memgraph/tests/unit/query_planner.cpp
Teon Banek 4b97747c14 Allow planning Cartesian after Produce
Summary:
Hopefully, the mechanism of generating Cartesian is general enough, so
this simple change should work correctly in all cases.

Planner tests have been modified to use a FakeDbAccessor in order to
speed them up and potentially allow extracting planning into a library.

Reviewers: msantl, mtomic, buda

Reviewed By: mtomic

Subscribers: pullbot

Differential Revision: https://phabricator.memgraph.io/D1431
2018-06-20 12:55:56 +02:00

2629 lines
104 KiB
C++

#include <iostream>
#include <list>
#include <sstream>
#include <tuple>
#include <typeinfo>
#include <unordered_set>
#include "boost/archive/binary_iarchive.hpp"
#include "boost/archive/binary_oarchive.hpp"
#include "gmock/gmock.h"
#include "gtest/gtest.h"
#include "query/frontend/ast/ast.hpp"
#include "query/frontend/semantic/symbol_generator.hpp"
#include "query/frontend/semantic/symbol_table.hpp"
#include "query/plan/distributed.hpp"
#include "query/plan/operator.hpp"
#include "query/plan/planner.hpp"
#include "capnp/message.h"
#include "query/plan/operator.capnp.h"
#include "query_common.hpp"
namespace query {
::std::ostream &operator<<(::std::ostream &os, const Symbol &sym) {
return os << "Symbol{\"" << sym.name() << "\" [" << sym.position() << "] "
<< Symbol::TypeToString(sym.type()) << "}";
}
} // namespace query
using std::string_literals::operator""s;
using namespace query::plan;
using query::AstStorage;
using query::SingleQuery;
using query::Symbol;
using query::SymbolGenerator;
using query::SymbolTable;
using Direction = query::EdgeAtom::Direction;
using Bound = ScanAllByLabelPropertyRange::Bound;
namespace {
class BaseOpChecker {
public:
virtual ~BaseOpChecker() {}
virtual void CheckOp(LogicalOperator &, const SymbolTable &) = 0;
};
class PlanChecker : public HierarchicalLogicalOperatorVisitor {
public:
using HierarchicalLogicalOperatorVisitor::PostVisit;
using HierarchicalLogicalOperatorVisitor::PreVisit;
using HierarchicalLogicalOperatorVisitor::Visit;
PlanChecker(const std::list<std::unique_ptr<BaseOpChecker>> &checkers,
const SymbolTable &symbol_table)
: symbol_table_(symbol_table) {
for (const auto &checker : checkers) checkers_.emplace_back(checker.get());
}
PlanChecker(const std::list<BaseOpChecker *> &checkers,
const SymbolTable &symbol_table)
: checkers_(checkers), symbol_table_(symbol_table) {}
#define PRE_VISIT(TOp) \
bool PreVisit(TOp &op) override { \
CheckOp(op); \
return true; \
}
#define VISIT(TOp) \
bool Visit(TOp &op) override { \
CheckOp(op); \
return true; \
}
PRE_VISIT(CreateNode);
PRE_VISIT(CreateExpand);
PRE_VISIT(Delete);
PRE_VISIT(ScanAll);
PRE_VISIT(ScanAllByLabel);
PRE_VISIT(ScanAllByLabelPropertyValue);
PRE_VISIT(ScanAllByLabelPropertyRange);
PRE_VISIT(Expand);
PRE_VISIT(ExpandVariable);
PRE_VISIT(Filter);
PRE_VISIT(ConstructNamedPath);
PRE_VISIT(Produce);
PRE_VISIT(SetProperty);
PRE_VISIT(SetProperties);
PRE_VISIT(SetLabels);
PRE_VISIT(RemoveProperty);
PRE_VISIT(RemoveLabels);
PRE_VISIT(ExpandUniquenessFilter<VertexAccessor>);
PRE_VISIT(ExpandUniquenessFilter<EdgeAccessor>);
PRE_VISIT(Accumulate);
PRE_VISIT(Aggregate);
PRE_VISIT(Skip);
PRE_VISIT(Limit);
PRE_VISIT(OrderBy);
bool PreVisit(Merge &op) override {
CheckOp(op);
op.input()->Accept(*this);
return false;
}
bool PreVisit(Optional &op) override {
CheckOp(op);
op.input()->Accept(*this);
return false;
}
PRE_VISIT(Unwind);
PRE_VISIT(Distinct);
bool Visit(Once &) override {
// Ignore checking Once, it is implicitly at the end.
return true;
}
VISIT(CreateIndex);
PRE_VISIT(PullRemote);
bool PreVisit(Synchronize &op) override {
CheckOp(op);
op.input()->Accept(*this);
return false;
}
bool PreVisit(Cartesian &op) override {
CheckOp(op);
return false;
}
PRE_VISIT(PullRemoteOrderBy);
VISIT(ModifyUser);
VISIT(DropUser);
#undef PRE_VISIT
#undef VISIT
std::list<BaseOpChecker *> checkers_;
private:
void CheckOp(LogicalOperator &op) {
ASSERT_FALSE(checkers_.empty());
checkers_.back()->CheckOp(op, symbol_table_);
checkers_.pop_back();
}
const SymbolTable &symbol_table_;
};
template <class TOp>
class OpChecker : public BaseOpChecker {
public:
void CheckOp(LogicalOperator &op, const SymbolTable &symbol_table) override {
auto *expected_op = dynamic_cast<TOp *>(&op);
ASSERT_TRUE(expected_op);
ExpectOp(*expected_op, symbol_table);
}
virtual void ExpectOp(TOp &, const SymbolTable &) {}
};
using ExpectCreateExpand = OpChecker<CreateExpand>;
using ExpectDelete = OpChecker<Delete>;
using ExpectScanAll = OpChecker<ScanAll>;
using ExpectScanAllByLabel = OpChecker<ScanAllByLabel>;
using ExpectExpand = OpChecker<Expand>;
using ExpectFilter = OpChecker<Filter>;
using ExpectConstructNamedPath = OpChecker<ConstructNamedPath>;
using ExpectProduce = OpChecker<Produce>;
using ExpectSetProperty = OpChecker<SetProperty>;
using ExpectSetProperties = OpChecker<SetProperties>;
using ExpectSetLabels = OpChecker<SetLabels>;
using ExpectRemoveProperty = OpChecker<RemoveProperty>;
using ExpectRemoveLabels = OpChecker<RemoveLabels>;
template <class TAccessor>
using ExpectExpandUniquenessFilter =
OpChecker<ExpandUniquenessFilter<TAccessor>>;
using ExpectSkip = OpChecker<Skip>;
using ExpectLimit = OpChecker<Limit>;
using ExpectOrderBy = OpChecker<OrderBy>;
using ExpectUnwind = OpChecker<Unwind>;
using ExpectDistinct = OpChecker<Distinct>;
class ExpectExpandVariable : public OpChecker<ExpandVariable> {
public:
void ExpectOp(ExpandVariable &op, const SymbolTable &) override {
EXPECT_EQ(op.type(), query::EdgeAtom::Type::DEPTH_FIRST);
}
};
class ExpectExpandBfs : public OpChecker<ExpandVariable> {
public:
void ExpectOp(ExpandVariable &op, const SymbolTable &) override {
EXPECT_EQ(op.type(), query::EdgeAtom::Type::BREADTH_FIRST);
}
};
class ExpectAccumulate : public OpChecker<Accumulate> {
public:
explicit ExpectAccumulate(const std::unordered_set<Symbol> &symbols)
: symbols_(symbols) {}
void ExpectOp(Accumulate &op, const SymbolTable &) override {
std::unordered_set<Symbol> got_symbols(op.symbols().begin(),
op.symbols().end());
EXPECT_EQ(symbols_, got_symbols);
}
private:
const std::unordered_set<Symbol> symbols_;
};
class ExpectAggregate : public OpChecker<Aggregate> {
public:
ExpectAggregate(bool is_master,
const std::vector<query::Aggregation *> &aggregations,
const std::unordered_set<query::Expression *> &group_by)
: is_master_(is_master),
aggregations_(aggregations),
group_by_(group_by) {}
ExpectAggregate(const std::vector<query::Aggregation *> &aggregations,
const std::unordered_set<query::Expression *> &group_by)
: is_master_(false), aggregations_(aggregations), group_by_(group_by) {}
void ExpectOp(Aggregate &op, const SymbolTable &symbol_table) override {
auto aggr_it = aggregations_.begin();
for (const auto &aggr_elem : op.aggregations()) {
ASSERT_NE(aggr_it, aggregations_.end());
auto aggr = *aggr_it++;
// TODO: Proper expression equality
EXPECT_EQ(typeid(aggr_elem.value).hash_code(),
typeid(aggr->expression1_).hash_code());
EXPECT_EQ(typeid(aggr_elem.key).hash_code(),
typeid(aggr->expression2_).hash_code());
EXPECT_EQ(aggr_elem.op, aggr->op_);
if (!is_master_) {
// Skip checking virtual merge aggregation symbol when the plan is
// distributed.
EXPECT_EQ(aggr_elem.output_sym, symbol_table.at(*aggr));
}
}
EXPECT_EQ(aggr_it, aggregations_.end());
// TODO: Proper group by expression equality
std::unordered_set<size_t> got_group_by;
for (auto *expr : op.group_by())
got_group_by.insert(typeid(*expr).hash_code());
std::unordered_set<size_t> expected_group_by;
for (auto *expr : group_by_)
expected_group_by.insert(typeid(*expr).hash_code());
EXPECT_EQ(got_group_by, expected_group_by);
}
private:
bool is_master_ = false;
std::vector<query::Aggregation *> aggregations_;
std::unordered_set<query::Expression *> group_by_;
};
auto ExpectMasterAggregate(
const std::vector<query::Aggregation *> &aggregations,
const std::unordered_set<query::Expression *> &group_by) {
return ExpectAggregate(true, aggregations, group_by);
}
class ExpectMerge : public OpChecker<Merge> {
public:
ExpectMerge(const std::list<BaseOpChecker *> &on_match,
const std::list<BaseOpChecker *> &on_create)
: on_match_(on_match), on_create_(on_create) {}
void ExpectOp(Merge &merge, const SymbolTable &symbol_table) override {
PlanChecker check_match(on_match_, symbol_table);
merge.merge_match()->Accept(check_match);
PlanChecker check_create(on_create_, symbol_table);
merge.merge_create()->Accept(check_create);
}
private:
const std::list<BaseOpChecker *> &on_match_;
const std::list<BaseOpChecker *> &on_create_;
};
class ExpectOptional : public OpChecker<Optional> {
public:
explicit ExpectOptional(const std::list<BaseOpChecker *> &optional)
: optional_(optional) {}
ExpectOptional(const std::vector<Symbol> &optional_symbols,
const std::list<BaseOpChecker *> &optional)
: optional_symbols_(optional_symbols), optional_(optional) {}
void ExpectOp(Optional &optional, const SymbolTable &symbol_table) override {
if (!optional_symbols_.empty()) {
EXPECT_THAT(optional.optional_symbols(),
testing::UnorderedElementsAreArray(optional_symbols_));
}
PlanChecker check_optional(optional_, symbol_table);
optional.optional()->Accept(check_optional);
}
private:
std::vector<Symbol> optional_symbols_;
const std::list<BaseOpChecker *> &optional_;
};
class ExpectScanAllByLabelPropertyValue
: public OpChecker<ScanAllByLabelPropertyValue> {
public:
ExpectScanAllByLabelPropertyValue(
storage::Label label,
const std::pair<std::string, storage::Property> &prop_pair,
query::Expression *expression)
: label_(label), property_(prop_pair.second), expression_(expression) {}
void ExpectOp(ScanAllByLabelPropertyValue &scan_all,
const SymbolTable &) override {
EXPECT_EQ(scan_all.label(), label_);
EXPECT_EQ(scan_all.property(), property_);
// TODO: Proper expression equality
EXPECT_EQ(typeid(scan_all.expression()).hash_code(),
typeid(expression_).hash_code());
}
private:
storage::Label label_;
storage::Property property_;
query::Expression *expression_;
};
class ExpectScanAllByLabelPropertyRange
: public OpChecker<ScanAllByLabelPropertyRange> {
public:
ExpectScanAllByLabelPropertyRange(
storage::Label label, storage::Property property,
std::experimental::optional<Bound> lower_bound,
std::experimental::optional<Bound> upper_bound)
: label_(label),
property_(property),
lower_bound_(lower_bound),
upper_bound_(upper_bound) {}
void ExpectOp(ScanAllByLabelPropertyRange &scan_all,
const SymbolTable &) override {
EXPECT_EQ(scan_all.label(), label_);
EXPECT_EQ(scan_all.property(), property_);
if (lower_bound_) {
ASSERT_TRUE(scan_all.lower_bound());
// TODO: Proper expression equality
EXPECT_EQ(typeid(scan_all.lower_bound()->value()).hash_code(),
typeid(lower_bound_->value()).hash_code());
EXPECT_EQ(scan_all.lower_bound()->type(), lower_bound_->type());
}
if (upper_bound_) {
ASSERT_TRUE(scan_all.upper_bound());
// TODO: Proper expression equality
EXPECT_EQ(typeid(scan_all.upper_bound()->value()).hash_code(),
typeid(upper_bound_->value()).hash_code());
EXPECT_EQ(scan_all.upper_bound()->type(), upper_bound_->type());
}
}
private:
storage::Label label_;
storage::Property property_;
std::experimental::optional<Bound> lower_bound_;
std::experimental::optional<Bound> upper_bound_;
};
class ExpectCreateIndex : public OpChecker<CreateIndex> {
public:
ExpectCreateIndex(storage::Label label, storage::Property property)
: label_(label), property_(property) {}
void ExpectOp(CreateIndex &create_index, const SymbolTable &) override {
EXPECT_EQ(create_index.label(), label_);
EXPECT_EQ(create_index.property(), property_);
}
private:
storage::Label label_;
storage::Property property_;
};
class ExpectPullRemote : public OpChecker<PullRemote> {
public:
ExpectPullRemote() {}
ExpectPullRemote(const std::vector<Symbol> &symbols) : symbols_(symbols) {}
void ExpectOp(PullRemote &op, const SymbolTable &) override {
EXPECT_THAT(op.symbols(), testing::UnorderedElementsAreArray(symbols_));
}
private:
std::vector<Symbol> symbols_;
};
class ExpectSynchronize : public OpChecker<Synchronize> {
public:
explicit ExpectSynchronize(bool advance_command)
: has_pull_(false), advance_command_(advance_command) {}
ExpectSynchronize(const std::vector<Symbol> &symbols = {},
bool advance_command = false)
: expect_pull_(symbols),
has_pull_(true),
advance_command_(advance_command) {}
void ExpectOp(Synchronize &op, const SymbolTable &symbol_table) override {
if (has_pull_) {
ASSERT_TRUE(op.pull_remote());
expect_pull_.ExpectOp(*op.pull_remote(), symbol_table);
} else {
EXPECT_FALSE(op.pull_remote());
}
EXPECT_EQ(op.advance_command(), advance_command_);
}
private:
ExpectPullRemote expect_pull_;
bool has_pull_ = true;
bool advance_command_ = false;
};
class ExpectCartesian : public OpChecker<Cartesian> {
public:
ExpectCartesian(const std::list<std::unique_ptr<BaseOpChecker>> &left,
const std::list<std::unique_ptr<BaseOpChecker>> &right)
: left_(left), right_(right) {}
void ExpectOp(Cartesian &op, const SymbolTable &symbol_table) override {
ASSERT_TRUE(op.left_op());
PlanChecker left_checker(left_, symbol_table);
op.left_op()->Accept(left_checker);
ASSERT_TRUE(op.right_op());
PlanChecker right_checker(right_, symbol_table);
op.right_op()->Accept(right_checker);
}
private:
const std::list<std::unique_ptr<BaseOpChecker>> &left_;
const std::list<std::unique_ptr<BaseOpChecker>> &right_;
};
class ExpectCreateNode : public OpChecker<CreateNode> {
public:
ExpectCreateNode(bool on_random_worker = false)
: on_random_worker_(on_random_worker) {}
void ExpectOp(CreateNode &op, const SymbolTable &) override {
EXPECT_EQ(op.on_random_worker(), on_random_worker_);
}
private:
bool on_random_worker_ = false;
};
class ExpectPullRemoteOrderBy : public OpChecker<PullRemoteOrderBy> {
public:
ExpectPullRemoteOrderBy(const std::vector<Symbol> symbols)
: symbols_(symbols) {}
void ExpectOp(PullRemoteOrderBy &op, const SymbolTable &) override {
EXPECT_THAT(op.symbols(), testing::UnorderedElementsAreArray(symbols_));
}
private:
std::vector<Symbol> symbols_;
};
auto MakeSymbolTable(query::Query &query) {
SymbolTable symbol_table;
SymbolGenerator symbol_generator(symbol_table);
query.Accept(symbol_generator);
return symbol_table;
}
class Planner {
public:
template <class TDbAccessor>
Planner(std::vector<SingleQueryPart> single_query_parts,
PlanningContext<TDbAccessor> &context) {
plan_ = MakeLogicalPlanForSingleQuery<RuleBasedPlanner>(single_query_parts,
context);
}
auto &plan() { return *plan_; }
private:
std::unique_ptr<LogicalOperator> plan_;
};
class ExpectModifyUser : public OpChecker<ModifyUser> {
public:
ExpectModifyUser(std::string username, bool is_create)
: username_(username), is_create_(is_create) {}
void ExpectOp(ModifyUser &modify_user, const SymbolTable &) override {
EXPECT_EQ(username_, modify_user.username());
// TODO(mtomic): proper password verification
EXPECT_NE(dynamic_cast<query::Expression *>(modify_user.password()),
nullptr);
EXPECT_EQ(is_create_, modify_user.is_create());
}
private:
std::string username_;
bool is_create_;
};
class ExpectDropUser : public OpChecker<DropUser> {
public:
ExpectDropUser(std::vector<std::string> usernames) : usernames_(usernames) {}
void ExpectOp(DropUser &drop_user, const SymbolTable &) override {
EXPECT_EQ(usernames_, drop_user.usernames());
}
private:
std::vector<std::string> usernames_;
};
class SerializedPlanner {
public:
template <class TDbAccessor>
SerializedPlanner(std::vector<SingleQueryPart> single_query_parts,
PlanningContext<TDbAccessor> &context) {
std::stringstream stream;
{
auto original_plan = MakeLogicalPlanForSingleQuery<RuleBasedPlanner>(
single_query_parts, context);
boost::archive::binary_oarchive out_archive(stream);
out_archive << original_plan;
}
{
boost::archive::binary_iarchive in_archive(stream);
std::tie(plan_, ast_storage_) = LoadPlan(in_archive);
}
}
auto &plan() { return *plan_; }
private:
AstStorage ast_storage_;
std::unique_ptr<LogicalOperator> plan_;
};
void SavePlan(const LogicalOperator &plan, ::capnp::MessageBuilder *message) {
auto builder = message->initRoot<query::plan::capnp::LogicalOperator>();
LogicalOperator::SaveHelper helper;
plan.Save(&builder, &helper);
}
auto LoadPlan(const ::query::plan::capnp::LogicalOperator::Reader &reader) {
auto plan = LogicalOperator::Construct(reader);
LogicalOperator::LoadHelper helper;
plan->Load(reader, &helper);
return std::make_pair(std::move(plan), std::move(helper.ast_storage));
}
class CapnpPlanner {
public:
template <class TDbAccessor>
CapnpPlanner(std::vector<SingleQueryPart> single_query_parts,
PlanningContext<TDbAccessor> &context) {
::capnp::MallocMessageBuilder message;
{
auto original_plan = MakeLogicalPlanForSingleQuery<RuleBasedPlanner>(
single_query_parts, context);
SavePlan(*original_plan, &message);
}
{
auto reader = message.getRoot<query::plan::capnp::LogicalOperator>();
std::tie(plan_, ast_storage_) = LoadPlan(reader);
}
}
auto &plan() { return *plan_; }
private:
AstStorage ast_storage_;
std::unique_ptr<LogicalOperator> plan_;
};
class FakeDbAccessor {
public:
int64_t VerticesCount(storage::Label label) const {
auto found = label_index_.find(label);
if (found != label_index_.end()) return found->second;
return 0;
}
int64_t VerticesCount(storage::Label label,
storage::Property property) const {
for (auto &index : label_property_index_) {
if (std::get<0>(index) == label && std::get<1>(index) == property) {
return std::get<2>(index);
}
}
return 0;
}
bool LabelPropertyIndexExists(storage::Label label,
storage::Property property) const {
for (auto &index : label_property_index_) {
if (std::get<0>(index) == label && std::get<1>(index) == property) {
return true;
}
}
return false;
}
void SetIndexCount(storage::Label label, int64_t count) {
label_index_[label] = count;
}
void SetIndexCount(storage::Label label, storage::Property property,
int64_t count) {
for (auto &index : label_property_index_) {
if (std::get<0>(index) == label && std::get<1>(index) == property) {
std::get<2>(index) = count;
return;
}
}
label_property_index_.emplace_back(label, property, count);
}
storage::Label Label(const std::string &name) {
auto found = labels_.find(name);
if (found != labels_.end()) return found->second;
return labels_.emplace(name, storage::Label(labels_.size())).first->second;
}
storage::EdgeType EdgeType(const std::string &name) {
auto found = edge_types_.find(name);
if (found != edge_types_.end()) return found->second;
return edge_types_.emplace(name, storage::EdgeType(edge_types_.size()))
.first->second;
}
storage::Property Property(const std::string &name) {
auto found = properties_.find(name);
if (found != properties_.end()) return found->second;
return properties_.emplace(name, storage::Property(properties_.size()))
.first->second;
}
std::string PropertyName(storage::Property property) const {
for (const auto &kv : properties_) {
if (kv.second == property) return kv.first;
}
LOG(FATAL) << "Unable to find property name";
}
private:
std::unordered_map<std::string, storage::Label> labels_;
std::unordered_map<std::string, storage::EdgeType> edge_types_;
std::unordered_map<std::string, storage::Property> properties_;
std::unordered_map<storage::Label, int64_t> label_index_;
std::vector<std::tuple<storage::Label, storage::Property, int64_t>>
label_property_index_;
};
template <class TPlanner, class TDbAccessor>
TPlanner MakePlanner(const TDbAccessor &dba, AstStorage &storage,
SymbolTable &symbol_table) {
auto planning_context = MakePlanningContext(storage, symbol_table, dba);
auto query_parts = CollectQueryParts(symbol_table, storage);
auto single_query_parts = query_parts.query_parts.at(0).single_query_parts;
return TPlanner(single_query_parts, planning_context);
}
template <class... TChecker>
auto CheckPlan(LogicalOperator &plan, const SymbolTable &symbol_table,
TChecker... checker) {
std::list<BaseOpChecker *> checkers{&checker...};
PlanChecker plan_checker(checkers, symbol_table);
plan.Accept(plan_checker);
EXPECT_TRUE(plan_checker.checkers_.empty());
}
template <class TPlanner, class... TChecker>
auto CheckPlan(AstStorage &storage, TChecker... checker) {
auto symbol_table = MakeSymbolTable(*storage.query());
FakeDbAccessor dba;
auto planner = MakePlanner<TPlanner>(dba, storage, symbol_table);
CheckPlan(planner.plan(), symbol_table, checker...);
}
struct ExpectedDistributedPlan {
std::list<std::unique_ptr<BaseOpChecker>> master_checkers;
std::vector<std::list<std::unique_ptr<BaseOpChecker>>> worker_checkers;
};
template <class TPlanner>
DistributedPlan MakeDistributedPlan(query::AstStorage &storage) {
auto symbol_table = MakeSymbolTable(*storage.query());
FakeDbAccessor dba;
auto planner = MakePlanner<TPlanner>(dba, storage, symbol_table);
std::atomic<int64_t> next_plan_id{0};
return MakeDistributedPlan(planner.plan(), symbol_table, next_plan_id);
}
void CheckDistributedPlan(DistributedPlan &distributed_plan,
ExpectedDistributedPlan &expected) {
PlanChecker plan_checker(expected.master_checkers,
distributed_plan.symbol_table);
distributed_plan.master_plan->Accept(plan_checker);
EXPECT_TRUE(plan_checker.checkers_.empty());
if (expected.worker_checkers.empty()) {
EXPECT_TRUE(distributed_plan.worker_plans.empty());
} else {
ASSERT_EQ(distributed_plan.worker_plans.size(),
expected.worker_checkers.size());
for (size_t i = 0; i < expected.worker_checkers.size(); ++i) {
PlanChecker plan_checker(expected.worker_checkers[i],
distributed_plan.symbol_table);
auto worker_plan = distributed_plan.worker_plans[i].second;
worker_plan->Accept(plan_checker);
EXPECT_TRUE(plan_checker.checkers_.empty());
}
}
}
void CheckDistributedPlan(const LogicalOperator &plan,
const SymbolTable &symbol_table,
ExpectedDistributedPlan &expected_distributed_plan) {
std::atomic<int64_t> next_plan_id{0};
auto distributed_plan = MakeDistributedPlan(plan, symbol_table, next_plan_id);
EXPECT_EQ(next_plan_id - 1, distributed_plan.worker_plans.size());
CheckDistributedPlan(distributed_plan, expected_distributed_plan);
}
template <class TPlanner>
void CheckDistributedPlan(AstStorage &storage,
ExpectedDistributedPlan &expected_distributed_plan) {
auto distributed_plan = MakeDistributedPlan<TPlanner>(storage);
CheckDistributedPlan(distributed_plan, expected_distributed_plan);
}
template <class T>
std::list<std::unique_ptr<BaseOpChecker>> MakeCheckers(T arg) {
std::list<std::unique_ptr<BaseOpChecker>> l;
l.emplace_back(std::make_unique<T>(arg));
return l;
}
template <class T, class... Rest>
std::list<std::unique_ptr<BaseOpChecker>> MakeCheckers(T arg, Rest &&... rest) {
auto l = MakeCheckers(std::forward<Rest>(rest)...);
l.emplace_front(std::make_unique<T>(arg));
return std::move(l);
}
ExpectedDistributedPlan ExpectDistributed(
std::list<std::unique_ptr<BaseOpChecker>> master_checker) {
return ExpectedDistributedPlan{std::move(master_checker)};
}
ExpectedDistributedPlan ExpectDistributed(
std::list<std::unique_ptr<BaseOpChecker>> master_checker,
std::list<std::unique_ptr<BaseOpChecker>> worker_checker) {
ExpectedDistributedPlan expected{std::move(master_checker)};
expected.worker_checkers.emplace_back(std::move(worker_checker));
return expected;
}
void AddWorkerCheckers(
ExpectedDistributedPlan &expected,
std::list<std::unique_ptr<BaseOpChecker>> worker_checker) {
expected.worker_checkers.emplace_back(std::move(worker_checker));
}
template <class... Rest>
void AddWorkerCheckers(ExpectedDistributedPlan &expected,
std::list<std::unique_ptr<BaseOpChecker>> worker_checker,
Rest &&... rest) {
expected.worker_checkers.emplace_back(std::move(worker_checker));
AddWorkerCheckers(expected, std::forward<Rest>(rest)...);
}
template <class... Rest>
ExpectedDistributedPlan ExpectDistributed(
std::list<std::unique_ptr<BaseOpChecker>> master_checker,
std::list<std::unique_ptr<BaseOpChecker>> worker_checker, Rest &&... rest) {
ExpectedDistributedPlan expected{std::move(master_checker)};
expected.worker_checkers.emplace_back(std::move(worker_checker));
AddWorkerCheckers(expected, std::forward<Rest>(rest)...);
return expected;
}
template <class T>
class TestPlanner : public ::testing::Test {};
using PlannerTypes = ::testing::Types<Planner, SerializedPlanner, CapnpPlanner>;
TYPED_TEST_CASE(TestPlanner, PlannerTypes);
TYPED_TEST(TestPlanner, MatchNodeReturn) {
// Test MATCH (n) RETURN n
AstStorage storage;
auto *as_n = NEXPR("n", IDENT("n"));
QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("n"))), RETURN(as_n)));
auto symbol_table = MakeSymbolTable(*storage.query());
FakeDbAccessor dba;
auto planner = MakePlanner<TypeParam>(dba, storage, symbol_table);
CheckPlan(planner.plan(), symbol_table, ExpectScanAll(), ExpectProduce());
ExpectPullRemote pull({symbol_table.at(*as_n)});
auto expected =
ExpectDistributed(MakeCheckers(ExpectScanAll(), ExpectProduce(), pull),
MakeCheckers(ExpectScanAll(), ExpectProduce()));
CheckDistributedPlan(planner.plan(), symbol_table, expected);
}
TYPED_TEST(TestPlanner, CreateNodeReturn) {
// Test CREATE (n) RETURN n AS n
AstStorage storage;
auto ident_n = IDENT("n");
auto query =
QUERY(SINGLE_QUERY(CREATE(PATTERN(NODE("n"))), RETURN(ident_n, AS("n"))));
auto symbol_table = MakeSymbolTable(*query);
auto acc = ExpectAccumulate({symbol_table.at(*ident_n)});
FakeDbAccessor dba;
auto planner = MakePlanner<TypeParam>(dba, storage, symbol_table);
CheckPlan(planner.plan(), symbol_table, ExpectCreateNode(), acc,
ExpectProduce());
{
auto expected = ExpectDistributed(MakeCheckers(
ExpectCreateNode(true), ExpectSynchronize(false), ExpectProduce()));
std::atomic<int64_t> next_plan_id{0};
auto distributed_plan =
MakeDistributedPlan(planner.plan(), symbol_table, next_plan_id);
CheckDistributedPlan(distributed_plan, expected);
}
}
TYPED_TEST(TestPlanner, CreateExpand) {
// Test CREATE (n) -[r :rel1]-> (m)
AstStorage storage;
FakeDbAccessor dba;
auto relationship = dba.EdgeType("relationship");
QUERY(SINGLE_QUERY(CREATE(PATTERN(
NODE("n"), EDGE("r", Direction::OUT, {relationship}), NODE("m")))));
CheckPlan<TypeParam>(storage, ExpectCreateNode(), ExpectCreateExpand());
ExpectedDistributedPlan expected{
MakeCheckers(ExpectCreateNode(true), ExpectCreateExpand(),
ExpectSynchronize(false)),
{}};
CheckDistributedPlan<TypeParam>(storage, expected);
}
TYPED_TEST(TestPlanner, CreateMultipleNode) {
// Test CREATE (n), (m)
AstStorage storage;
QUERY(SINGLE_QUERY(CREATE(PATTERN(NODE("n")), PATTERN(NODE("m")))));
CheckPlan<TypeParam>(storage, ExpectCreateNode(), ExpectCreateNode());
ExpectedDistributedPlan expected{
MakeCheckers(ExpectCreateNode(true), ExpectCreateNode(true),
ExpectSynchronize(false)),
{}};
CheckDistributedPlan<TypeParam>(storage, expected);
}
TYPED_TEST(TestPlanner, CreateNodeExpandNode) {
// Test CREATE (n) -[r :rel]-> (m), (l)
AstStorage storage;
FakeDbAccessor dba;
auto relationship = dba.EdgeType("rel");
QUERY(SINGLE_QUERY(CREATE(
PATTERN(NODE("n"), EDGE("r", Direction::OUT, {relationship}), NODE("m")),
PATTERN(NODE("l")))));
CheckPlan<TypeParam>(storage, ExpectCreateNode(), ExpectCreateExpand(),
ExpectCreateNode());
ExpectedDistributedPlan expected{
MakeCheckers(ExpectCreateNode(true), ExpectCreateExpand(),
ExpectCreateNode(true), ExpectSynchronize(false)),
{}};
CheckDistributedPlan<TypeParam>(storage, expected);
}
TYPED_TEST(TestPlanner, CreateNamedPattern) {
// Test CREATE p = (n) -[r :rel]-> (m)
AstStorage storage;
FakeDbAccessor dba;
auto relationship = dba.EdgeType("rel");
QUERY(SINGLE_QUERY(CREATE(NAMED_PATTERN(
"p", NODE("n"), EDGE("r", Direction::OUT, {relationship}), NODE("m")))));
CheckPlan<TypeParam>(storage, ExpectCreateNode(), ExpectCreateExpand(),
ExpectConstructNamedPath());
ExpectedDistributedPlan expected{
MakeCheckers(ExpectCreateNode(true), ExpectCreateExpand(),
ExpectConstructNamedPath(), ExpectSynchronize(false)),
{}};
CheckDistributedPlan<TypeParam>(storage, expected);
}
TYPED_TEST(TestPlanner, MatchCreateExpand) {
// Test MATCH (n) CREATE (n) -[r :rel1]-> (m)
AstStorage storage;
FakeDbAccessor dba;
auto relationship = dba.EdgeType("relationship");
QUERY(SINGLE_QUERY(
MATCH(PATTERN(NODE("n"))),
CREATE(PATTERN(NODE("n"), EDGE("r", Direction::OUT, {relationship}),
NODE("m")))));
CheckPlan<TypeParam>(storage, ExpectScanAll(), ExpectCreateExpand());
auto expected = ExpectDistributed(
MakeCheckers(ExpectScanAll(), ExpectCreateExpand(), ExpectSynchronize()),
MakeCheckers(ExpectScanAll(), ExpectCreateExpand()));
CheckDistributedPlan<TypeParam>(storage, expected);
}
TYPED_TEST(TestPlanner, MatchLabeledNodes) {
// Test MATCH (n :label) RETURN n
AstStorage storage;
FakeDbAccessor dba;
auto label = dba.Label("label");
auto *as_n = NEXPR("n", IDENT("n"));
QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("n", label))), RETURN(as_n)));
auto symbol_table = MakeSymbolTable(*storage.query());
auto planner = MakePlanner<TypeParam>(dba, storage, symbol_table);
CheckPlan(planner.plan(), symbol_table, ExpectScanAllByLabel(),
ExpectProduce());
ExpectPullRemote pull({symbol_table.at(*as_n)});
auto expected = ExpectDistributed(
MakeCheckers(ExpectScanAllByLabel(), ExpectProduce(), pull),
MakeCheckers(ExpectScanAllByLabel(), ExpectProduce()));
CheckDistributedPlan(planner.plan(), symbol_table, expected);
}
TYPED_TEST(TestPlanner, MatchPathReturn) {
// Test MATCH (n) -[r :relationship]- (m) RETURN n
AstStorage storage;
FakeDbAccessor dba;
auto relationship = dba.EdgeType("relationship");
auto *as_n = NEXPR("n", IDENT("n"));
QUERY(SINGLE_QUERY(
MATCH(PATTERN(NODE("n"), EDGE("r", Direction::BOTH, {relationship}),
NODE("m"))),
RETURN(as_n)));
auto symbol_table = MakeSymbolTable(*storage.query());
auto planner = MakePlanner<TypeParam>(dba, storage, symbol_table);
CheckPlan(planner.plan(), symbol_table, ExpectScanAll(), ExpectExpand(),
ExpectProduce());
ExpectPullRemote pull({symbol_table.at(*as_n)});
auto expected = ExpectDistributed(
MakeCheckers(ExpectScanAll(), ExpectExpand(), ExpectProduce(), pull),
MakeCheckers(ExpectScanAll(), ExpectExpand(), ExpectProduce()));
CheckDistributedPlan(planner.plan(), symbol_table, expected);
}
TYPED_TEST(TestPlanner, MatchNamedPatternReturn) {
// Test MATCH p = (n) -[r :relationship]- (m) RETURN p
AstStorage storage;
FakeDbAccessor dba;
auto relationship = dba.EdgeType("relationship");
auto *as_p = NEXPR("p", IDENT("p"));
QUERY(SINGLE_QUERY(
MATCH(NAMED_PATTERN("p", NODE("n"),
EDGE("r", Direction::BOTH, {relationship}),
NODE("m"))),
RETURN(as_p)));
auto symbol_table = MakeSymbolTable(*storage.query());
auto planner = MakePlanner<TypeParam>(dba, storage, symbol_table);
CheckPlan(planner.plan(), symbol_table, ExpectScanAll(), ExpectExpand(),
ExpectConstructNamedPath(), ExpectProduce());
ExpectPullRemote pull({symbol_table.at(*as_p)});
auto expected = ExpectDistributed(
MakeCheckers(ExpectScanAll(), ExpectExpand(), ExpectConstructNamedPath(),
ExpectProduce(), pull),
MakeCheckers(ExpectScanAll(), ExpectExpand(), ExpectConstructNamedPath(),
ExpectProduce()));
CheckDistributedPlan(planner.plan(), symbol_table, expected);
}
TYPED_TEST(TestPlanner, MatchNamedPatternWithPredicateReturn) {
// Test MATCH p = (n) -[r :relationship]- (m) WHERE 2 = p RETURN p
AstStorage storage;
FakeDbAccessor dba;
auto relationship = dba.EdgeType("relationship");
auto *as_p = NEXPR("p", IDENT("p"));
QUERY(SINGLE_QUERY(
MATCH(NAMED_PATTERN("p", NODE("n"),
EDGE("r", Direction::BOTH, {relationship}),
NODE("m"))),
WHERE(EQ(LITERAL(2), IDENT("p"))), RETURN(as_p)));
auto symbol_table = MakeSymbolTable(*storage.query());
auto planner = MakePlanner<TypeParam>(dba, storage, symbol_table);
CheckPlan(planner.plan(), symbol_table, ExpectScanAll(), ExpectExpand(),
ExpectConstructNamedPath(), ExpectFilter(), ExpectProduce());
ExpectPullRemote pull({symbol_table.at(*as_p)});
auto expected = ExpectDistributed(
MakeCheckers(ExpectScanAll(), ExpectExpand(), ExpectConstructNamedPath(),
ExpectFilter(), ExpectProduce(), pull),
MakeCheckers(ExpectScanAll(), ExpectExpand(), ExpectConstructNamedPath(),
ExpectFilter(), ExpectProduce()));
CheckDistributedPlan(planner.plan(), symbol_table, expected);
}
TYPED_TEST(TestPlanner, OptionalMatchNamedPatternReturn) {
// Test OPTIONAL MATCH p = (n) -[r]- (m) RETURN p
AstStorage storage;
auto node_n = NODE("n");
auto edge = EDGE("r");
auto node_m = NODE("m");
auto pattern = NAMED_PATTERN("p", node_n, edge, node_m);
auto as_p = AS("p");
QUERY(SINGLE_QUERY(OPTIONAL_MATCH(pattern), RETURN("p", as_p)));
auto symbol_table = MakeSymbolTable(*storage.query());
std::list<BaseOpChecker *> optional{new ExpectScanAll(), new ExpectExpand(),
new ExpectConstructNamedPath()};
auto get_symbol = [&symbol_table](const auto *ast_node) {
return symbol_table.at(*ast_node->identifier_);
};
std::vector<Symbol> optional_symbols{get_symbol(pattern), get_symbol(node_n),
get_symbol(edge), get_symbol(node_m)};
FakeDbAccessor dba;
auto planner = MakePlanner<TypeParam>(dba, storage, symbol_table);
CheckPlan(planner.plan(), symbol_table,
ExpectOptional(optional_symbols, optional), ExpectProduce());
auto expected = ExpectDistributed(
MakeCheckers(ExpectOptional(optional_symbols, optional), ExpectProduce(),
ExpectPullRemote({symbol_table.at(*as_p)})),
MakeCheckers(ExpectOptional(optional_symbols, optional),
ExpectProduce()));
CheckDistributedPlan(planner.plan(), symbol_table, expected);
}
TYPED_TEST(TestPlanner, MatchWhereReturn) {
// Test MATCH (n) WHERE n.property < 42 RETURN n
AstStorage storage;
FakeDbAccessor dba;
auto property = dba.Property("property");
auto *as_n = NEXPR("n", IDENT("n"));
QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("n"))),
WHERE(LESS(PROPERTY_LOOKUP("n", property), LITERAL(42))),
RETURN(as_n)));
auto symbol_table = MakeSymbolTable(*storage.query());
auto planner = MakePlanner<TypeParam>(dba, storage, symbol_table);
CheckPlan(planner.plan(), symbol_table, ExpectScanAll(), ExpectFilter(),
ExpectProduce());
ExpectPullRemote pull({symbol_table.at(*as_n)});
auto expected = ExpectDistributed(
MakeCheckers(ExpectScanAll(), ExpectFilter(), ExpectProduce(), pull),
MakeCheckers(ExpectScanAll(), ExpectFilter(), ExpectProduce()));
CheckDistributedPlan(planner.plan(), symbol_table, expected);
}
TYPED_TEST(TestPlanner, MatchDelete) {
// Test MATCH (n) DELETE n
AstStorage storage;
QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("n"))), DELETE(IDENT("n"))));
CheckPlan<TypeParam>(storage, ExpectScanAll(), ExpectDelete());
auto expected = ExpectDistributed(
MakeCheckers(ExpectScanAll(), ExpectDelete(), ExpectSynchronize()),
MakeCheckers(ExpectScanAll(), ExpectDelete()));
CheckDistributedPlan<TypeParam>(storage, expected);
}
TYPED_TEST(TestPlanner, MatchNodeSet) {
// Test MATCH (n) SET n.prop = 42, n = n, n :label
AstStorage storage;
FakeDbAccessor dba;
auto prop = dba.Property("prop");
auto label = dba.Label("label");
QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("n"))),
SET(PROPERTY_LOOKUP("n", prop), LITERAL(42)),
SET("n", IDENT("n")), SET("n", {label})));
CheckPlan<TypeParam>(storage, ExpectScanAll(), ExpectSetProperty(),
ExpectSetProperties(), ExpectSetLabels());
auto expected = ExpectDistributed(
MakeCheckers(ExpectScanAll(), ExpectSetProperty(), ExpectSetProperties(),
ExpectSetLabels(), ExpectSynchronize()),
MakeCheckers(ExpectScanAll(), ExpectSetProperty(), ExpectSetProperties(),
ExpectSetLabels()));
CheckDistributedPlan<TypeParam>(storage, expected);
}
TYPED_TEST(TestPlanner, MatchRemove) {
// Test MATCH (n) REMOVE n.prop REMOVE n :label
AstStorage storage;
FakeDbAccessor dba;
auto prop = dba.Property("prop");
auto label = dba.Label("label");
QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("n"))),
REMOVE(PROPERTY_LOOKUP("n", prop)), REMOVE("n", {label})));
CheckPlan<TypeParam>(storage, ExpectScanAll(), ExpectRemoveProperty(),
ExpectRemoveLabels());
auto expected =
ExpectDistributed(MakeCheckers(ExpectScanAll(), ExpectRemoveProperty(),
ExpectRemoveLabels(), ExpectSynchronize()),
MakeCheckers(ExpectScanAll(), ExpectRemoveProperty(),
ExpectRemoveLabels()));
CheckDistributedPlan<TypeParam>(storage, expected);
}
TYPED_TEST(TestPlanner, MatchMultiPattern) {
// Test MATCH (n) -[r]- (m), (j) -[e]- (i) RETURN n
AstStorage storage;
QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("n"), EDGE("r"), NODE("m")),
PATTERN(NODE("j"), EDGE("e"), NODE("i"))),
RETURN("n")));
// We expect the expansions after the first to have a uniqueness filter in a
// single MATCH clause.
CheckPlan<TypeParam>(
storage, ExpectScanAll(), ExpectExpand(), ExpectScanAll(), ExpectExpand(),
ExpectExpandUniquenessFilter<EdgeAccessor>(), ExpectProduce());
}
TYPED_TEST(TestPlanner, MatchMultiPatternSameStart) {
// Test MATCH (n), (n) -[e]- (m) RETURN n
AstStorage storage;
QUERY(SINGLE_QUERY(
MATCH(PATTERN(NODE("n")), PATTERN(NODE("n"), EDGE("e"), NODE("m"))),
RETURN("n")));
// We expect the second pattern to generate only an Expand, since another
// ScanAll would be redundant.
CheckPlan<TypeParam>(storage, ExpectScanAll(), ExpectExpand(),
ExpectProduce());
}
TYPED_TEST(TestPlanner, MatchMultiPatternSameExpandStart) {
// Test MATCH (n) -[r]- (m), (m) -[e]- (l) RETURN n
AstStorage storage;
QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("n"), EDGE("r"), NODE("m")),
PATTERN(NODE("m"), EDGE("e"), NODE("l"))),
RETURN("n")));
// We expect the second pattern to generate only an Expand. Another
// ScanAll would be redundant, as it would generate the nodes obtained from
// expansion. Additionally, a uniqueness filter is expected.
CheckPlan<TypeParam>(storage, ExpectScanAll(), ExpectExpand(), ExpectExpand(),
ExpectExpandUniquenessFilter<EdgeAccessor>(),
ExpectProduce());
}
TYPED_TEST(TestPlanner, MultiMatch) {
// Test MATCH (n) -[r]- (m) MATCH (j) -[e]- (i) -[f]- (h) RETURN n
AstStorage storage;
auto *node_n = NODE("n");
auto *edge_r = EDGE("r");
auto *node_m = NODE("m");
auto *node_j = NODE("j");
auto *edge_e = EDGE("e");
auto *node_i = NODE("i");
auto *edge_f = EDGE("f");
auto *node_h = NODE("h");
QUERY(SINGLE_QUERY(MATCH(PATTERN(node_n, edge_r, node_m)),
MATCH(PATTERN(node_j, edge_e, node_i, edge_f, node_h)),
RETURN("n")));
auto symbol_table = MakeSymbolTable(*storage.query());
FakeDbAccessor dba;
auto planner = MakePlanner<TypeParam>(dba, storage, symbol_table);
// Multiple MATCH clauses form a Cartesian product, so the uniqueness should
// not cross MATCH boundaries.
CheckPlan(planner.plan(), symbol_table, ExpectScanAll(), ExpectExpand(),
ExpectScanAll(), ExpectExpand(), ExpectExpand(),
ExpectExpandUniquenessFilter<EdgeAccessor>(), ExpectProduce());
auto get_symbol = [&symbol_table](const auto *atom_node) {
return symbol_table.at(*atom_node->identifier_);
};
ExpectPullRemote left_pull(
{get_symbol(node_n), get_symbol(edge_r), get_symbol(node_m)});
auto left_cart = MakeCheckers(ExpectScanAll(), ExpectExpand(), left_pull);
ExpectPullRemote right_pull({get_symbol(node_j), get_symbol(edge_e),
get_symbol(node_i), get_symbol(edge_f),
get_symbol(node_h)});
auto right_cart =
MakeCheckers(ExpectScanAll(), ExpectExpand(), ExpectExpand(),
ExpectExpandUniquenessFilter<EdgeAccessor>(), right_pull);
auto expected = ExpectDistributed(
MakeCheckers(ExpectCartesian(std::move(left_cart), std::move(right_cart)),
ExpectProduce()),
MakeCheckers(ExpectScanAll(), ExpectExpand()),
MakeCheckers(ExpectScanAll(), ExpectExpand(), ExpectExpand(),
ExpectExpandUniquenessFilter<EdgeAccessor>()));
CheckDistributedPlan(planner.plan(), symbol_table, expected);
}
TYPED_TEST(TestPlanner, MultiMatchSameStart) {
// Test MATCH (n) MATCH (n) -[r]- (m) RETURN n
AstStorage storage;
auto *as_n = NEXPR("n", IDENT("n"));
QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("n"))),
MATCH(PATTERN(NODE("n"), EDGE("r"), NODE("m"))),
RETURN(as_n)));
// Similar to MatchMultiPatternSameStart, we expect only Expand from second
// MATCH clause.
auto symbol_table = MakeSymbolTable(*storage.query());
FakeDbAccessor dba;
auto planner = MakePlanner<TypeParam>(dba, storage, symbol_table);
CheckPlan(planner.plan(), symbol_table, ExpectScanAll(), ExpectExpand(),
ExpectProduce());
ExpectPullRemote pull({symbol_table.at(*as_n)});
auto expected = ExpectDistributed(
MakeCheckers(ExpectScanAll(), ExpectExpand(), ExpectProduce(), pull),
MakeCheckers(ExpectScanAll(), ExpectExpand(), ExpectProduce()));
CheckDistributedPlan(planner.plan(), symbol_table, expected);
}
TYPED_TEST(TestPlanner, MatchWithReturn) {
// Test MATCH (old) WITH old AS new RETURN new
AstStorage storage;
auto *as_new = NEXPR("new", IDENT("new"));
QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("old"))), WITH("old", AS("new")),
RETURN(as_new)));
// No accumulation since we only do reads.
auto symbol_table = MakeSymbolTable(*storage.query());
FakeDbAccessor dba;
auto planner = MakePlanner<TypeParam>(dba, storage, symbol_table);
CheckPlan(planner.plan(), symbol_table, ExpectScanAll(), ExpectProduce(),
ExpectProduce());
ExpectPullRemote pull({symbol_table.at(*as_new)});
auto expected = ExpectDistributed(
MakeCheckers(ExpectScanAll(), ExpectProduce(), ExpectProduce(), pull),
MakeCheckers(ExpectScanAll(), ExpectProduce(), ExpectProduce()));
CheckDistributedPlan(planner.plan(), symbol_table, expected);
}
TYPED_TEST(TestPlanner, MatchWithWhereReturn) {
// Test MATCH (old) WITH old AS new WHERE new.prop < 42 RETURN new
FakeDbAccessor dba;
auto prop = dba.Property("prop");
AstStorage storage;
auto *as_new = NEXPR("new", IDENT("new"));
QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("old"))), WITH("old", AS("new")),
WHERE(LESS(PROPERTY_LOOKUP("new", prop), LITERAL(42))),
RETURN(as_new)));
// No accumulation since we only do reads.
auto symbol_table = MakeSymbolTable(*storage.query());
auto planner = MakePlanner<TypeParam>(dba, storage, symbol_table);
CheckPlan(planner.plan(), symbol_table, ExpectScanAll(), ExpectProduce(),
ExpectFilter(), ExpectProduce());
ExpectPullRemote pull({symbol_table.at(*as_new)});
auto expected =
ExpectDistributed(MakeCheckers(ExpectScanAll(), ExpectProduce(),
ExpectFilter(), ExpectProduce(), pull),
MakeCheckers(ExpectScanAll(), ExpectProduce(),
ExpectFilter(), ExpectProduce()));
CheckDistributedPlan(planner.plan(), symbol_table, expected);
}
TYPED_TEST(TestPlanner, CreateMultiExpand) {
// Test CREATE (n) -[r :r]-> (m), (n) - [p :p]-> (l)
FakeDbAccessor dba;
auto r = dba.EdgeType("r");
auto p = dba.EdgeType("p");
AstStorage storage;
QUERY(SINGLE_QUERY(
CREATE(PATTERN(NODE("n"), EDGE("r", Direction::OUT, {r}), NODE("m")),
PATTERN(NODE("n"), EDGE("p", Direction::OUT, {p}), NODE("l")))));
CheckPlan<TypeParam>(storage, ExpectCreateNode(), ExpectCreateExpand(),
ExpectCreateExpand());
ExpectedDistributedPlan expected{
MakeCheckers(ExpectCreateNode(true), ExpectCreateExpand(),
ExpectCreateExpand(), ExpectSynchronize(false)),
{}};
CheckDistributedPlan<TypeParam>(storage, expected);
}
TYPED_TEST(TestPlanner, MatchWithSumWhereReturn) {
// Test MATCH (n) WITH SUM(n.prop) + 42 AS sum WHERE sum < 42
// RETURN sum AS result
FakeDbAccessor dba;
auto prop = dba.Property("prop");
AstStorage storage;
auto sum = SUM(PROPERTY_LOOKUP("n", prop));
auto literal = LITERAL(42);
QUERY(SINGLE_QUERY(
MATCH(PATTERN(NODE("n"))), WITH(ADD(sum, literal), AS("sum")),
WHERE(LESS(IDENT("sum"), LITERAL(42))), RETURN("sum", AS("result"))));
auto aggr = ExpectAggregate({sum}, {literal});
CheckPlan<TypeParam>(storage, ExpectScanAll(), aggr, ExpectProduce(),
ExpectFilter(), ExpectProduce());
}
TYPED_TEST(TestPlanner, MatchReturnSum) {
// Test MATCH (n) RETURN SUM(n.prop1) AS sum, n.prop2 AS group
FakeDbAccessor dba;
auto prop1 = dba.Property("prop1");
auto prop2 = dba.Property("prop2");
AstStorage storage;
auto sum = SUM(PROPERTY_LOOKUP("n", prop1));
auto n_prop2 = PROPERTY_LOOKUP("n", prop2);
QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("n"))),
RETURN(sum, AS("sum"), n_prop2, AS("group"))));
auto aggr = ExpectAggregate({sum}, {n_prop2});
auto symbol_table = MakeSymbolTable(*storage.query());
auto planner = MakePlanner<TypeParam>(dba, storage, symbol_table);
CheckPlan(planner.plan(), symbol_table, ExpectScanAll(), aggr,
ExpectProduce());
{
std::atomic<int64_t> next_plan_id{0};
auto distributed_plan =
MakeDistributedPlan(planner.plan(), symbol_table, next_plan_id);
auto merge_sum = SUM(IDENT("worker_sum"));
auto master_aggr = ExpectMasterAggregate({merge_sum}, {n_prop2});
ExpectPullRemote pull(
{symbol_table.at(*sum), symbol_table.at(*n_prop2->expression_)});
auto expected =
ExpectDistributed(MakeCheckers(ExpectScanAll(), aggr, pull, master_aggr,
ExpectProduce(), ExpectProduce()),
MakeCheckers(ExpectScanAll(), aggr));
CheckDistributedPlan(distributed_plan, expected);
}
}
TYPED_TEST(TestPlanner, CreateWithSum) {
// Test CREATE (n) WITH SUM(n.prop) AS sum
FakeDbAccessor dba;
auto prop = dba.Property("prop");
AstStorage storage;
auto n_prop = PROPERTY_LOOKUP("n", prop);
auto sum = SUM(n_prop);
auto query =
QUERY(SINGLE_QUERY(CREATE(PATTERN(NODE("n"))), WITH(sum, AS("sum"))));
auto symbol_table = MakeSymbolTable(*query);
auto acc = ExpectAccumulate({symbol_table.at(*n_prop->expression_)});
auto aggr = ExpectAggregate({sum}, {});
auto planner = MakePlanner<TypeParam>(dba, storage, symbol_table);
// We expect both the accumulation and aggregation because the part before
// WITH updates the database.
CheckPlan(planner.plan(), symbol_table, ExpectCreateNode(), acc, aggr,
ExpectProduce());
}
TYPED_TEST(TestPlanner, MatchWithCreate) {
// Test MATCH (n) WITH n AS a CREATE (a) -[r :r]-> (b)
FakeDbAccessor dba;
auto r_type = dba.EdgeType("r");
AstStorage storage;
QUERY(SINGLE_QUERY(
MATCH(PATTERN(NODE("n"))), WITH("n", AS("a")),
CREATE(
PATTERN(NODE("a"), EDGE("r", Direction::OUT, {r_type}), NODE("b")))));
CheckPlan<TypeParam>(storage, ExpectScanAll(), ExpectProduce(),
ExpectCreateExpand());
auto expected = ExpectDistributed(
MakeCheckers(ExpectScanAll(), ExpectProduce(), ExpectCreateExpand(),
ExpectSynchronize()),
MakeCheckers(ExpectScanAll(), ExpectProduce(), ExpectCreateExpand()));
CheckDistributedPlan<TypeParam>(storage, expected);
}
TYPED_TEST(TestPlanner, MatchReturnSkipLimit) {
// Test MATCH (n) RETURN n SKIP 2 LIMIT 1
AstStorage storage;
auto *as_n = NEXPR("n", IDENT("n"));
QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("n"))),
RETURN(as_n, SKIP(LITERAL(2)), LIMIT(LITERAL(1)))));
auto symbol_table = MakeSymbolTable(*storage.query());
FakeDbAccessor dba;
auto planner = MakePlanner<TypeParam>(dba, storage, symbol_table);
CheckPlan(planner.plan(), symbol_table, ExpectScanAll(), ExpectProduce(),
ExpectSkip(), ExpectLimit());
ExpectPullRemote pull({symbol_table.at(*as_n)});
auto expected =
ExpectDistributed(MakeCheckers(ExpectScanAll(), ExpectProduce(), pull,
ExpectSkip(), ExpectLimit()),
MakeCheckers(ExpectScanAll(), ExpectProduce()));
CheckDistributedPlan(planner.plan(), symbol_table, expected);
}
TYPED_TEST(TestPlanner, CreateWithSkipReturnLimit) {
// Test CREATE (n) WITH n AS m SKIP 2 RETURN m LIMIT 1
AstStorage storage;
auto ident_n = IDENT("n");
auto query = QUERY(SINGLE_QUERY(CREATE(PATTERN(NODE("n"))),
WITH(ident_n, AS("m"), SKIP(LITERAL(2))),
RETURN("m", LIMIT(LITERAL(1)))));
auto symbol_table = MakeSymbolTable(*query);
auto acc = ExpectAccumulate({symbol_table.at(*ident_n)});
FakeDbAccessor dba;
auto planner = MakePlanner<TypeParam>(dba, storage, symbol_table);
// Since we have a write query, we need to have Accumulate. This is a bit
// different than Neo4j 3.0, which optimizes WITH followed by RETURN as a
// single RETURN clause and then moves Skip and Limit before Accumulate. This
// causes different behaviour. A newer version of Neo4j does the same thing as
// us here (but who knows if they change it again).
CheckPlan(planner.plan(), symbol_table, ExpectCreateNode(), acc,
ExpectProduce(), ExpectSkip(), ExpectProduce(), ExpectLimit());
ExpectedDistributedPlan expected{
MakeCheckers(ExpectCreateNode(true), ExpectSynchronize(true),
ExpectProduce(), ExpectSkip(), ExpectProduce(),
ExpectLimit()),
{}};
CheckDistributedPlan(planner.plan(), symbol_table, expected);
}
TYPED_TEST(TestPlanner, CreateReturnSumSkipLimit) {
// Test CREATE (n) RETURN SUM(n.prop) AS s SKIP 2 LIMIT 1
FakeDbAccessor dba;
auto prop = dba.Property("prop");
AstStorage storage;
auto n_prop = PROPERTY_LOOKUP("n", prop);
auto sum = SUM(n_prop);
auto query = QUERY(
SINGLE_QUERY(CREATE(PATTERN(NODE("n"))),
RETURN(sum, AS("s"), SKIP(LITERAL(2)), LIMIT(LITERAL(1)))));
auto symbol_table = MakeSymbolTable(*query);
auto acc = ExpectAccumulate({symbol_table.at(*n_prop->expression_)});
auto aggr = ExpectAggregate({sum}, {});
auto planner = MakePlanner<TypeParam>(dba, storage, symbol_table);
CheckPlan(planner.plan(), symbol_table, ExpectCreateNode(), acc, aggr,
ExpectProduce(), ExpectSkip(), ExpectLimit());
}
TYPED_TEST(TestPlanner, MatchReturnOrderBy) {
// Test MATCH (n) RETURN n AS m ORDER BY n.prop
FakeDbAccessor dba;
auto prop = dba.Property("prop");
AstStorage storage;
auto *as_m = NEXPR("m", IDENT("n"));
auto *node_n = NODE("n");
auto ret = RETURN(as_m, ORDER_BY(PROPERTY_LOOKUP("n", prop)));
QUERY(SINGLE_QUERY(MATCH(PATTERN(node_n)), ret));
auto symbol_table = MakeSymbolTable(*storage.query());
auto planner = MakePlanner<TypeParam>(dba, storage, symbol_table);
CheckPlan(planner.plan(), symbol_table, ExpectScanAll(), ExpectProduce(),
ExpectOrderBy());
ExpectPullRemoteOrderBy pull_order_by(
{symbol_table.at(*as_m), symbol_table.at(*node_n->identifier_)});
auto expected = ExpectDistributed(
MakeCheckers(ExpectScanAll(), ExpectProduce(), ExpectOrderBy(),
pull_order_by),
MakeCheckers(ExpectScanAll(), ExpectProduce(), ExpectOrderBy()));
CheckDistributedPlan(planner.plan(), symbol_table, expected);
// Even though last operator pulls and orders by `m` and `n`, we expect only
// `m` as the output of the query execution.
EXPECT_THAT(planner.plan().OutputSymbols(symbol_table),
testing::UnorderedElementsAre(symbol_table.at(*as_m)));
}
TYPED_TEST(TestPlanner, CreateWithOrderByWhere) {
// Test CREATE (n) -[r :r]-> (m)
// WITH n AS new ORDER BY new.prop, r.prop WHERE m.prop < 42
FakeDbAccessor dba;
auto prop = dba.Property("prop");
auto r_type = dba.EdgeType("r");
AstStorage storage;
auto ident_n = IDENT("n");
auto new_prop = PROPERTY_LOOKUP("new", prop);
auto r_prop = PROPERTY_LOOKUP("r", prop);
auto m_prop = PROPERTY_LOOKUP("m", prop);
auto query = QUERY(SINGLE_QUERY(
CREATE(
PATTERN(NODE("n"), EDGE("r", Direction::OUT, {r_type}), NODE("m"))),
WITH(ident_n, AS("new"), ORDER_BY(new_prop, r_prop)),
WHERE(LESS(m_prop, LITERAL(42)))));
auto symbol_table = MakeSymbolTable(*query);
// Since this is a write query, we expect to accumulate to old used symbols.
auto acc = ExpectAccumulate({
symbol_table.at(*ident_n), // `n` in WITH
symbol_table.at(*r_prop->expression_), // `r` in ORDER BY
symbol_table.at(*m_prop->expression_), // `m` in WHERE
});
auto planner = MakePlanner<TypeParam>(dba, storage, symbol_table);
CheckPlan(planner.plan(), symbol_table, ExpectCreateNode(),
ExpectCreateExpand(), acc, ExpectProduce(), ExpectOrderBy(),
ExpectFilter());
auto expected = ExpectDistributed(MakeCheckers(
ExpectCreateNode(true), ExpectCreateExpand(), ExpectSynchronize(true),
ExpectProduce(), ExpectOrderBy(), ExpectFilter()));
CheckDistributedPlan(planner.plan(), symbol_table, expected);
}
TYPED_TEST(TestPlanner, ReturnAddSumCountOrderBy) {
// Test RETURN SUM(1) + COUNT(2) AS result ORDER BY result
AstStorage storage;
auto sum = SUM(LITERAL(1));
auto count = COUNT(LITERAL(2));
QUERY(SINGLE_QUERY(
RETURN(ADD(sum, count), AS("result"), ORDER_BY(IDENT("result")))));
auto aggr = ExpectAggregate({sum, count}, {});
CheckPlan<TypeParam>(storage, aggr, ExpectProduce(), ExpectOrderBy());
auto expected =
ExpectDistributed(MakeCheckers(aggr, ExpectProduce(), ExpectOrderBy()));
CheckDistributedPlan<TypeParam>(storage, expected);
}
TYPED_TEST(TestPlanner, MatchMerge) {
// Test MATCH (n) MERGE (n) -[r :r]- (m)
// ON MATCH SET n.prop = 42 ON CREATE SET m = n
// RETURN n AS n
FakeDbAccessor dba;
auto r_type = dba.EdgeType("r");
auto prop = dba.Property("prop");
AstStorage storage;
auto ident_n = IDENT("n");
auto query = QUERY(SINGLE_QUERY(
MATCH(PATTERN(NODE("n"))),
MERGE(PATTERN(NODE("n"), EDGE("r", Direction::BOTH, {r_type}), NODE("m")),
ON_MATCH(SET(PROPERTY_LOOKUP("n", prop), LITERAL(42))),
ON_CREATE(SET("m", IDENT("n")))),
RETURN(ident_n, AS("n"))));
std::list<BaseOpChecker *> on_match{new ExpectExpand(),
new ExpectSetProperty()};
std::list<BaseOpChecker *> on_create{new ExpectCreateExpand(),
new ExpectSetProperties()};
auto symbol_table = MakeSymbolTable(*query);
// We expect Accumulate after Merge, because it is considered as a write.
auto acc = ExpectAccumulate({symbol_table.at(*ident_n)});
auto planner = MakePlanner<TypeParam>(dba, storage, symbol_table);
CheckPlan(planner.plan(), symbol_table, ExpectScanAll(),
ExpectMerge(on_match, on_create), acc, ExpectProduce());
for (auto &op : on_match) delete op;
on_match.clear();
for (auto &op : on_create) delete op;
on_create.clear();
}
TYPED_TEST(TestPlanner, MatchOptionalMatchWhereReturn) {
// Test MATCH (n) OPTIONAL MATCH (n) -[r]- (m) WHERE m.prop < 42 RETURN r
FakeDbAccessor dba;
auto prop = dba.Property("prop");
AstStorage storage;
QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("n"))),
OPTIONAL_MATCH(PATTERN(NODE("n"), EDGE("r"), NODE("m"))),
WHERE(LESS(PROPERTY_LOOKUP("m", prop), LITERAL(42))),
RETURN("r")));
std::list<BaseOpChecker *> optional{new ExpectScanAll(), new ExpectExpand(),
new ExpectFilter()};
CheckPlan<TypeParam>(storage, ExpectScanAll(), ExpectOptional(optional),
ExpectProduce());
}
TYPED_TEST(TestPlanner, MatchUnwindReturn) {
// Test MATCH (n) UNWIND [1,2,3] AS x RETURN n, x
AstStorage storage;
auto *as_n = NEXPR("n", IDENT("n"));
auto *as_x = NEXPR("x", IDENT("x"));
QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("n"))),
UNWIND(LIST(LITERAL(1), LITERAL(2), LITERAL(3)), AS("x")),
RETURN(as_n, as_x)));
auto symbol_table = MakeSymbolTable(*storage.query());
FakeDbAccessor dba;
auto planner = MakePlanner<TypeParam>(dba, storage, symbol_table);
CheckPlan(planner.plan(), symbol_table, ExpectScanAll(), ExpectUnwind(),
ExpectProduce());
ExpectPullRemote pull({symbol_table.at(*as_n), symbol_table.at(*as_x)});
auto expected = ExpectDistributed(
MakeCheckers(ExpectScanAll(), ExpectUnwind(), ExpectProduce(), pull),
MakeCheckers(ExpectScanAll(), ExpectUnwind(), ExpectProduce()));
CheckDistributedPlan(planner.plan(), symbol_table, expected);
}
TYPED_TEST(TestPlanner, ReturnDistinctOrderBySkipLimit) {
// Test RETURN DISTINCT 1 ORDER BY 1 SKIP 1 LIMIT 1
AstStorage storage;
QUERY(SINGLE_QUERY(RETURN_DISTINCT(LITERAL(1), AS("1"), ORDER_BY(LITERAL(1)),
SKIP(LITERAL(1)), LIMIT(LITERAL(1)))));
CheckPlan<TypeParam>(storage, ExpectProduce(), ExpectDistinct(),
ExpectOrderBy(), ExpectSkip(), ExpectLimit());
auto expected = ExpectDistributed(
MakeCheckers(ExpectProduce(), ExpectDistinct(), ExpectOrderBy(),
ExpectSkip(), ExpectLimit()));
CheckDistributedPlan<TypeParam>(storage, expected);
}
TYPED_TEST(TestPlanner, CreateWithDistinctSumWhereReturn) {
// Test CREATE (n) WITH DISTINCT SUM(n.prop) AS s WHERE s < 42 RETURN s
FakeDbAccessor dba;
auto prop = dba.Property("prop");
AstStorage storage;
auto node_n = NODE("n");
auto sum = SUM(PROPERTY_LOOKUP("n", prop));
auto query =
QUERY(SINGLE_QUERY(CREATE(PATTERN(node_n)), WITH_DISTINCT(sum, AS("s")),
WHERE(LESS(IDENT("s"), LITERAL(42))), RETURN("s")));
auto symbol_table = MakeSymbolTable(*query);
auto acc = ExpectAccumulate({symbol_table.at(*node_n->identifier_)});
auto aggr = ExpectAggregate({sum}, {});
auto planner = MakePlanner<TypeParam>(dba, storage, symbol_table);
CheckPlan(planner.plan(), symbol_table, ExpectCreateNode(), acc, aggr,
ExpectProduce(), ExpectDistinct(), ExpectFilter(), ExpectProduce());
}
TYPED_TEST(TestPlanner, MatchCrossReferenceVariable) {
// Test MATCH (n {prop: m.prop}), (m {prop: n.prop}) RETURN n
FakeDbAccessor dba;
auto prop = PROPERTY_PAIR("prop");
AstStorage storage;
auto node_n = NODE("n");
auto m_prop = PROPERTY_LOOKUP("m", prop.second);
node_n->properties_[prop] = m_prop;
auto node_m = NODE("m");
auto n_prop = PROPERTY_LOOKUP("n", prop.second);
node_m->properties_[prop] = n_prop;
QUERY(SINGLE_QUERY(MATCH(PATTERN(node_n), PATTERN(node_m)), RETURN("n")));
// We expect both ScanAll to come before filters (2 are joined into one),
// because they need to populate the symbol values.
CheckPlan<TypeParam>(storage, ExpectScanAll(), ExpectScanAll(),
ExpectFilter(), ExpectProduce());
}
TYPED_TEST(TestPlanner, MatchWhereBeforeExpand) {
// Test MATCH (n) -[r]- (m) WHERE n.prop < 42 RETURN n
FakeDbAccessor dba;
auto prop = dba.Property("prop");
AstStorage storage;
auto *as_n = NEXPR("n", IDENT("n"));
QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("n"), EDGE("r"), NODE("m"))),
WHERE(LESS(PROPERTY_LOOKUP("n", prop), LITERAL(42))),
RETURN(as_n)));
// We expect Fitler to come immediately after ScanAll, since it only uses `n`.
auto symbol_table = MakeSymbolTable(*storage.query());
auto planner = MakePlanner<TypeParam>(dba, storage, symbol_table);
CheckPlan(planner.plan(), symbol_table, ExpectScanAll(), ExpectFilter(),
ExpectExpand(), ExpectProduce());
ExpectPullRemote pull({symbol_table.at(*as_n)});
auto expected =
ExpectDistributed(MakeCheckers(ExpectScanAll(), ExpectFilter(),
ExpectExpand(), ExpectProduce(), pull),
MakeCheckers(ExpectScanAll(), ExpectFilter(),
ExpectExpand(), ExpectProduce()));
CheckDistributedPlan(planner.plan(), symbol_table, expected);
}
TYPED_TEST(TestPlanner, MultiMatchWhere) {
// Test MATCH (n) -[r]- (m) MATCH (l) WHERE n.prop < 42 RETURN n
FakeDbAccessor dba;
auto prop = dba.Property("prop");
AstStorage storage;
QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("n"), EDGE("r"), NODE("m"))),
MATCH(PATTERN(NODE("l"))),
WHERE(LESS(PROPERTY_LOOKUP("n", prop), LITERAL(42))),
RETURN("n")));
// Even though WHERE is in the second MATCH clause, we expect Filter to come
// before second ScanAll, since it only uses the value from first ScanAll.
CheckPlan<TypeParam>(storage, ExpectScanAll(), ExpectFilter(), ExpectExpand(),
ExpectScanAll(), ExpectProduce());
}
TYPED_TEST(TestPlanner, MatchOptionalMatchWhere) {
// Test MATCH (n) -[r]- (m) OPTIONAL MATCH (l) WHERE n.prop < 42 RETURN n
FakeDbAccessor dba;
auto prop = dba.Property("prop");
AstStorage storage;
QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("n"), EDGE("r"), NODE("m"))),
OPTIONAL_MATCH(PATTERN(NODE("l"))),
WHERE(LESS(PROPERTY_LOOKUP("n", prop), LITERAL(42))),
RETURN("n")));
// Even though WHERE is in the second MATCH clause, and it uses the value from
// first ScanAll, it must remain part of the Optional. It should come before
// optional ScanAll.
std::list<BaseOpChecker *> optional{new ExpectFilter(), new ExpectScanAll()};
CheckPlan<TypeParam>(storage, ExpectScanAll(), ExpectExpand(),
ExpectOptional(optional), ExpectProduce());
}
TYPED_TEST(TestPlanner, MatchReturnAsterisk) {
// Test MATCH (n) -[e]- (m) RETURN *, m.prop
FakeDbAccessor dba;
auto prop = dba.Property("prop");
AstStorage storage;
auto ret = RETURN(PROPERTY_LOOKUP("m", prop), AS("m.prop"));
ret->body_.all_identifiers = true;
auto query =
QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("n"), EDGE("e"), NODE("m"))), ret));
auto symbol_table = MakeSymbolTable(*query);
auto planner = MakePlanner<TypeParam>(dba, storage, symbol_table);
CheckPlan(planner.plan(), symbol_table, ExpectScanAll(), ExpectExpand(),
ExpectProduce());
std::vector<std::string> output_names;
for (const auto &output_symbol : planner.plan().OutputSymbols(symbol_table)) {
output_names.emplace_back(output_symbol.name());
}
std::vector<std::string> expected_names{"e", "m", "n", "m.prop"};
EXPECT_EQ(output_names, expected_names);
}
TYPED_TEST(TestPlanner, MatchReturnAsteriskSum) {
// Test MATCH (n) RETURN *, SUM(n.prop) AS s
FakeDbAccessor dba;
auto prop = dba.Property("prop");
AstStorage storage;
auto sum = SUM(PROPERTY_LOOKUP("n", prop));
auto ret = RETURN(sum, AS("s"));
ret->body_.all_identifiers = true;
auto query = QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("n"))), ret));
auto symbol_table = MakeSymbolTable(*query);
auto planner = MakePlanner<TypeParam>(dba, storage, symbol_table);
auto *produce = dynamic_cast<Produce *>(&planner.plan());
ASSERT_TRUE(produce);
const auto &named_expressions = produce->named_expressions();
ASSERT_EQ(named_expressions.size(), 2);
auto *expanded_ident =
dynamic_cast<query::Identifier *>(named_expressions[0]->expression_);
ASSERT_TRUE(expanded_ident);
auto aggr = ExpectAggregate({sum}, {expanded_ident});
CheckPlan(planner.plan(), symbol_table, ExpectScanAll(), aggr,
ExpectProduce());
std::vector<std::string> output_names;
for (const auto &output_symbol : planner.plan().OutputSymbols(symbol_table)) {
output_names.emplace_back(output_symbol.name());
}
std::vector<std::string> expected_names{"n", "s"};
EXPECT_EQ(output_names, expected_names);
}
TYPED_TEST(TestPlanner, UnwindMergeNodeProperty) {
// Test UNWIND [1] AS i MERGE (n {prop: i})
AstStorage storage;
FakeDbAccessor dba;
auto node_n = NODE("n");
node_n->properties_[PROPERTY_PAIR("prop")] = IDENT("i");
QUERY(
SINGLE_QUERY(UNWIND(LIST(LITERAL(1)), AS("i")), MERGE(PATTERN(node_n))));
std::list<BaseOpChecker *> on_match{new ExpectScanAll(), new ExpectFilter()};
std::list<BaseOpChecker *> on_create{new ExpectCreateNode()};
CheckPlan<TypeParam>(storage, ExpectUnwind(),
ExpectMerge(on_match, on_create));
for (auto &op : on_match) delete op;
for (auto &op : on_create) delete op;
}
TYPED_TEST(TestPlanner, MultipleOptionalMatchReturn) {
// Test OPTIONAL MATCH (n) OPTIONAL MATCH (m) RETURN n
AstStorage storage;
QUERY(SINGLE_QUERY(OPTIONAL_MATCH(PATTERN(NODE("n"))),
OPTIONAL_MATCH(PATTERN(NODE("m"))), RETURN("n")));
std::list<BaseOpChecker *> optional{new ExpectScanAll()};
CheckPlan<TypeParam>(storage, ExpectOptional(optional),
ExpectOptional(optional), ExpectProduce());
}
TYPED_TEST(TestPlanner, FunctionAggregationReturn) {
// Test RETURN sqrt(SUM(2)) AS result, 42 AS group_by
AstStorage storage;
auto sum = SUM(LITERAL(2));
auto group_by_literal = LITERAL(42);
QUERY(SINGLE_QUERY(
RETURN(FN("sqrt", sum), AS("result"), group_by_literal, AS("group_by"))));
auto aggr = ExpectAggregate({sum}, {group_by_literal});
CheckPlan<TypeParam>(storage, aggr, ExpectProduce());
auto expected = ExpectDistributed(MakeCheckers(aggr, ExpectProduce()));
CheckDistributedPlan<TypeParam>(storage, expected);
}
TYPED_TEST(TestPlanner, FunctionWithoutArguments) {
// Test RETURN pi() AS pi
AstStorage storage;
QUERY(SINGLE_QUERY(RETURN(FN("pi"), AS("pi"))));
CheckPlan<TypeParam>(storage, ExpectProduce());
auto expected = ExpectDistributed(MakeCheckers(ExpectProduce()));
CheckDistributedPlan<TypeParam>(storage, expected);
}
TYPED_TEST(TestPlanner, ListLiteralAggregationReturn) {
// Test RETURN [SUM(2)] AS result, 42 AS group_by
AstStorage storage;
auto sum = SUM(LITERAL(2));
auto group_by_literal = LITERAL(42);
QUERY(SINGLE_QUERY(
RETURN(LIST(sum), AS("result"), group_by_literal, AS("group_by"))));
auto aggr = ExpectAggregate({sum}, {group_by_literal});
CheckPlan<TypeParam>(storage, aggr, ExpectProduce());
}
TYPED_TEST(TestPlanner, MapLiteralAggregationReturn) {
// Test RETURN {sum: SUM(2)} AS result, 42 AS group_by
AstStorage storage;
FakeDbAccessor dba;
auto sum = SUM(LITERAL(2));
auto group_by_literal = LITERAL(42);
QUERY(SINGLE_QUERY(RETURN(MAP({PROPERTY_PAIR("sum"), sum}), AS("result"),
group_by_literal, AS("group_by"))));
auto aggr = ExpectAggregate({sum}, {group_by_literal});
CheckPlan<TypeParam>(storage, aggr, ExpectProduce());
}
TYPED_TEST(TestPlanner, EmptyListIndexAggregation) {
// Test RETURN [][SUM(2)] AS result, 42 AS group_by
AstStorage storage;
auto sum = SUM(LITERAL(2));
auto empty_list = LIST();
auto group_by_literal = LITERAL(42);
QUERY(SINGLE_QUERY(
RETURN(storage.Create<query::ListMapIndexingOperator>(empty_list, sum),
AS("result"), group_by_literal, AS("group_by"))));
// We expect to group by '42' and the empty list, because it is a
// sub-expression of a binary operator which contains an aggregation. This is
// similar to grouping by '1' in `RETURN 1 + SUM(2)`.
auto aggr = ExpectAggregate({sum}, {empty_list, group_by_literal});
CheckPlan<TypeParam>(storage, aggr, ExpectProduce());
}
TYPED_TEST(TestPlanner, ListSliceAggregationReturn) {
// Test RETURN [1, 2][0..SUM(2)] AS result, 42 AS group_by
AstStorage storage;
auto sum = SUM(LITERAL(2));
auto list = LIST(LITERAL(1), LITERAL(2));
auto group_by_literal = LITERAL(42);
QUERY(SINGLE_QUERY(RETURN(SLICE(list, LITERAL(0), sum), AS("result"),
group_by_literal, AS("group_by"))));
// Similarly to EmptyListIndexAggregation test, we expect grouping by list and
// '42', because slicing is an operator.
auto aggr = ExpectAggregate({sum}, {list, group_by_literal});
CheckPlan<TypeParam>(storage, aggr, ExpectProduce());
}
TYPED_TEST(TestPlanner, ListWithAggregationAndGroupBy) {
// Test RETURN [sum(2), 42]
AstStorage storage;
auto sum = SUM(LITERAL(2));
auto group_by_literal = LITERAL(42);
QUERY(SINGLE_QUERY(RETURN(LIST(sum, group_by_literal), AS("result"))));
auto aggr = ExpectAggregate({sum}, {group_by_literal});
CheckPlan<TypeParam>(storage, aggr, ExpectProduce());
}
TYPED_TEST(TestPlanner, AggregatonWithListWithAggregationAndGroupBy) {
// Test RETURN sum(2), [sum(3), 42]
AstStorage storage;
auto sum2 = SUM(LITERAL(2));
auto sum3 = SUM(LITERAL(3));
auto group_by_literal = LITERAL(42);
QUERY(SINGLE_QUERY(
RETURN(sum2, AS("sum2"), LIST(sum3, group_by_literal), AS("list"))));
auto aggr = ExpectAggregate({sum2, sum3}, {group_by_literal});
CheckPlan<TypeParam>(storage, aggr, ExpectProduce());
}
TYPED_TEST(TestPlanner, MapWithAggregationAndGroupBy) {
// Test RETURN {lit: 42, sum: sum(2)}
AstStorage storage;
FakeDbAccessor dba;
auto sum = SUM(LITERAL(2));
auto group_by_literal = LITERAL(42);
QUERY(SINGLE_QUERY(RETURN(MAP({PROPERTY_PAIR("sum"), sum},
{PROPERTY_PAIR("lit"), group_by_literal}),
AS("result"))));
auto aggr = ExpectAggregate({sum}, {group_by_literal});
CheckPlan<TypeParam>(storage, aggr, ExpectProduce());
}
TYPED_TEST(TestPlanner, CreateIndex) {
// Test CREATE INDEX ON :Label(property)
FakeDbAccessor dba;
auto label = dba.Label("label");
auto property = dba.Property("property");
AstStorage storage;
QUERY(SINGLE_QUERY(CREATE_INDEX_ON(label, property)));
CheckPlan<TypeParam>(storage, ExpectCreateIndex(label, property));
auto expected =
ExpectDistributed(MakeCheckers(ExpectCreateIndex(label, property)));
CheckDistributedPlan<TypeParam>(storage, expected);
}
TYPED_TEST(TestPlanner, AtomIndexedLabelProperty) {
// Test MATCH (n :label {property: 42, not_indexed: 0}) RETURN n
AstStorage storage;
FakeDbAccessor dba;
auto label = dba.Label("label");
auto property = PROPERTY_PAIR("property");
auto not_indexed = PROPERTY_PAIR("not_indexed");
dba.SetIndexCount(label, 1);
dba.SetIndexCount(label, property.second, 1);
auto node = NODE("n", label);
auto lit_42 = LITERAL(42);
node->properties_[property] = lit_42;
node->properties_[not_indexed] = LITERAL(0);
QUERY(SINGLE_QUERY(MATCH(PATTERN(node)), RETURN("n")));
auto symbol_table = MakeSymbolTable(*storage.query());
auto planner = MakePlanner<TypeParam>(dba, storage, symbol_table);
CheckPlan(planner.plan(), symbol_table,
ExpectScanAllByLabelPropertyValue(label, property, lit_42),
ExpectFilter(), ExpectProduce());
}
TYPED_TEST(TestPlanner, AtomPropertyWhereLabelIndexing) {
// Test MATCH (n {property: 42}) WHERE n.not_indexed AND n:label RETURN n
AstStorage storage;
FakeDbAccessor dba;
auto label = dba.Label("label");
auto property = PROPERTY_PAIR("property");
auto not_indexed = PROPERTY_PAIR("not_indexed");
dba.SetIndexCount(label, property.second, 0);
auto node = NODE("n");
auto lit_42 = LITERAL(42);
node->properties_[property] = lit_42;
QUERY(SINGLE_QUERY(
MATCH(PATTERN(node)),
WHERE(AND(PROPERTY_LOOKUP("n", not_indexed),
storage.Create<query::LabelsTest>(
IDENT("n"), std::vector<storage::Label>{label}))),
RETURN("n")));
auto symbol_table = MakeSymbolTable(*storage.query());
auto planner = MakePlanner<TypeParam>(dba, storage, symbol_table);
CheckPlan(planner.plan(), symbol_table,
ExpectScanAllByLabelPropertyValue(label, property, lit_42),
ExpectFilter(), ExpectProduce());
}
TYPED_TEST(TestPlanner, WhereIndexedLabelProperty) {
// Test MATCH (n :label) WHERE n.property = 42 RETURN n
AstStorage storage;
FakeDbAccessor dba;
auto label = dba.Label("label");
auto property = PROPERTY_PAIR("property");
dba.SetIndexCount(label, property.second, 0);
auto lit_42 = LITERAL(42);
QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("n", label))),
WHERE(EQ(PROPERTY_LOOKUP("n", property), lit_42)),
RETURN("n")));
auto symbol_table = MakeSymbolTable(*storage.query());
auto planner = MakePlanner<TypeParam>(dba, storage, symbol_table);
CheckPlan(planner.plan(), symbol_table,
ExpectScanAllByLabelPropertyValue(label, property, lit_42),
ExpectProduce());
}
TYPED_TEST(TestPlanner, BestPropertyIndexed) {
// Test MATCH (n :label) WHERE n.property = 1 AND n.better = 42 RETURN n
AstStorage storage;
FakeDbAccessor dba;
auto label = dba.Label("label");
auto property = dba.Property("property");
// Add a vertex with :label+property combination, so that the best
// :label+better remains empty and thus better choice.
dba.SetIndexCount(label, property, 1);
auto better = PROPERTY_PAIR("better");
dba.SetIndexCount(label, better.second, 0);
auto lit_42 = LITERAL(42);
QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("n", label))),
WHERE(AND(EQ(PROPERTY_LOOKUP("n", property), LITERAL(1)),
EQ(PROPERTY_LOOKUP("n", better), lit_42))),
RETURN("n")));
auto symbol_table = MakeSymbolTable(*storage.query());
auto planner = MakePlanner<TypeParam>(dba, storage, symbol_table);
CheckPlan(planner.plan(), symbol_table,
ExpectScanAllByLabelPropertyValue(label, better, lit_42),
ExpectFilter(), ExpectProduce());
}
TYPED_TEST(TestPlanner, MultiPropertyIndexScan) {
// Test MATCH (n :label1), (m :label2) WHERE n.prop1 = 1 AND m.prop2 = 2
// RETURN n, m
FakeDbAccessor dba;
auto label1 = dba.Label("label1");
auto label2 = dba.Label("label2");
auto prop1 = PROPERTY_PAIR("prop1");
auto prop2 = PROPERTY_PAIR("prop2");
dba.SetIndexCount(label1, prop1.second, 0);
dba.SetIndexCount(label2, prop2.second, 0);
AstStorage storage;
auto lit_1 = LITERAL(1);
auto lit_2 = LITERAL(2);
QUERY(SINGLE_QUERY(
MATCH(PATTERN(NODE("n", label1)), PATTERN(NODE("m", label2))),
WHERE(AND(EQ(PROPERTY_LOOKUP("n", prop1), lit_1),
EQ(PROPERTY_LOOKUP("m", prop2), lit_2))),
RETURN("n", "m")));
auto symbol_table = MakeSymbolTable(*storage.query());
auto planner = MakePlanner<TypeParam>(dba, storage, symbol_table);
CheckPlan(planner.plan(), symbol_table,
ExpectScanAllByLabelPropertyValue(label1, prop1, lit_1),
ExpectScanAllByLabelPropertyValue(label2, prop2, lit_2),
ExpectProduce());
}
TYPED_TEST(TestPlanner, WhereIndexedLabelPropertyRange) {
// Test MATCH (n :label) WHERE n.property REL_OP 42 RETURN n
// REL_OP is one of: `<`, `<=`, `>`, `>=`
FakeDbAccessor dba;
auto label = dba.Label("label");
auto property = dba.Property("property");
dba.SetIndexCount(label, property, 0);
AstStorage storage;
auto lit_42 = LITERAL(42);
auto n_prop = PROPERTY_LOOKUP("n", property);
auto check_planned_range = [&label, &property, &dba](const auto &rel_expr,
auto lower_bound,
auto upper_bound) {
// Shadow the first storage, so that the query is created in this one.
AstStorage storage;
QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("n", label))), WHERE(rel_expr),
RETURN("n")));
auto symbol_table = MakeSymbolTable(*storage.query());
auto planner = MakePlanner<TypeParam>(dba, storage, symbol_table);
CheckPlan(planner.plan(), symbol_table,
ExpectScanAllByLabelPropertyRange(label, property, lower_bound,
upper_bound),
ExpectProduce());
};
{
// Test relation operators which form an upper bound for range.
std::vector<std::pair<query::Expression *, Bound::Type>> upper_bound_rel_op{
std::make_pair(LESS(n_prop, lit_42), Bound::Type::EXCLUSIVE),
std::make_pair(LESS_EQ(n_prop, lit_42), Bound::Type::INCLUSIVE),
std::make_pair(GREATER(lit_42, n_prop), Bound::Type::EXCLUSIVE),
std::make_pair(GREATER_EQ(lit_42, n_prop), Bound::Type::INCLUSIVE)};
for (const auto &rel_op : upper_bound_rel_op) {
check_planned_range(rel_op.first, std::experimental::nullopt,
Bound(lit_42, rel_op.second));
}
}
{
// Test relation operators which form a lower bound for range.
std::vector<std::pair<query::Expression *, Bound::Type>> lower_bound_rel_op{
std::make_pair(LESS(lit_42, n_prop), Bound::Type::EXCLUSIVE),
std::make_pair(LESS_EQ(lit_42, n_prop), Bound::Type::INCLUSIVE),
std::make_pair(GREATER(n_prop, lit_42), Bound::Type::EXCLUSIVE),
std::make_pair(GREATER_EQ(n_prop, lit_42), Bound::Type::INCLUSIVE)};
for (const auto &rel_op : lower_bound_rel_op) {
check_planned_range(rel_op.first, Bound(lit_42, rel_op.second),
std::experimental::nullopt);
}
}
}
TYPED_TEST(TestPlanner, UnableToUsePropertyIndex) {
// Test MATCH (n: label) WHERE n.property = n.property RETURN n
FakeDbAccessor dba;
auto label = dba.Label("label");
auto property = dba.Property("property");
dba.SetIndexCount(label, property, 0);
AstStorage storage;
QUERY(SINGLE_QUERY(
MATCH(PATTERN(NODE("n", label))),
WHERE(EQ(PROPERTY_LOOKUP("n", property), PROPERTY_LOOKUP("n", property))),
RETURN("n")));
auto symbol_table = MakeSymbolTable(*storage.query());
auto planner = MakePlanner<TypeParam>(dba, storage, symbol_table);
// We can only get ScanAllByLabelIndex, because we are comparing properties
// with those on the same node.
CheckPlan(planner.plan(), symbol_table, ExpectScanAllByLabel(),
ExpectFilter(), ExpectProduce());
}
TYPED_TEST(TestPlanner, SecondPropertyIndex) {
// Test MATCH (n :label), (m :label) WHERE m.property = n.property RETURN n
FakeDbAccessor dba;
auto label = dba.Label("label");
auto property = PROPERTY_PAIR("property");
dba.SetIndexCount(label, dba.Property("property"), 0);
AstStorage storage;
auto n_prop = PROPERTY_LOOKUP("n", property);
auto m_prop = PROPERTY_LOOKUP("m", property);
QUERY(
SINGLE_QUERY(MATCH(PATTERN(NODE("n", label)), PATTERN(NODE("m", label))),
WHERE(EQ(m_prop, n_prop)), RETURN("n")));
auto symbol_table = MakeSymbolTable(*storage.query());
auto planner = MakePlanner<TypeParam>(dba, storage, symbol_table);
CheckPlan(
planner.plan(), symbol_table, ExpectScanAllByLabel(),
// Note: We are scanning for m, therefore property should equal n_prop.
ExpectScanAllByLabelPropertyValue(label, property, n_prop),
ExpectProduce());
}
TYPED_TEST(TestPlanner, ReturnSumGroupByAll) {
// Test RETURN sum([1,2,3]), all(x in [1] where x = 1)
AstStorage storage;
auto sum = SUM(LIST(LITERAL(1), LITERAL(2), LITERAL(3)));
auto *all = ALL("x", LIST(LITERAL(1)), WHERE(EQ(IDENT("x"), LITERAL(1))));
QUERY(SINGLE_QUERY(RETURN(sum, AS("sum"), all, AS("all"))));
auto aggr = ExpectAggregate({sum}, {all});
CheckPlan<TypeParam>(storage, aggr, ExpectProduce());
}
TYPED_TEST(TestPlanner, MatchExpandVariable) {
// Test MATCH (n) -[r *..3]-> (m) RETURN r
AstStorage storage;
auto edge = EDGE_VARIABLE("r");
edge->upper_bound_ = LITERAL(3);
QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("n"), edge, NODE("m"))), RETURN("r")));
CheckPlan<TypeParam>(storage, ExpectScanAll(), ExpectExpandVariable(),
ExpectProduce());
}
TYPED_TEST(TestPlanner, MatchExpandVariableNoBounds) {
// Test MATCH (n) -[r *]-> (m) RETURN r
AstStorage storage;
auto edge = EDGE_VARIABLE("r");
QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("n"), edge, NODE("m"))), RETURN("r")));
CheckPlan<TypeParam>(storage, ExpectScanAll(), ExpectExpandVariable(),
ExpectProduce());
}
TYPED_TEST(TestPlanner, MatchExpandVariableInlinedFilter) {
// Test MATCH (n) -[r :type * {prop: 42}]-> (m) RETURN r
FakeDbAccessor dba;
auto type = dba.EdgeType("type");
auto prop = PROPERTY_PAIR("prop");
AstStorage storage;
auto edge = EDGE_VARIABLE("r", Direction::BOTH, {type});
edge->properties_[prop] = LITERAL(42);
QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("n"), edge, NODE("m"))), RETURN("r")));
CheckPlan<TypeParam>(
storage, ExpectScanAll(),
ExpectExpandVariable(), // Filter is both inlined and post-expand
ExpectFilter(), ExpectProduce());
}
TYPED_TEST(TestPlanner, MatchExpandVariableNotInlinedFilter) {
// Test MATCH (n) -[r :type * {prop: m.prop}]-> (m) RETURN r
FakeDbAccessor dba;
auto type = dba.EdgeType("type");
auto prop = PROPERTY_PAIR("prop");
AstStorage storage;
auto edge = EDGE_VARIABLE("r", Direction::BOTH, {type});
edge->properties_[prop] = EQ(PROPERTY_LOOKUP("m", prop), LITERAL(42));
QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("n"), edge, NODE("m"))), RETURN("r")));
CheckPlan<TypeParam>(storage, ExpectScanAll(), ExpectExpandVariable(),
ExpectFilter(), ExpectProduce());
}
TYPED_TEST(TestPlanner, UnwindMatchVariable) {
// Test UNWIND [1,2,3] AS depth MATCH (n) -[r*d]-> (m) RETURN r
AstStorage storage;
auto edge = EDGE_VARIABLE("r", Direction::OUT);
edge->lower_bound_ = IDENT("d");
edge->upper_bound_ = IDENT("d");
QUERY(SINGLE_QUERY(UNWIND(LIST(LITERAL(1), LITERAL(2), LITERAL(3)), AS("d")),
MATCH(PATTERN(NODE("n"), edge, NODE("m"))), RETURN("r")));
CheckPlan<TypeParam>(storage, ExpectUnwind(), ExpectScanAll(),
ExpectExpandVariable(), ExpectProduce());
}
TYPED_TEST(TestPlanner, MatchBfs) {
// Test MATCH (n) -[r:type *..10 (r, n|n)]-> (m) RETURN r
FakeDbAccessor dba;
auto edge_type = dba.EdgeType("type");
AstStorage storage;
auto *bfs = storage.Create<query::EdgeAtom>(
IDENT("r"), query::EdgeAtom::Type::BREADTH_FIRST, Direction::OUT,
std::vector<storage::EdgeType>{edge_type});
bfs->filter_lambda_.inner_edge = IDENT("r");
bfs->filter_lambda_.inner_node = IDENT("n");
bfs->filter_lambda_.expression = IDENT("n");
bfs->upper_bound_ = LITERAL(10);
QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("n"), bfs, NODE("m"))), RETURN("r")));
CheckPlan<TypeParam>(storage, ExpectScanAll(), ExpectExpandBfs(),
ExpectProduce());
}
TYPED_TEST(TestPlanner, MatchDoubleScanToExpandExisting) {
// Test MATCH (n) -[r]- (m :label) RETURN r
FakeDbAccessor dba;
auto label = dba.Label("label");
AstStorage storage;
QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("n"), EDGE("r"), NODE("m", label))),
RETURN("r")));
auto symbol_table = MakeSymbolTable(*storage.query());
auto planner = MakePlanner<TypeParam>(dba, storage, symbol_table);
// We expect 2x ScanAll and then Expand, since we are guessing that is
// faster (due to low label index vertex count).
CheckPlan(planner.plan(), symbol_table, ExpectScanAll(),
ExpectScanAllByLabel(), ExpectExpand(), ExpectProduce());
}
TYPED_TEST(TestPlanner, MatchScanToExpand) {
// Test MATCH (n) -[r]- (m :label {property: 1}) RETURN r
FakeDbAccessor dba;
auto label = dba.Label("label");
auto property = dba.Property("property");
// Fill vertices to the max + 1.
dba.SetIndexCount(label, property,
FLAGS_query_vertex_count_to_expand_existing + 1);
dba.SetIndexCount(label, FLAGS_query_vertex_count_to_expand_existing + 1);
AstStorage storage;
auto node_m = NODE("m", label);
node_m->properties_[std::make_pair("property", property)] = LITERAL(1);
QUERY(
SINGLE_QUERY(MATCH(PATTERN(NODE("n"), EDGE("r"), node_m)), RETURN("r")));
auto symbol_table = MakeSymbolTable(*storage.query());
auto planner = MakePlanner<TypeParam>(dba, storage, symbol_table);
// We expect 1x ScanAll and then Expand, since we are guessing that
// is faster (due to high label index vertex count).
CheckPlan(planner.plan(), symbol_table, ExpectScanAll(), ExpectExpand(),
ExpectFilter(), ExpectProduce());
}
TYPED_TEST(TestPlanner, MatchWhereAndSplit) {
// Test MATCH (n) -[r]- (m) WHERE n.prop AND r.prop RETURN m
FakeDbAccessor dba;
auto prop = PROPERTY_PAIR("prop");
AstStorage storage;
QUERY(SINGLE_QUERY(
MATCH(PATTERN(NODE("n"), EDGE("r"), NODE("m"))),
WHERE(AND(PROPERTY_LOOKUP("n", prop), PROPERTY_LOOKUP("r", prop))),
RETURN("m")));
// We expect `n.prop` filter right after scanning `n`.
CheckPlan<TypeParam>(storage, ExpectScanAll(), ExpectFilter(), ExpectExpand(),
ExpectFilter(), ExpectProduce());
}
TYPED_TEST(TestPlanner, ReturnAsteriskOmitsLambdaSymbols) {
// Test MATCH (n) -[r* (ie, in | true)]- (m) RETURN *
AstStorage storage;
auto edge = EDGE_VARIABLE("r", Direction::BOTH);
edge->filter_lambda_.inner_edge = IDENT("ie");
edge->filter_lambda_.inner_node = IDENT("in");
edge->filter_lambda_.expression = LITERAL(true);
auto ret = storage.Create<query::Return>();
ret->body_.all_identifiers = true;
QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("n"), edge, NODE("m"))), ret));
auto symbol_table = MakeSymbolTable(*storage.query());
FakeDbAccessor dba;
auto planner = MakePlanner<TypeParam>(dba, storage, symbol_table);
auto *produce = dynamic_cast<Produce *>(&planner.plan());
ASSERT_TRUE(produce);
std::vector<std::string> outputs;
for (const auto &output_symbol : produce->OutputSymbols(symbol_table)) {
outputs.emplace_back(output_symbol.name());
}
// We expect `*` expanded to `n`, `r` and `m`.
EXPECT_EQ(outputs.size(), 3);
for (const auto &name : {"n", "r", "m"}) {
EXPECT_TRUE(utils::Contains(outputs, name));
}
}
TYPED_TEST(TestPlanner, ModifyUser) {
{
// Test CREATE USER user WITH PASSWORD 'password'
FakeDbAccessor dba;
AstStorage storage;
QUERY(SINGLE_QUERY(CREATE_USER("user", "password")));
CheckPlan<TypeParam>(storage, ExpectModifyUser("user", true));
auto expected =
ExpectDistributed(MakeCheckers(ExpectModifyUser("user", true)));
CheckDistributedPlan<TypeParam>(storage, expected);
}
{
// Test ALTER USER user WITH PASSWORD 'password'
FakeDbAccessor dba;
AstStorage storage;
QUERY(SINGLE_QUERY(ALTER_USER("user", "password")));
CheckPlan<TypeParam>(storage, ExpectModifyUser("user", false));
auto expected =
ExpectDistributed(MakeCheckers(ExpectModifyUser("user", false)));
CheckDistributedPlan<TypeParam>(storage, expected);
}
}
TYPED_TEST(TestPlanner, DropUser) {
// Test DROP USER user1, user2, user3
AstStorage storage;
std::vector<std::string> usernames({"user1", "user2", "user3"});
QUERY(SINGLE_QUERY(DROP_USER(usernames)));
CheckPlan<TypeParam>(storage, ExpectDropUser(usernames));
auto expected = ExpectDistributed(MakeCheckers(ExpectDropUser(usernames)));
CheckDistributedPlan<TypeParam>(storage, expected);
}
TYPED_TEST(TestPlanner, DistributedAvg) {
// Test MATCH (n) RETURN AVG(n.prop) AS res
AstStorage storage;
FakeDbAccessor dba;
auto prop = dba.Property("prop");
QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("n"))),
RETURN(AVG(PROPERTY_LOOKUP("n", prop)), AS("res"))));
auto distributed_plan = MakeDistributedPlan<TypeParam>(storage);
auto &symbol_table = distributed_plan.symbol_table;
auto worker_sum = SUM(PROPERTY_LOOKUP("n", prop));
auto worker_count = COUNT(PROPERTY_LOOKUP("n", prop));
{
ASSERT_EQ(distributed_plan.worker_plans.size(), 1U);
auto worker_plan = distributed_plan.worker_plans.back().second;
auto worker_aggr_op = std::dynamic_pointer_cast<Aggregate>(worker_plan);
ASSERT_TRUE(worker_aggr_op);
ASSERT_EQ(worker_aggr_op->aggregations().size(), 2U);
symbol_table[*worker_sum] = worker_aggr_op->aggregations()[0].output_sym;
symbol_table[*worker_count] = worker_aggr_op->aggregations()[1].output_sym;
}
auto worker_aggr = ExpectAggregate({worker_sum, worker_count}, {});
auto merge_sum = SUM(IDENT("worker_sum"));
auto merge_count = SUM(IDENT("worker_count"));
auto master_aggr = ExpectMasterAggregate({merge_sum, merge_count}, {});
ExpectPullRemote pull(
{symbol_table.at(*worker_sum), symbol_table.at(*worker_count)});
auto expected = ExpectDistributed(
MakeCheckers(ExpectScanAll(), worker_aggr, pull, master_aggr,
ExpectProduce(), ExpectProduce()),
MakeCheckers(ExpectScanAll(), worker_aggr));
CheckDistributedPlan(distributed_plan, expected);
}
TYPED_TEST(TestPlanner, DistributedCollectList) {
// Test MATCH (n) RETURN COLLECT(n.prop) AS res
AstStorage storage;
FakeDbAccessor dba;
auto prop = dba.Property("prop");
auto node_n = NODE("n");
auto collect = COLLECT_LIST(PROPERTY_LOOKUP("n", prop));
QUERY(SINGLE_QUERY(MATCH(PATTERN(node_n)), RETURN(collect, AS("res"))));
auto distributed_plan = MakeDistributedPlan<TypeParam>(storage);
auto &symbol_table = distributed_plan.symbol_table;
auto aggr = ExpectAggregate({collect}, {});
ExpectPullRemote pull({symbol_table.at(*node_n->identifier_)});
auto expected = ExpectDistributed(
MakeCheckers(ExpectScanAll(), pull, aggr, ExpectProduce()),
MakeCheckers(ExpectScanAll()));
CheckDistributedPlan(distributed_plan, expected);
}
TYPED_TEST(TestPlanner, DistributedMatchCreateReturn) {
// Test MATCH (n) CREATE (m) RETURN m
AstStorage storage;
auto *ident_m = IDENT("m");
QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("n"))), CREATE(PATTERN(NODE("m"))),
RETURN(ident_m, AS("m"))));
auto symbol_table = MakeSymbolTable(*storage.query());
auto acc = ExpectAccumulate({symbol_table.at(*ident_m)});
FakeDbAccessor dba;
auto planner = MakePlanner<TypeParam>(dba, storage, symbol_table);
auto expected = ExpectDistributed(
MakeCheckers(ExpectScanAll(), ExpectCreateNode(),
ExpectSynchronize({symbol_table.at(*ident_m)}),
ExpectProduce()),
MakeCheckers(ExpectScanAll(), ExpectCreateNode()));
CheckDistributedPlan(planner.plan(), symbol_table, expected);
}
TYPED_TEST(TestPlanner, DistributedCartesianCreate) {
// Test MATCH (a), (b) CREATE (a)-[e:r]->(b) RETURN e
AstStorage storage;
FakeDbAccessor dba;
auto relationship = dba.EdgeType("r");
auto *node_a = NODE("a");
auto *node_b = NODE("b");
QUERY(SINGLE_QUERY(
MATCH(PATTERN(node_a), PATTERN(node_b)),
CREATE(PATTERN(NODE("a"), EDGE("e", Direction::OUT, {relationship}),
NODE("b"))),
RETURN("e")));
auto symbol_table = MakeSymbolTable(*storage.query());
auto left_cart =
MakeCheckers(ExpectScanAll(),
ExpectPullRemote({symbol_table.at(*node_a->identifier_)}));
auto right_cart =
MakeCheckers(ExpectScanAll(),
ExpectPullRemote({symbol_table.at(*node_b->identifier_)}));
auto expected = ExpectDistributed(
MakeCheckers(ExpectCartesian(std::move(left_cart), std::move(right_cart)),
ExpectCreateExpand(), ExpectSynchronize(false),
ExpectProduce()),
MakeCheckers(ExpectScanAll()), MakeCheckers(ExpectScanAll()));
auto planner = MakePlanner<TypeParam>(dba, storage, symbol_table);
CheckDistributedPlan(planner.plan(), symbol_table, expected);
}
TYPED_TEST(TestPlanner, DistributedCartesianExpand) {
// Test MATCH (a), (b)-[e]-(c) RETURN c
AstStorage storage;
auto *node_a = NODE("a");
auto *node_b = NODE("b");
auto *edge_e = EDGE("e");
auto *node_c = NODE("c");
QUERY(SINGLE_QUERY(MATCH(PATTERN(node_a), PATTERN(node_b, edge_e, node_c)),
RETURN("c")));
auto symbol_table = MakeSymbolTable(*storage.query());
auto sym_a = symbol_table.at(*node_a->identifier_);
auto left_cart = MakeCheckers(ExpectScanAll(), ExpectPullRemote({sym_a}));
auto sym_b = symbol_table.at(*node_b->identifier_);
auto sym_e = symbol_table.at(*edge_e->identifier_);
auto sym_c = symbol_table.at(*node_c->identifier_);
auto right_cart = MakeCheckers(ExpectScanAll(), ExpectExpand(),
ExpectPullRemote({sym_b, sym_e, sym_c}));
auto expected = ExpectDistributed(
MakeCheckers(ExpectCartesian(std::move(left_cart), std::move(right_cart)),
ExpectProduce()),
MakeCheckers(ExpectScanAll()),
MakeCheckers(ExpectScanAll(), ExpectExpand()));
FakeDbAccessor dba;
auto planner = MakePlanner<TypeParam>(dba, storage, symbol_table);
CheckDistributedPlan(planner.plan(), symbol_table, expected);
}
TYPED_TEST(TestPlanner, DistributedCartesianExpandToExisting) {
// Test MATCH (a), (b)-[e]-(a) RETURN e
AstStorage storage;
auto *node_a = NODE("a");
auto *node_b = NODE("b");
QUERY(SINGLE_QUERY(
MATCH(PATTERN(node_a), PATTERN(node_b, EDGE("e"), NODE("a"))),
RETURN("e")));
auto symbol_table = MakeSymbolTable(*storage.query());
auto sym_a = symbol_table.at(*node_a->identifier_);
auto left_cart = MakeCheckers(ExpectScanAll(), ExpectPullRemote({sym_a}));
auto sym_b = symbol_table.at(*node_b->identifier_);
auto right_cart = MakeCheckers(ExpectScanAll(), ExpectPullRemote({sym_b}));
auto expected = ExpectDistributed(
MakeCheckers(ExpectCartesian(std::move(left_cart), std::move(right_cart)),
ExpectExpand(), ExpectProduce()),
MakeCheckers(ExpectScanAll()), MakeCheckers(ExpectScanAll()));
FakeDbAccessor dba;
auto planner = MakePlanner<TypeParam>(dba, storage, symbol_table);
CheckDistributedPlan(planner.plan(), symbol_table, expected);
}
TYPED_TEST(TestPlanner, DistributedCartesianExpandFromExisting) {
// Test MATCH (a), (b), (a)-[e]-(b) RETURN e
AstStorage storage;
auto *node_a = NODE("a");
auto *node_b = NODE("b");
QUERY(SINGLE_QUERY(MATCH(PATTERN(node_a), PATTERN(node_b),
PATTERN(NODE("a"), EDGE("e"), NODE("b"))),
RETURN("e")));
auto symbol_table = MakeSymbolTable(*storage.query());
auto sym_a = symbol_table.at(*node_a->identifier_);
auto left_cart = MakeCheckers(ExpectScanAll(), ExpectPullRemote({sym_a}));
auto sym_b = symbol_table.at(*node_b->identifier_);
auto right_cart = MakeCheckers(ExpectScanAll(), ExpectPullRemote({sym_b}));
auto expected = ExpectDistributed(
MakeCheckers(ExpectCartesian(std::move(left_cart), std::move(right_cart)),
ExpectExpand(), ExpectProduce()),
MakeCheckers(ExpectScanAll()), MakeCheckers(ExpectScanAll()));
FakeDbAccessor dba;
auto planner = MakePlanner<TypeParam>(dba, storage, symbol_table);
CheckDistributedPlan(planner.plan(), symbol_table, expected);
}
TYPED_TEST(TestPlanner, DistributedCartesianFilter) {
// Test MATCH (a), (b), (c) WHERE a = 42 AND b = a AND c = b RETURN c
AstStorage storage;
auto *node_a = NODE("a");
auto *node_b = NODE("b");
auto *node_c = NODE("c");
QUERY(SINGLE_QUERY(
MATCH(PATTERN(node_a), PATTERN(node_b), PATTERN(node_c)),
WHERE(AND(AND(EQ(IDENT("a"), LITERAL(42)), EQ(IDENT("b"), IDENT("a"))),
EQ(IDENT("c"), IDENT("b")))),
RETURN("c")));
auto symbol_table = MakeSymbolTable(*storage.query());
auto sym_a = symbol_table.at(*node_a->identifier_);
auto sym_b = symbol_table.at(*node_b->identifier_);
auto sym_c = symbol_table.at(*node_c->identifier_);
auto left_cart =
MakeCheckers(ExpectScanAll(), ExpectFilter(), ExpectPullRemote({sym_a}));
auto mid_cart = MakeCheckers(ExpectScanAll(), ExpectPullRemote({sym_b}));
auto right_cart = MakeCheckers(ExpectScanAll(), ExpectPullRemote({sym_c}));
auto mid_right_cart =
MakeCheckers(ExpectCartesian(std::move(mid_cart), std::move(right_cart)),
ExpectFilter());
auto expected = ExpectDistributed(
MakeCheckers(
ExpectCartesian(std::move(left_cart), std::move(mid_right_cart)),
ExpectFilter(), ExpectProduce()),
MakeCheckers(ExpectScanAll(), ExpectFilter()),
MakeCheckers(ExpectScanAll()), MakeCheckers(ExpectScanAll()));
FakeDbAccessor dba;
auto planner = MakePlanner<TypeParam>(dba, storage, symbol_table);
CheckDistributedPlan(planner.plan(), symbol_table, expected);
}
TYPED_TEST(TestPlanner, DistributedCartesianProduce) {
// Test MATCH (a) WITH a MATCH (b) WHERE b = a RETURN b;
AstStorage storage;
auto *with_a = WITH("a");
auto *node_b = NODE("b");
QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("a"))), with_a, MATCH(PATTERN(node_b)),
WHERE(EQ(IDENT("b"), IDENT("a"))), RETURN("b")));
auto symbol_table = MakeSymbolTable(*storage.query());
auto sym_a = symbol_table.at(*with_a->body_.named_expressions[0]);
auto left_cart =
MakeCheckers(ExpectScanAll(), ExpectProduce(), ExpectPullRemote({sym_a}));
auto sym_b = symbol_table.at(*node_b->identifier_);
auto right_cart = MakeCheckers(ExpectScanAll(), ExpectPullRemote({sym_b}));
auto expected = ExpectDistributed(
MakeCheckers(ExpectCartesian(std::move(left_cart), std::move(right_cart)),
ExpectFilter(), ExpectProduce()),
MakeCheckers(ExpectScanAll(), ExpectProduce()),
MakeCheckers(ExpectScanAll()));
FakeDbAccessor dba;
auto planner = MakePlanner<TypeParam>(dba, storage, symbol_table);
CheckDistributedPlan(planner.plan(), symbol_table, expected);
}
TYPED_TEST(TestPlanner, DistributedCartesianUnwind) {
// Test MATCH (a), (b) UNWIND a AS x RETURN x
AstStorage storage;
auto *node_a = NODE("a");
auto *node_b = NODE("b");
QUERY(SINGLE_QUERY(MATCH(PATTERN(node_a), PATTERN(node_b)),
UNWIND(IDENT("a"), AS("x")), RETURN("x")));
auto symbol_table = MakeSymbolTable(*storage.query());
auto sym_a = symbol_table.at(*node_a->identifier_);
auto left_cart = MakeCheckers(ExpectScanAll(), ExpectPullRemote({sym_a}));
auto sym_b = symbol_table.at(*node_b->identifier_);
auto right_cart = MakeCheckers(ExpectScanAll(), ExpectPullRemote({sym_b}));
auto expected = ExpectDistributed(
MakeCheckers(ExpectCartesian(std::move(left_cart), std::move(right_cart)),
ExpectUnwind(), ExpectProduce()),
MakeCheckers(ExpectScanAll()), MakeCheckers(ExpectScanAll()));
FakeDbAccessor dba;
auto planner = MakePlanner<TypeParam>(dba, storage, symbol_table);
CheckDistributedPlan(planner.plan(), symbol_table, expected);
}
TYPED_TEST(TestPlanner, DistributedCartesianCreateNode) {
// Test MATCH (a) CREATE (b) WITH b MATCH (c) CREATE (d)
AstStorage storage;
auto *node_b = NODE("b");
auto *node_c = NODE("c");
QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("a"))), CREATE(PATTERN(node_b)),
WITH("b"), MATCH(PATTERN(node_c)),
CREATE(PATTERN(NODE("d")))));
auto symbol_table = MakeSymbolTable(*storage.query());
auto sym_b = symbol_table.at(*node_b->identifier_);
auto left_cart =
MakeCheckers(ExpectScanAll(), ExpectCreateNode(),
ExpectSynchronize({sym_b}, true), ExpectProduce());
auto sym_c = symbol_table.at(*node_c->identifier_);
auto right_cart = MakeCheckers(ExpectScanAll(), ExpectPullRemote({sym_c}));
auto expected = ExpectDistributed(
MakeCheckers(ExpectCartesian(std::move(left_cart), std::move(right_cart)),
ExpectCreateNode(true), ExpectSynchronize(false)),
MakeCheckers(ExpectScanAll(), ExpectCreateNode()),
MakeCheckers(ExpectScanAll()));
FakeDbAccessor dba;
auto planner = MakePlanner<TypeParam>(dba, storage, symbol_table);
CheckDistributedPlan(planner.plan(), symbol_table, expected);
}
TEST(CapnpSerial, Union) {
std::vector<Symbol> left_symbols{
Symbol("symbol", 1, true, Symbol::Type::Edge)};
std::vector<Symbol> right_symbols{
Symbol("symbol", 3, true, Symbol::Type::Any)};
auto union_symbols = right_symbols;
auto union_op = std::make_unique<Union>(nullptr, nullptr, union_symbols,
left_symbols, right_symbols);
std::unique_ptr<LogicalOperator> loaded_plan;
::capnp::MallocMessageBuilder message;
SavePlan(*union_op, &message);
AstStorage new_storage;
std::tie(loaded_plan, new_storage) =
LoadPlan(message.getRoot<query::plan::capnp::LogicalOperator>());
ASSERT_TRUE(loaded_plan);
auto *loaded_op = dynamic_cast<Union *>(loaded_plan.get());
ASSERT_TRUE(loaded_op);
EXPECT_FALSE(loaded_op->left_op());
EXPECT_FALSE(loaded_op->right_op());
EXPECT_EQ(loaded_op->left_symbols(), left_symbols);
EXPECT_EQ(loaded_op->right_symbols(), right_symbols);
EXPECT_EQ(loaded_op->union_symbols(), union_symbols);
}
TEST(CapnpSerial, Cartesian) {
std::vector<Symbol> left_symbols{
Symbol("left_symbol", 1, true, Symbol::Type::Edge)};
std::vector<Symbol> right_symbols{
Symbol("right_symbol", 3, true, Symbol::Type::Any)};
auto cartesian = std::make_unique<Cartesian>(nullptr, left_symbols, nullptr,
right_symbols);
std::unique_ptr<LogicalOperator> loaded_plan;
::capnp::MallocMessageBuilder message;
SavePlan(*cartesian, &message);
AstStorage new_storage;
std::tie(loaded_plan, new_storage) =
LoadPlan(message.getRoot<query::plan::capnp::LogicalOperator>());
ASSERT_TRUE(loaded_plan);
auto *loaded_op = dynamic_cast<Cartesian *>(loaded_plan.get());
ASSERT_TRUE(loaded_op);
EXPECT_FALSE(loaded_op->left_op());
EXPECT_FALSE(loaded_op->right_op());
EXPECT_EQ(loaded_op->left_symbols(), left_symbols);
EXPECT_EQ(loaded_op->right_symbols(), right_symbols);
}
TEST(CapnpSerial, Synchronize) {
auto synchronize = std::make_unique<Synchronize>(nullptr, nullptr, true);
std::unique_ptr<LogicalOperator> loaded_plan;
::capnp::MallocMessageBuilder message;
SavePlan(*synchronize, &message);
AstStorage new_storage;
std::tie(loaded_plan, new_storage) =
LoadPlan(message.getRoot<query::plan::capnp::LogicalOperator>());
ASSERT_TRUE(loaded_plan);
auto *loaded_op = dynamic_cast<Synchronize *>(loaded_plan.get());
ASSERT_TRUE(loaded_op);
EXPECT_FALSE(loaded_op->input());
EXPECT_FALSE(loaded_op->pull_remote());
EXPECT_TRUE(loaded_op->advance_command());
}
TEST(CapnpSerial, PullRemote) {
std::vector<Symbol> symbols{Symbol("symbol", 1, true, Symbol::Type::Edge)};
auto pull_remote = std::make_unique<PullRemote>(nullptr, 42, symbols);
std::unique_ptr<LogicalOperator> loaded_plan;
::capnp::MallocMessageBuilder message;
SavePlan(*pull_remote, &message);
AstStorage new_storage;
std::tie(loaded_plan, new_storage) =
LoadPlan(message.getRoot<query::plan::capnp::LogicalOperator>());
ASSERT_TRUE(loaded_plan);
auto *loaded_op = dynamic_cast<PullRemote *>(loaded_plan.get());
ASSERT_TRUE(loaded_op);
EXPECT_FALSE(loaded_op->input());
EXPECT_EQ(loaded_op->plan_id(), 42);
EXPECT_EQ(loaded_op->symbols(), symbols);
}
TEST(CapnpSerial, PullRemoteOrderBy) {
auto once = std::make_shared<Once>();
AstStorage storage;
std::vector<Symbol> symbols{
Symbol("my_symbol", 2, true, Symbol::Type::Vertex, 3)};
std::vector<std::pair<query::Ordering, query::Expression *>> order_by{
{query::Ordering::ASC, IDENT("my_symbol")}};
auto pull_remote_order_by =
std::make_unique<PullRemoteOrderBy>(once, 42, order_by, symbols);
std::unique_ptr<LogicalOperator> loaded_plan;
::capnp::MallocMessageBuilder message;
SavePlan(*pull_remote_order_by, &message);
AstStorage new_storage;
std::tie(loaded_plan, new_storage) =
LoadPlan(message.getRoot<query::plan::capnp::LogicalOperator>());
ASSERT_TRUE(loaded_plan);
auto *loaded_op = dynamic_cast<PullRemoteOrderBy *>(loaded_plan.get());
ASSERT_TRUE(loaded_op);
ASSERT_TRUE(std::dynamic_pointer_cast<Once>(loaded_op->input()));
EXPECT_EQ(loaded_op->plan_id(), 42);
EXPECT_EQ(loaded_op->symbols(), symbols);
ASSERT_EQ(loaded_op->order_by().size(), 1);
EXPECT_TRUE(dynamic_cast<query::Identifier *>(loaded_op->order_by()[0]));
ASSERT_EQ(loaded_op->compare().ordering().size(), 1);
EXPECT_EQ(loaded_op->compare().ordering()[0], query::Ordering::ASC);
}
} // namespace