge
MG_ASSERT(AttemptToUpdateEdge(client, unique_prop_val_1, unique_prop_val_2, edge_gid, edge_type_id, edge_prop_id,
edge_prop_val_new));
}
void TestScanAllOneGo(ShardClient &client) {
auto unique_prop_val_1 = GetUniqueInteger();
auto unique_prop_val_2 = GetUniqueInteger();
auto unique_prop_val_3 = GetUniqueInteger();
auto unique_prop_val_4 = GetUniqueInteger();
auto unique_prop_val_5 = GetUniqueInteger();
MG_ASSERT(AttemptToCreateVertex(client, unique_prop_val_1));
MG_ASSERT(AttemptToCreateVertex(client, unique_prop_val_2));
MG_ASSERT(AttemptToCreateVertex(client, unique_prop_val_3));
MG_ASSERT(AttemptToCreateVertex(client, unique_prop_val_4));
MG_ASSERT(AttemptToCreateVertex(client, unique_prop_val_5));
msgs::Label prim_label = {.id = get_primary_label()};
msgs::PrimaryKey prim_key = {msgs::Value(static_cast<int64_t>(unique_prop_val_1))};
msgs::VertexId v_id = {prim_label, prim_key};
auto [result_size_2, next_id_2] = AttemptToScanAllWithExpression(client, v_id, 5, unique_prop_val_2);
MG_ASSERT(result_size_2 == 1);
AttemptToScanAllWithOrderByOnPrimaryProperty(client, v_id, 5);
AttemptToScanAllWithOrderByOnSecondaryProperty(client, v_id, 5);
auto [result_size_with_batch, next_id_with_batch] = AttemptToScanAllWithBatchLimit(client, v_id, 5);
auto [result_size_without_batch, next_id_without_batch] = AttemptToScanAllWithoutBatchLimit(client, v_id);
MG_ASSERT(result_size_with_batch == 5);
MG_ASSERT(result_size_without_batch == 5);
}
void TestScanAllWithSmallBatchSize(ShardClient &client) {
auto unique_prop_val_1 = GetUniqueInteger();
auto unique_prop_val_2 = GetUniqueInteger();
auto unique_prop_val_3 = GetUniqueInteger();
auto unique_prop_val_4 = GetUniqueInteger();
auto unique_prop_val_5 = GetUniqueInteger();
auto unique_prop_val_6 = GetUniqueInteger();
auto unique_prop_val_7 = GetUniqueInteger();
auto unique_prop_val_8 = GetUniqueInteger();
auto unique_prop_val_9 = GetUniqueInteger();
auto unique_prop_val_10 = GetUniqueInteger();
MG_ASSERT(AttemptToCreateVertex(client, unique_prop_val_1));
MG_ASSERT(AttemptToCreateVertex(client, unique_prop_val_2));
MG_ASSERT(AttemptToCreateVertex(client, unique_prop_val_3));
MG_ASSERT(AttemptToCreateVertex(client, unique_prop_val_4));
MG_ASSERT(AttemptToCreateVertex(client, unique_prop_val_5));
MG_ASSERT(AttemptToCreateVertex(client, unique_prop_val_6));
MG_ASSERT(AttemptToCreateVertex(client, unique_prop_val_7));
MG_ASSERT(AttemptToCreateVertex(client, unique_prop_val_8));
MG_ASSERT(AttemptToCreateVertex(client, unique_prop_val_9));
MG_ASSERT(AttemptToCreateVertex(client, unique_prop_val_10));
msgs::Label prim_label = {.id = get_primary_label()};
msgs::PrimaryKey prim_key1 = {msgs::Value(static_cast<int64_t>(unique_prop_val_1))};
msgs::VertexId v_id_1 = {prim_label, prim_key1};
auto [result_size1, next_id1] = AttemptToScanAllWithBatchLimit(client, v_id_1, 3);
MG_ASSERT(result_size1 == 3);
auto [result_size2, next_id2] = AttemptToScanAllWithBatchLimit(client, next_id1.value(), 3);
MG_ASSERT(result_size2 == 3);
auto [result_size3, next_id3] = AttemptToScanAllWithBatchLimit(client, next_id2.value(), 3);
MG_ASSERT(result_size3 == 3);
auto [result_size4, next_id4] = AttemptToScanAllWithBatchLimit(client, next_id3.value(), 3);
MG_ASSERT(result_size4 == 1);
MG_ASSERT(!next_id4);
}
void TestExpandOneGraphOne(ShardClient &client) {
{
// ExpandOneSimple
auto unique_prop_val_1 = GetUniqueInteger();
auto unique_prop_val_2 = GetUniqueInteger();
auto unique_prop_val_3 = GetUniqueInteger();
MG_ASSERT(AttemptToCreateVertex(client, unique_prop_val_1));
MG_ASSERT(AttemptToCreateVertex(client, unique_prop_val_2));
MG_ASSERT(AttemptToCreateVertex(client, unique_prop_val_3));
auto edge_type_id = EdgeTypeId::FromUint(GetUniqueInteger());
auto wrong_edge_type_id = EdgeTypeId::FromUint(GetUniqueInteger());
auto edge_gid_1 = GetUniqueInteger();
auto edge_gid_2 = GetUniqueInteger();
auto edge_prop_id = GetUniqueInteger();
auto edge_prop_val = GetUniqueInteger();
std::vector<uint64_t> edges_ids(10);
std::generate(edges_ids.begin(), edges_ids.end(), GetUniqueInteger);
// (V1)-[edge_type_id]->(V2)
MG_ASSERT(AttemptToAddEdgeWithProperties(client, unique_prop_val_1, unique_prop_val_2, edge_gid_1, edge_prop_id,
edge_prop_val, {edge_type_id}));
// (V1)-[edge_type_id]->(V3)
MG_ASSERT(AttemptToAddEdgeWithProperties(client, unique_prop_val_1, unique_prop_val_3, edge_gid_2, edge_prop_id,
edge_prop_val, {edge_type_id}));
// (V2)-[edge_type_id]->(V3) x 10
std::for_each(edges_ids.begin(), edges_ids.end(), [&](const auto &edge_id) {
MG_ASSERT(AttemptToAddEdgeWithProperties(client, unique_prop_val_2, unique_prop_val_3, edge_id, edge_prop_id,
edge_prop_val, {edge_type_id}));
});
AttemptToExpandOneSimple(client, unique_prop_val_1, edge_type_id);
AttemptToExpandOneLimitAndOrderBy(client, unique_prop_val_1, unique_prop_val_2, edge_type_id);
AttemptToExpandOneWithWrongEdgeType(client, unique_prop_val_1, wrong_edge_type_id);
AttemptToExpandOneWithSpecifiedSrcVertexProperties(client, unique_prop_val_1, edge_type_id);
AttemptToExpandOneWithSpecifiedEdgeProperties(client, unique_prop_val_1, edge_type_id, edge_prop_id);
AttemptToExpandOneWithFilters(client, unique_prop_val_1, edge_type_id, edge_prop_id, unique_prop_val_1);
}
}
void TestExpandOneGraphTwo(ShardClient &client) {
{
// ExpandOneSimple
auto unique_prop_val_1 = GetUniqueInteger();
auto unique_prop_val_2 = GetUniqueInteger();
MG_ASSERT(AttemptToCreateVertex(client, unique_prop_val_1));
MG_ASSERT(AttemptToCreateVertex(client, unique_prop_val_2));
auto edge_type_id = EdgeTypeId::FromUint(GetUniqueInteger());
auto edge_gid_1 = GetUniqueInteger();
auto edge_gid_2 = GetUniqueInteger();
auto edge_prop_id = GetUniqueInteger();
auto edge_prop_val = GetUniqueInteger();
// (V1)-[edge_type_id]->(V2)
MG_ASSERT(AttemptToAddEdgeWithProperties(client, unique_prop_val_1, unique_prop_val_2, edge_gid_1, edge_prop_id,
edge_prop_val, {edge_type_id}));
// (V1)-[edge_type_id]->(V3)
MG_ASSERT(AttemptToAddEdgeWithProperties(client, unique_prop_val_1, unique_prop_val_2, edge_gid_2, edge_prop_id,
edge_prop_val, {edge_type_id}));
// AttemptToExpandOneSimple(client, unique_prop_val_1, edge_type_id);
AttemptToExpandOneWithUniqueEdges(client, unique_prop_val_1, edge_type_id);
}
}
} // namespace
int TestMessages() {
SimulatorConfig config{
.drop_percent = 0,
.perform_timeouts = false,
.scramble_messages = false,
.rng_seed = 0,
.start_time = Time::min() + std::chrono::microseconds{256 * 1024},
.abort_time = Time::max(),
};
auto simulator = Simulator(config);
Io<SimulatorTransport> shard_server_io_1 = simulator.RegisterNew();
shard_server_io_1.SetDefaultTimeout(std::chrono::seconds(1));
const auto shard_server_1_address = shard_server_io_1.GetAddress();
Io<SimulatorTransport> shard_server_io_2 = simulator.RegisterNew();
shard_server_io_2.SetDefaultTimeout(std::chrono::seconds(1));
const auto shard_server_2_address = shard_server_io_2.GetAddress();
Io<SimulatorTransport> shard_server_io_3 = simulator.RegisterNew();
shard_server_io_3.SetDefaultTimeout(std::chrono::seconds(1));
const auto shard_server_3_address = shard_server_io_3.GetAddress();
Io<SimulatorTransport> shard_client_io = simulator.RegisterNew();
shard_client_io.SetDefaultTimeout(std::chrono::seconds(1));
PropertyValue min_pk(static_cast<int64_t>(0));
std::vector<PropertyValue> min_prim_key = {min_pk};
PropertyValue max_pk(static_cast<int64_t>(10000000));
std::vector<PropertyValue> max_prim_key = {max_pk};
std::vector<SchemaProperty> schema_prop = {get_schema_property()};
auto shard_ptr1 = std::make_unique<Shard>(get_primary_label(), min_prim_key, max_prim_key, schema_prop);
auto shard_ptr2 = std::make_unique<Shard>(get_primary_label(), min_prim_key, max_prim_key, schema_prop);
auto shard_ptr3 = std::make_unique<Shard>(get_primary_label(), min_prim_key, max_prim_key, schema_prop);
shard_ptr1->StoreMapping({{1, "label"}, {2, "prop1"}, {3, "label1"}, {4, "prop2"}, {5, "prop3"}, {6, "prop4"}});
shard_ptr2->StoreMapping({{1, "label"}, {2, "prop1"}, {3, "label1"}, {4, "prop2"}, {5, "prop3"}, {6, "prop4"}});
shard_ptr3->StoreMapping({{1, "label"}, {2, "prop1"}, {3, "label1"}, {4, "prop2"}, {5, "prop3"}, {6, "prop4"}});
std::vector<Address> address_for_1{shard_server_2_address, shard_server_3_address};
std::vector<Address> address_for_2{shard_server_1_address, shard_server_3_address};
std::vector<Address> address_for_3{shard_server_1_address, shard_server_2_address};
ConcreteShardRsm shard_server1(std::move(shard_server_io_1), address_for_1, ShardRsm(std::move(shard_ptr1)));
ConcreteShardRsm shard_server2(std::move(shard_server_io_2), address_for_2, ShardRsm(std::move(shard_ptr2)));
ConcreteShardRsm shard_server3(std::move(shard_server_io_3), address_for_3, ShardRsm(std::move(shard_ptr3)));
auto server_thread1 = std::jthread([&shard_server1]() { shard_server1.Run(); });
auto server_thread2 = std::jthread([&shard_server2]() { shard_server2.Run(); });
auto server_thread3 = std::jthread([&shard_server3]() { shard_server3.Run(); });
simulator.IncrementServerCountAndWaitForQuiescentState(shard_server_1_address);
simulator.IncrementServerCountAndWaitForQuiescentState(shard_server_2_address);
simulator.IncrementServerCountAndWaitForQuiescentState(shard_server_3_address);
std::cout << "Beginning test after servers have become quiescent." << std::endl;
std::vector server_addrs = {shard_server_1_address, shard_server_2_address, shard_server_3_address};
ShardClient client(shard_client_io, shard_server_1_address, server_addrs);
// Vertex tests
TestCreateVertices(client);
TestCreateAndDeleteVertices(client);
TestCreateAndUpdateVertices(client);
// Edge tests
TestCreateEdge(client);
TestCreateAndDeleteEdge(client);
TestUpdateEdge(client);
// ScanAll tests
TestScanAllOneGo(client);
TestScanAllWithSmallBatchSize(client);
// ExpandOne tests
TestExpandOneGraphOne(client);
TestExpandOneGraphTwo(client);
simulator.ShutDown();
SimulatorStats stats = simulator.Stats();
std::cout << "total messages: " << stats.total_messages << std::endl;
std::cout << "dropped messages: " << stats.dropped_messages << std::endl;
std::cout << "timed out requests: " << stats.timed_out_requests << std::endl;
std::cout << "total requests: " << stats.total_requests << std::endl;
std::cout << "total responses: " << stats.total_responses << std::endl;
std::cout << "simulator ticks: " << stats.simulator_ticks << std::endl;
std::cout << "========================== SUCCESS :) ==========================" << std::endl;
return 0;
}
} // namespace memgraph::storage::v3::tests
int main() { return memgraph::storage::v3::tests::TestMessages(); }