memgraph/tests/unit/interpreter.cpp
Teon Banek 05d19f6218 Use new/old on Accessor in logical operators
Summary:
Replace includes in operator.hpp with forward declarations.
Provide basic documentation for remaining operators.
Use SwitchOld on accessors used in Expand and Filter operations.
Add SwitchOld and SwitchNew to ExpressionEvaluator.
Evaluate new or old state in operators.
Test operators use correct accessors.
Add some basic tests for cases where switching accessors to old and new
matters.

Reviewers: mislav.bradac, buda, florijan

Reviewed By: florijan

Subscribers: pullbot

Differential Revision: https://phabricator.memgraph.io/D208
2017-04-03 15:37:06 +02:00

1191 lines
39 KiB
C++

//
// Copyright 2017 Memgraph
// Created by Florijan Stamenkovic on 14.03.17.
//
#include <iterator>
#include <memory>
#include <vector>
#include "gmock/gmock.h"
#include "gtest/gtest.h"
#include "communication/result_stream_faker.hpp"
#include "dbms/dbms.hpp"
#include "query/context.hpp"
#include "query/frontend/interpret/interpret.hpp"
#include "query/frontend/logical/planner.hpp"
#include "query/exceptions.hpp"
#include "query_common.hpp"
using namespace query;
using namespace query::plan;
/**
* Helper function that collects all the results from the given
* Produce into a ResultStreamFaker and returns that object.
*
* @param produce
* @param symbol_table
* @param db_accessor
* @return
*/
auto CollectProduce(std::shared_ptr<Produce> produce, SymbolTable &symbol_table,
GraphDbAccessor &db_accessor) {
ResultStreamFaker stream;
Frame frame(symbol_table.max_position());
// top level node in the operator tree is a produce (return)
// so stream out results
// generate header
std::vector<std::string> header;
for (auto named_expression : produce->named_expressions())
header.push_back(named_expression->name_);
stream.Header(header);
// collect the symbols from the return clause
std::vector<Symbol> symbols;
for (auto named_expression : produce->named_expressions())
symbols.emplace_back(symbol_table[*named_expression]);
// stream out results
auto cursor = produce->MakeCursor(db_accessor);
while (cursor->Pull(frame, symbol_table)) {
std::vector<TypedValue> values;
for (auto &symbol : symbols) values.emplace_back(frame[symbol]);
stream.Result(values);
}
stream.Summary({{std::string("type"), TypedValue("r")}});
return stream;
}
int PullAll(std::shared_ptr<LogicalOperator> logical_op, GraphDbAccessor &db,
SymbolTable symbol_table) {
Frame frame(symbol_table.max_position());
auto cursor = logical_op->MakeCursor(db);
int count = 0;
while (cursor->Pull(frame, symbol_table)) count++;
return count;
}
template <typename... TNamedExpressions>
auto MakeProduce(std::shared_ptr<LogicalOperator> input,
TNamedExpressions... named_expressions) {
return std::make_shared<Produce>(
input, std::vector<NamedExpression *>{named_expressions...});
}
struct ScanAllTuple {
NodeAtom *node_;
std::shared_ptr<LogicalOperator> op_;
Symbol sym_;
};
/**
* Creates and returns a tuple of stuff for a scan-all starting
* from the node with the given name.
*
* Returns (node_atom, scan_all_logical_op, symbol).
*/
ScanAllTuple MakeScanAll(AstTreeStorage &storage, SymbolTable &symbol_table,
const std::string &identifier) {
auto node = NODE(identifier);
auto logical_op = std::make_shared<ScanAll>(node);
auto symbol = symbol_table.CreateSymbol(identifier);
symbol_table[*node->identifier_] = symbol;
// return std::make_tuple(node, logical_op, symbol);
return ScanAllTuple{node, logical_op, symbol};
}
struct ExpandTuple {
EdgeAtom *edge_;
Symbol edge_sym_;
NodeAtom *node_;
Symbol node_sym_;
std::shared_ptr<LogicalOperator> op_;
};
ExpandTuple MakeExpand(AstTreeStorage &storage, SymbolTable &symbol_table,
std::shared_ptr<LogicalOperator> input,
Symbol input_symbol, const std::string &edge_identifier,
EdgeAtom::Direction direction, bool edge_cycle,
const std::string &node_identifier, bool node_cycle) {
auto edge = EDGE(edge_identifier, direction);
auto edge_sym = symbol_table.CreateSymbol(edge_identifier);
symbol_table[*edge->identifier_] = edge_sym;
auto node = NODE(node_identifier);
auto node_sym = symbol_table.CreateSymbol(node_identifier);
symbol_table[*node->identifier_] = node_sym;
auto op = std::make_shared<Expand>(node, edge, input, input_symbol,
node_cycle, edge_cycle);
return ExpandTuple{edge, edge_sym, node, node_sym, op};
}
template <typename TIterable>
auto CountIterable(TIterable iterable) {
return std::distance(iterable.begin(), iterable.end());
}
/*
* Actual tests start here.
*/
TEST(Interpreter, MatchReturn) {
Dbms dbms;
auto dba = dbms.active();
// add a few nodes to the database
dba->insert_vertex();
dba->insert_vertex();
dba->advance_command();
AstTreeStorage storage;
SymbolTable symbol_table;
auto scan_all = MakeScanAll(storage, symbol_table, "n");
auto output = NEXPR("n", IDENT("n"));
auto produce = MakeProduce(scan_all.op_, output);
symbol_table[*output->expression_] = scan_all.sym_;
symbol_table[*output] = symbol_table.CreateSymbol("named_expression_1");
ResultStreamFaker result = CollectProduce(produce, symbol_table, *dba);
EXPECT_EQ(result.GetResults().size(), 2);
}
TEST(Interpreter, StandaloneReturn) {
Dbms dbms;
auto dba = dbms.active();
// add a few nodes to the database
dba->insert_vertex();
dba->insert_vertex();
dba->advance_command();
AstTreeStorage storage;
SymbolTable symbol_table;
auto output = NEXPR("n", LITERAL(42));
auto produce = MakeProduce(std::shared_ptr<LogicalOperator>(nullptr), output);
symbol_table[*output] = symbol_table.CreateSymbol("named_expression_1");
ResultStreamFaker result = CollectProduce(produce, symbol_table, *dba);
EXPECT_EQ(result.GetResults().size(), 1);
EXPECT_EQ(result.GetResults()[0].size(), 1);
EXPECT_EQ(result.GetResults()[0][0].Value<int64_t>(), 42);
}
TEST(Interpreter, NodeFilterLabelsAndProperties) {
Dbms dbms;
auto dba = dbms.active();
// add a few nodes to the database
GraphDbTypes::Label label = dba->label("Label");
GraphDbTypes::Property property = dba->property("Property");
auto v1 = dba->insert_vertex();
auto v2 = dba->insert_vertex();
auto v3 = dba->insert_vertex();
auto v4 = dba->insert_vertex();
auto v5 = dba->insert_vertex();
dba->insert_vertex();
// test all combination of (label | no_label) * (no_prop | wrong_prop |
// right_prop)
// only v1 will have the right labels
v1.add_label(label);
v2.add_label(label);
v3.add_label(label);
v1.PropsSet(property, 42);
v2.PropsSet(property, 1);
v4.PropsSet(property, 42);
v5.PropsSet(property, 1);
dba->advance_command();
AstTreeStorage storage;
SymbolTable symbol_table;
// make a scan all
auto n = MakeScanAll(storage, symbol_table, "n");
n.node_->labels_.emplace_back(label);
n.node_->properties_[property] = LITERAL(42);
// node filtering
auto node_filter = std::make_shared<NodeFilter>(n.op_, n.sym_, n.node_);
// make a named expression and a produce
auto output = NEXPR("x", IDENT("n"));
symbol_table[*output->expression_] = n.sym_;
symbol_table[*output] = symbol_table.CreateSymbol("named_expression_1");
auto produce = MakeProduce(node_filter, output);
ResultStreamFaker result = CollectProduce(produce, symbol_table, *dba);
EXPECT_EQ(result.GetResults().size(), 1);
}
TEST(Interpreter, NodeFilterMultipleLabels) {
Dbms dbms;
auto dba = dbms.active();
// add a few nodes to the database
GraphDbTypes::Label label1 = dba->label("label1");
GraphDbTypes::Label label2 = dba->label("label2");
GraphDbTypes::Label label3 = dba->label("label3");
// the test will look for nodes that have label1 and label2
dba->insert_vertex(); // NOT accepted
dba->insert_vertex().add_label(label1); // NOT accepted
dba->insert_vertex().add_label(label2); // NOT accepted
dba->insert_vertex().add_label(label3); // NOT accepted
auto v1 = dba->insert_vertex(); // YES accepted
v1.add_label(label1);
v1.add_label(label2);
auto v2 = dba->insert_vertex(); // NOT accepted
v2.add_label(label1);
v2.add_label(label3);
auto v3 = dba->insert_vertex(); // YES accepted
v3.add_label(label1);
v3.add_label(label2);
v3.add_label(label3);
dba->advance_command();
AstTreeStorage storage;
SymbolTable symbol_table;
// make a scan all
auto n = MakeScanAll(storage, symbol_table, "n");
n.node_->labels_.emplace_back(label1);
n.node_->labels_.emplace_back(label2);
// node filtering
auto node_filter = std::make_shared<NodeFilter>(n.op_, n.sym_, n.node_);
// make a named expression and a produce
auto output = NEXPR("n", IDENT("n"));
auto produce = MakeProduce(node_filter, output);
// fill up the symbol table
symbol_table[*output] = symbol_table.CreateSymbol("named_expression_1");
symbol_table[*output->expression_] = n.sym_;
ResultStreamFaker result = CollectProduce(produce, symbol_table, *dba);
EXPECT_EQ(result.GetResults().size(), 2);
}
TEST(Interpreter, CreateNodeWithAttributes) {
Dbms dbms;
auto dba = dbms.active();
GraphDbTypes::Label label = dba->label("Person");
GraphDbTypes::Property property = dba->label("age");
AstTreeStorage storage;
SymbolTable symbol_table;
auto node = NODE("n");
symbol_table[*node->identifier_] = symbol_table.CreateSymbol("n");
node->labels_.emplace_back(label);
node->properties_[property] = LITERAL(42);
auto create = std::make_shared<CreateNode>(node, nullptr);
PullAll(create, *dba, symbol_table);
dba->advance_command();
// count the number of vertices
int vertex_count = 0;
for (VertexAccessor vertex : dba->vertices()) {
vertex_count++;
EXPECT_EQ(vertex.labels().size(), 1);
EXPECT_EQ(*vertex.labels().begin(), label);
EXPECT_EQ(vertex.Properties().size(), 1);
auto prop_eq = vertex.PropsAt(property) == TypedValue(42);
ASSERT_EQ(prop_eq.type(), TypedValue::Type::Bool);
EXPECT_TRUE(prop_eq.Value<bool>());
}
EXPECT_EQ(vertex_count, 1);
}
TEST(Interpreter, CreateReturn) {
// test CREATE (n:Person {age: 42}) RETURN n, n.age
Dbms dbms;
auto dba = dbms.active();
GraphDbTypes::Label label = dba->label("Person");
GraphDbTypes::Property property = dba->label("age");
AstTreeStorage storage;
SymbolTable symbol_table;
auto node = NODE("n");
auto sym_n = symbol_table.CreateSymbol("n");
symbol_table[*node->identifier_] = sym_n;
node->labels_.emplace_back(label);
node->properties_[property] = LITERAL(42);
auto create = std::make_shared<CreateNode>(node, nullptr);
auto named_expr_n = NEXPR("n", IDENT("n"));
symbol_table[*named_expr_n] = symbol_table.CreateSymbol("named_expr_n");
symbol_table[*named_expr_n->expression_] = sym_n;
auto prop_lookup = PROPERTY_LOOKUP("n", property);
symbol_table[*prop_lookup->expression_] = sym_n;
auto named_expr_n_p = NEXPR("n", prop_lookup);
symbol_table[*named_expr_n_p] = symbol_table.CreateSymbol("named_expr_n_p");
symbol_table[*named_expr_n->expression_] = sym_n;
auto produce = MakeProduce(create, named_expr_n, named_expr_n_p);
auto result = CollectProduce(produce, symbol_table, *dba);
EXPECT_EQ(1, result.GetResults().size());
EXPECT_EQ(2, result.GetResults()[0].size());
EXPECT_EQ(TypedValue::Type::Vertex, result.GetResults()[0][0].type());
EXPECT_EQ(1,
result.GetResults()[0][0].Value<VertexAccessor>().labels().size());
EXPECT_EQ(label,
result.GetResults()[0][0].Value<VertexAccessor>().labels()[0]);
EXPECT_EQ(TypedValue::Type::Int, result.GetResults()[0][1].type());
EXPECT_EQ(42, result.GetResults()[0][1].Value<int64_t>());
dba->advance_command();
EXPECT_EQ(1, CountIterable(dba->vertices()));
}
TEST(Interpreter, CreateExpand) {
Dbms dbms;
auto dba = dbms.active();
GraphDbTypes::Label label_node_1 = dba->label("Node1");
GraphDbTypes::Label label_node_2 = dba->label("Node2");
GraphDbTypes::Property property = dba->label("prop");
GraphDbTypes::EdgeType edge_type = dba->label("edge_type");
SymbolTable symbol_table;
AstTreeStorage storage;
auto test_create_path = [&](bool cycle, int expected_nodes_created,
int expected_edges_created) {
int before_v = CountIterable(dba->vertices());
int before_e = CountIterable(dba->edges());
// data for the first node
auto n = NODE("n");
n->labels_.emplace_back(label_node_1);
n->properties_[property] = LITERAL(1);
auto n_sym = symbol_table.CreateSymbol("n");
symbol_table[*n->identifier_] = n_sym;
// data for the second node
auto m = NODE("m");
m->labels_.emplace_back(label_node_2);
m->properties_[property] = LITERAL(2);
if (cycle)
symbol_table[*m->identifier_] = n_sym;
else
symbol_table[*m->identifier_] = symbol_table.CreateSymbol("m");
auto r = EDGE("r", EdgeAtom::Direction::RIGHT);
symbol_table[*r->identifier_] = symbol_table.CreateSymbol("r");
r->edge_types_.emplace_back(edge_type);
r->properties_[property] = LITERAL(3);
auto create_op = std::make_shared<CreateNode>(n, nullptr);
auto create_expand =
std::make_shared<CreateExpand>(m, r, create_op, n_sym, cycle);
PullAll(create_expand, *dba, symbol_table);
dba->advance_command();
EXPECT_EQ(CountIterable(dba->vertices()) - before_v,
expected_nodes_created);
EXPECT_EQ(CountIterable(dba->edges()) - before_e, expected_edges_created);
};
test_create_path(false, 2, 1);
test_create_path(true, 1, 1);
for (VertexAccessor vertex : dba->vertices()) {
EXPECT_EQ(vertex.labels().size(), 1);
GraphDbTypes::Label label = vertex.labels()[0];
if (label == label_node_1) {
// node created by first op
EXPECT_EQ(vertex.PropsAt(property).Value<int64_t>(), 1);
} else if (label == label_node_2) {
// node create by expansion
EXPECT_EQ(vertex.PropsAt(property).Value<int64_t>(), 2);
} else {
// should not happen
FAIL();
}
for (EdgeAccessor edge : dba->edges()) {
EXPECT_EQ(edge.edge_type(), edge_type);
EXPECT_EQ(edge.PropsAt(property).Value<int64_t>(), 3);
}
}
}
TEST(Interpreter, MatchCreateNode) {
Dbms dbms;
auto dba = dbms.active();
// add three nodes we'll match and expand-create from
dba->insert_vertex();
dba->insert_vertex();
dba->insert_vertex();
dba->advance_command();
SymbolTable symbol_table;
AstTreeStorage storage;
// first node
auto n_scan_all = MakeScanAll(storage, symbol_table, "n");
// second node
auto m = NODE("m");
symbol_table[*m->identifier_] = symbol_table.CreateSymbol("m");
// creation op
auto create_node = std::make_shared<CreateNode>(m, n_scan_all.op_);
EXPECT_EQ(CountIterable(dba->vertices()), 3);
PullAll(create_node, *dba, symbol_table);
dba->advance_command();
EXPECT_EQ(CountIterable(dba->vertices()), 6);
}
TEST(Interpreter, MatchCreateExpand) {
Dbms dbms;
auto dba = dbms.active();
// add three nodes we'll match and expand-create from
dba->insert_vertex();
dba->insert_vertex();
dba->insert_vertex();
dba->advance_command();
// GraphDbTypes::Label label_node_1 = dba->label("Node1");
// GraphDbTypes::Label label_node_2 = dba->label("Node2");
// GraphDbTypes::Property property = dba->label("prop");
GraphDbTypes::EdgeType edge_type = dba->label("edge_type");
SymbolTable symbol_table;
AstTreeStorage storage;
auto test_create_path = [&](bool cycle, int expected_nodes_created,
int expected_edges_created) {
int before_v = CountIterable(dba->vertices());
int before_e = CountIterable(dba->edges());
// data for the first node
auto n_scan_all = MakeScanAll(storage, symbol_table, "n");
// data for the second node
auto m = NODE("m");
if (cycle)
symbol_table[*m->identifier_] = n_scan_all.sym_;
else
symbol_table[*m->identifier_] = symbol_table.CreateSymbol("m");
auto r = EDGE("r", EdgeAtom::Direction::RIGHT);
symbol_table[*r->identifier_] = symbol_table.CreateSymbol("r");
r->edge_types_.emplace_back(edge_type);
auto create_expand = std::make_shared<CreateExpand>(m, r, n_scan_all.op_,
n_scan_all.sym_, cycle);
PullAll(create_expand, *dba, symbol_table);
dba->advance_command();
EXPECT_EQ(CountIterable(dba->vertices()) - before_v,
expected_nodes_created);
EXPECT_EQ(CountIterable(dba->edges()) - before_e, expected_edges_created);
};
test_create_path(false, 3, 3);
test_create_path(true, 0, 6);
}
TEST(Interpreter, Expand) {
Dbms dbms;
auto dba = dbms.active();
// make a V-graph (v3)<-[r2]-(v1)-[r1]->(v2)
auto v1 = dba->insert_vertex();
v1.add_label((GraphDbTypes::Label)1);
auto v2 = dba->insert_vertex();
v2.add_label((GraphDbTypes::Label)2);
auto v3 = dba->insert_vertex();
v3.add_label((GraphDbTypes::Label)3);
auto edge_type = dba->edge_type("Edge");
dba->insert_edge(v1, v2, edge_type);
dba->insert_edge(v1, v3, edge_type);
dba->advance_command();
AstTreeStorage storage;
SymbolTable symbol_table;
auto test_expand = [&](EdgeAtom::Direction direction,
int expected_result_count) {
auto n = MakeScanAll(storage, symbol_table, "n");
auto r_m = MakeExpand(storage, symbol_table, n.op_, n.sym_, "r", direction,
false, "m", false);
// make a named expression and a produce
auto output = NEXPR("m", IDENT("m"));
symbol_table[*output->expression_] = r_m.node_sym_;
symbol_table[*output] = symbol_table.CreateSymbol("named_expression_1");
auto produce = MakeProduce(r_m.op_, output);
ResultStreamFaker result = CollectProduce(produce, symbol_table, *dba);
EXPECT_EQ(result.GetResults().size(), expected_result_count);
};
test_expand(EdgeAtom::Direction::RIGHT, 2);
test_expand(EdgeAtom::Direction::LEFT, 2);
test_expand(EdgeAtom::Direction::BOTH, 4);
}
TEST(Interpreter, ExpandNodeCycle) {
Dbms dbms;
auto dba = dbms.active();
// make a graph (v1)->(v2) that
// has a recursive edge (v1)->(v1)
auto v1 = dba->insert_vertex();
auto v2 = dba->insert_vertex();
auto edge_type = dba->edge_type("Edge");
dba->insert_edge(v1, v1, edge_type);
dba->insert_edge(v1, v2, edge_type);
dba->advance_command();
AstTreeStorage storage;
SymbolTable symbol_table;
auto test_cycle = [&](bool with_cycle, int expected_result_count) {
auto n = MakeScanAll(storage, symbol_table, "n");
auto r_n = MakeExpand(storage, symbol_table, n.op_, n.sym_, "r",
EdgeAtom::Direction::RIGHT, false, "n", with_cycle);
if (with_cycle)
symbol_table[*r_n.node_->identifier_] =
symbol_table[*n.node_->identifier_];
// make a named expression and a produce
auto output = NEXPR("n", IDENT("n"));
symbol_table[*output->expression_] = n.sym_;
symbol_table[*output] = symbol_table.CreateSymbol("named_expression_1");
auto produce = MakeProduce(r_n.op_, output);
ResultStreamFaker result = CollectProduce(produce, symbol_table, *dba);
EXPECT_EQ(result.GetResults().size(), expected_result_count);
};
test_cycle(true, 1);
test_cycle(false, 2);
}
TEST(Interpreter, ExpandEdgeCycle) {
Dbms dbms;
auto dba = dbms.active();
// make a V-graph (v3)<-[r2]-(v1)-[r1]->(v2)
auto v1 = dba->insert_vertex();
v1.add_label((GraphDbTypes::Label)1);
auto v2 = dba->insert_vertex();
v2.add_label((GraphDbTypes::Label)2);
auto v3 = dba->insert_vertex();
v3.add_label((GraphDbTypes::Label)3);
auto edge_type = dba->edge_type("Edge");
dba->insert_edge(v1, v2, edge_type);
dba->insert_edge(v1, v3, edge_type);
dba->advance_command();
AstTreeStorage storage;
SymbolTable symbol_table;
auto test_cycle = [&](bool with_cycle, int expected_result_count) {
auto i = MakeScanAll(storage, symbol_table, "i");
auto r_j = MakeExpand(storage, symbol_table, i.op_, i.sym_, "r",
EdgeAtom::Direction::BOTH, false, "j", false);
auto r_k = MakeExpand(storage, symbol_table, r_j.op_, r_j.node_sym_, "r",
EdgeAtom::Direction::BOTH, with_cycle, "k", false);
if (with_cycle)
symbol_table[*r_k.edge_->identifier_] =
symbol_table[*r_j.edge_->identifier_];
// make a named expression and a produce
auto output = NEXPR("r", IDENT("r"));
symbol_table[*output->expression_] = r_j.edge_sym_;
symbol_table[*output] = symbol_table.CreateSymbol("named_expression_1");
auto produce = MakeProduce(r_k.op_, output);
ResultStreamFaker result = CollectProduce(produce, symbol_table, *dba);
EXPECT_EQ(result.GetResults().size(), expected_result_count);
};
test_cycle(true, 4);
test_cycle(false, 6);
}
TEST(Interpreter, EdgeFilter) {
Dbms dbms;
auto dba = dbms.active();
// make an N-star expanding from (v1)
// where only one edge will qualify
// and there are all combinations of
// (edge_type yes|no) * (property yes|absent|no)
std::vector<GraphDbTypes::EdgeType> edge_types;
for (int j = 0; j < 2; ++j)
edge_types.push_back(dba->edge_type("et" + std::to_string(j)));
std::vector<VertexAccessor> vertices;
for (int i = 0; i < 7; ++i) vertices.push_back(dba->insert_vertex());
GraphDbTypes::Property prop = dba->property("prop");
std::vector<EdgeAccessor> edges;
for (int i = 0; i < 6; ++i) {
edges.push_back(
dba->insert_edge(vertices[0], vertices[i + 1], edge_types[i % 2]));
switch (i % 3) {
case 0:
edges.back().PropsSet(prop, 42);
break;
case 1:
edges.back().PropsSet(prop, 100);
break;
default:
break;
}
}
dba->advance_command();
AstTreeStorage storage;
SymbolTable symbol_table;
// define an operator tree for query
// MATCH (n)-[r]->(m) RETURN m
auto n = MakeScanAll(storage, symbol_table, "n");
auto r_m = MakeExpand(storage, symbol_table, n.op_, n.sym_, "r",
EdgeAtom::Direction::RIGHT, false, "m", false);
r_m.edge_->edge_types_.push_back(edge_types[0]);
r_m.edge_->properties_[prop] = LITERAL(42);
auto edge_filter =
std::make_shared<EdgeFilter>(r_m.op_, r_m.edge_sym_, r_m.edge_);
// make a named expression and a produce
auto output = NEXPR("m", IDENT("m"));
symbol_table[*output->expression_] = r_m.node_sym_;
symbol_table[*output] = symbol_table.CreateSymbol("named_expression_1");
auto produce = MakeProduce(edge_filter, output);
ResultStreamFaker result = CollectProduce(produce, symbol_table, *dba);
EXPECT_EQ(result.GetResults().size(), 1);
}
TEST(Interpreter, EdgeFilterMultipleTypes) {
Dbms dbms;
auto dba = dbms.active();
auto v1 = dba->insert_vertex();
auto v2 = dba->insert_vertex();
auto type_1 = dba->edge_type("type_1");
auto type_2 = dba->edge_type("type_2");
auto type_3 = dba->edge_type("type_3");
dba->insert_edge(v1, v2, type_1);
dba->insert_edge(v1, v2, type_2);
dba->insert_edge(v1, v2, type_3);
dba->advance_command();
AstTreeStorage storage;
SymbolTable symbol_table;
// make a scan all
auto n = MakeScanAll(storage, symbol_table, "n");
auto r_m = MakeExpand(storage, symbol_table, n.op_, n.sym_, "r",
EdgeAtom::Direction::RIGHT, false, "m", false);
// add a property filter
auto edge_filter =
std::make_shared<EdgeFilter>(r_m.op_, r_m.edge_sym_, r_m.edge_);
r_m.edge_->edge_types_.push_back(type_1);
r_m.edge_->edge_types_.push_back(type_2);
// make a named expression and a produce
auto output = NEXPR("m", IDENT("m"));
auto produce = MakeProduce(edge_filter, output);
// fill up the symbol table
symbol_table[*output] = symbol_table.CreateSymbol("named_expression_1");
symbol_table[*output->expression_] = r_m.node_sym_;
ResultStreamFaker result = CollectProduce(produce, symbol_table, *dba);
EXPECT_EQ(result.GetResults().size(), 2);
}
TEST(Interpreter, Delete) {
Dbms dbms;
auto dba = dbms.active();
// make a fully-connected (one-direction, no cycles) with 4 nodes
std::vector<VertexAccessor> vertices;
for (int i = 0; i < 4; ++i) vertices.push_back(dba->insert_vertex());
auto type = dba->edge_type("type");
for (int j = 0; j < 4; ++j)
for (int k = j + 1; k < 4; ++k)
dba->insert_edge(vertices[j], vertices[k], type);
dba->advance_command();
EXPECT_EQ(4, CountIterable(dba->vertices()));
EXPECT_EQ(6, CountIterable(dba->edges()));
AstTreeStorage storage;
SymbolTable symbol_table;
// attempt to delete a vertex, and fail
{
auto n = MakeScanAll(storage, symbol_table, "n");
auto n_get = storage.Create<Identifier>("n");
symbol_table[*n_get] = n.sym_;
auto delete_op = std::make_shared<plan::Delete>(
n.op_, std::vector<Expression *>{n_get}, false);
EXPECT_THROW(PullAll(delete_op, *dba, symbol_table), QueryRuntimeException);
dba->advance_command();
EXPECT_EQ(4, CountIterable(dba->vertices()));
EXPECT_EQ(6, CountIterable(dba->edges()));
}
// detach delete a single vertex
{
auto n = MakeScanAll(storage, symbol_table, "n");
auto n_get = storage.Create<Identifier>("n");
symbol_table[*n_get] = n.sym_;
auto delete_op = std::make_shared<plan::Delete>(
n.op_, std::vector<Expression *>{n_get}, true);
Frame frame(symbol_table.max_position());
delete_op->MakeCursor(*dba)->Pull(frame, symbol_table);
dba->advance_command();
EXPECT_EQ(3, CountIterable(dba->vertices()));
EXPECT_EQ(3, CountIterable(dba->edges()));
}
// delete all remaining edges
{
auto n = MakeScanAll(storage, symbol_table, "n");
auto r_m = MakeExpand(storage, symbol_table, n.op_, n.sym_, "r",
EdgeAtom::Direction::RIGHT, false, "m", false);
auto r_get = storage.Create<Identifier>("r");
symbol_table[*r_get] = r_m.edge_sym_;
auto delete_op = std::make_shared<plan::Delete>(
r_m.op_, std::vector<Expression *>{r_get}, false);
PullAll(delete_op, *dba, symbol_table);
dba->advance_command();
EXPECT_EQ(3, CountIterable(dba->vertices()));
EXPECT_EQ(0, CountIterable(dba->edges()));
}
// delete all remaining vertices
{
auto n = MakeScanAll(storage, symbol_table, "n");
auto n_get = storage.Create<Identifier>("n");
symbol_table[*n_get] = n.sym_;
auto delete_op = std::make_shared<plan::Delete>(
n.op_, std::vector<Expression *>{n_get}, false);
PullAll(delete_op, *dba, symbol_table);
dba->advance_command();
EXPECT_EQ(0, CountIterable(dba->vertices()));
EXPECT_EQ(0, CountIterable(dba->edges()));
}
}
TEST(Interpreter, DeleteReturn) {
Dbms dbms;
auto dba = dbms.active();
// make a fully-connected (one-direction, no cycles) with 4 nodes
auto prop = dba->property("prop");
for (int i = 0; i < 4; ++i) {
auto va = dba->insert_vertex();
va.PropsSet(prop, 42);
}
dba->advance_command();
EXPECT_EQ(4, CountIterable(dba->vertices()));
EXPECT_EQ(0, CountIterable(dba->edges()));
AstTreeStorage storage;
SymbolTable symbol_table;
auto n = MakeScanAll(storage, symbol_table, "n");
auto n_get = storage.Create<Identifier>("n");
symbol_table[*n_get] = n.sym_;
auto delete_op = std::make_shared<plan::Delete>(
n.op_, std::vector<Expression *>{n_get}, true);
auto prop_lookup =
storage.Create<PropertyLookup>(storage.Create<Identifier>("n"), prop);
symbol_table[*prop_lookup->expression_] = n.sym_;
auto n_p = storage.Create<NamedExpression>("n", prop_lookup);
symbol_table[*n_p] = symbol_table.CreateSymbol("bla");
auto produce = MakeProduce(delete_op, n_p);
auto result = CollectProduce(produce, symbol_table, *dba);
EXPECT_EQ(4, result.GetResults().size());
dba->advance_command();
EXPECT_EQ(0, CountIterable(dba->vertices()));
}
TEST(Interpreter, Filter) {
Dbms dbms;
auto dba = dbms.active();
// add a 6 nodes with property 'prop', 2 have true as value
GraphDbTypes::Property property = dba->property("Property");
for (int i = 0; i < 6; ++i)
dba->insert_vertex().PropsSet(property, i % 3 == 0);
dba->insert_vertex(); // prop not set, gives NULL
dba->advance_command();
AstTreeStorage storage;
SymbolTable symbol_table;
auto n = MakeScanAll(storage, symbol_table, "n");
auto e =
storage.Create<PropertyLookup>(storage.Create<Identifier>("n"), property);
symbol_table[*e->expression_] = n.sym_;
auto f = std::make_shared<Filter>(n.op_, e);
auto output =
storage.Create<NamedExpression>("x", storage.Create<Identifier>("n"));
symbol_table[*output->expression_] = n.sym_;
symbol_table[*output] = symbol_table.CreateSymbol("named_expression_1");
auto produce = MakeProduce(f, output);
EXPECT_EQ(CollectProduce(produce, symbol_table, *dba).GetResults().size(), 2);
}
TEST(Interpreter, SetProperty) {
Dbms dbms;
auto dba = dbms.active();
// graph with 4 vertices in connected pairs
// the origin vertex in each par and both edges
// have a property set
auto v1 = dba->insert_vertex();
auto v2 = dba->insert_vertex();
auto v3 = dba->insert_vertex();
auto v4 = dba->insert_vertex();
auto edge_type = dba->edge_type("edge_type");
dba->insert_edge(v1, v3, edge_type);
dba->insert_edge(v2, v4, edge_type);
dba->advance_command();
AstTreeStorage storage;
SymbolTable symbol_table;
// scan (n)-[r]->(m)
auto n = MakeScanAll(storage, symbol_table, "n");
auto r_m = MakeExpand(storage, symbol_table, n.op_, n.sym_, "r",
EdgeAtom::Direction::RIGHT, false, "m", false);
// set prop1 to 42 on n and r
auto prop1 = dba->property("prop1");
auto literal = LITERAL(42);
auto n_p = PROPERTY_LOOKUP("n", prop1);
symbol_table[*n_p->expression_] = n.sym_;
auto set_n_p = std::make_shared<plan::SetProperty>(r_m.op_, n_p, literal);
auto r_p = PROPERTY_LOOKUP("r", prop1);
symbol_table[*r_p->expression_] = r_m.edge_sym_;
auto set_r_p = std::make_shared<plan::SetProperty>(set_n_p, r_p, literal);
EXPECT_EQ(2, PullAll(set_r_p, *dba, symbol_table));
dba->advance_command();
EXPECT_EQ(CountIterable(dba->edges()), 2);
for (EdgeAccessor edge : dba->edges()) {
ASSERT_EQ(edge.PropsAt(prop1).type(), PropertyValue::Type::Int);
EXPECT_EQ(edge.PropsAt(prop1).Value<int64_t>(), 42);
VertexAccessor from = edge.from();
VertexAccessor to = edge.to();
ASSERT_EQ(from.PropsAt(prop1).type(), PropertyValue::Type::Int);
EXPECT_EQ(from.PropsAt(prop1).Value<int64_t>(), 42);
ASSERT_EQ(to.PropsAt(prop1).type(), PropertyValue::Type::Null);
}
}
TEST(Interpreter, SetProperties) {
auto test_set_properties = [](bool update) {
Dbms dbms;
auto dba = dbms.active();
// graph: ({a: 0})-[:R {b:1}]->({c:2})
auto prop_a = dba->property("a");
auto prop_b = dba->property("b");
auto prop_c = dba->property("c");
auto v1 = dba->insert_vertex();
auto v2 = dba->insert_vertex();
auto e = dba->insert_edge(v1, v2, dba->edge_type("R"));
v1.PropsSet(prop_a, 0);
e.PropsSet(prop_b, 1);
v2.PropsSet(prop_c, 2);
dba->advance_command();
AstTreeStorage storage;
SymbolTable symbol_table;
// scan (n)-[r]->(m)
auto n = MakeScanAll(storage, symbol_table, "n");
auto r_m = MakeExpand(storage, symbol_table, n.op_, n.sym_, "r",
EdgeAtom::Direction::RIGHT, false, "m", false);
auto op = update ? plan::SetProperties::Op::UPDATE
: plan::SetProperties::Op::REPLACE;
// set properties on r to n, and on r to m
auto r_ident = IDENT("r");
symbol_table[*r_ident] = r_m.edge_sym_;
auto m_ident = IDENT("m");
symbol_table[*m_ident] = r_m.node_sym_;
auto set_r_to_n =
std::make_shared<plan::SetProperties>(r_m.op_, n.sym_, r_ident, op);
auto set_m_to_r = std::make_shared<plan::SetProperties>(
set_r_to_n, r_m.edge_sym_, m_ident, op);
EXPECT_EQ(1, PullAll(set_m_to_r, *dba, symbol_table));
dba->advance_command();
EXPECT_EQ(CountIterable(dba->edges()), 1);
for (EdgeAccessor edge : dba->edges()) {
VertexAccessor from = edge.from();
EXPECT_EQ(from.Properties().size(), update ? 2 : 1);
if (update) {
ASSERT_EQ(from.PropsAt(prop_a).type(), PropertyValue::Type::Int);
EXPECT_EQ(from.PropsAt(prop_a).Value<int64_t>(), 0);
}
ASSERT_EQ(from.PropsAt(prop_b).type(), PropertyValue::Type::Int);
EXPECT_EQ(from.PropsAt(prop_b).Value<int64_t>(), 1);
EXPECT_EQ(edge.Properties().size(), update ? 2 : 1);
if (update) {
ASSERT_EQ(edge.PropsAt(prop_b).type(), PropertyValue::Type::Int);
EXPECT_EQ(edge.PropsAt(prop_b).Value<int64_t>(), 1);
}
ASSERT_EQ(edge.PropsAt(prop_c).type(), PropertyValue::Type::Int);
EXPECT_EQ(edge.PropsAt(prop_c).Value<int64_t>(), 2);
VertexAccessor to = edge.to();
EXPECT_EQ(to.Properties().size(), 1);
ASSERT_EQ(to.PropsAt(prop_c).type(), PropertyValue::Type::Int);
EXPECT_EQ(to.PropsAt(prop_c).Value<int64_t>(), 2);
}
};
test_set_properties(true);
test_set_properties(false);
}
TEST(Interpreter, SetLabels) {
Dbms dbms;
auto dba = dbms.active();
auto label1 = dba->label("label1");
auto label2 = dba->label("label2");
auto label3 = dba->label("label3");
dba->insert_vertex().add_label(label1);
dba->insert_vertex().add_label(label1);
dba->advance_command();
AstTreeStorage storage;
SymbolTable symbol_table;
auto n = MakeScanAll(storage, symbol_table, "n");
auto label_set = std::make_shared<plan::SetLabels>(
n.op_, n.sym_, std::vector<GraphDbTypes::Label>{label2, label3});
EXPECT_EQ(2, PullAll(label_set, *dba, symbol_table));
for (VertexAccessor vertex : dba->vertices()) {
vertex.SwitchNew();
EXPECT_EQ(3, vertex.labels().size());
EXPECT_TRUE(vertex.has_label(label2));
EXPECT_TRUE(vertex.has_label(label3));
}
}
TEST(Interpreter, RemoveProperty) {
Dbms dbms;
auto dba = dbms.active();
// graph with 4 vertices in connected pairs
// the origin vertex in each par and both edges
// have a property set
auto prop1 = dba->property("prop1");
auto v1 = dba->insert_vertex();
auto v2 = dba->insert_vertex();
auto v3 = dba->insert_vertex();
auto v4 = dba->insert_vertex();
auto edge_type = dba->edge_type("edge_type");
dba->insert_edge(v1, v3, edge_type).PropsSet(prop1, 42);
dba->insert_edge(v2, v4, edge_type);
v2.PropsSet(prop1, 42);
v3.PropsSet(prop1, 42);
v4.PropsSet(prop1, 42);
auto prop2 = dba->property("prop2");
v1.PropsSet(prop2, 0);
v2.PropsSet(prop2, 0);
dba->advance_command();
AstTreeStorage storage;
SymbolTable symbol_table;
// scan (n)-[r]->(m)
auto n = MakeScanAll(storage, symbol_table, "n");
auto r_m = MakeExpand(storage, symbol_table, n.op_, n.sym_, "r",
EdgeAtom::Direction::RIGHT, false, "m", false);
auto n_p = PROPERTY_LOOKUP("n", prop1);
symbol_table[*n_p->expression_] = n.sym_;
auto set_n_p = std::make_shared<plan::RemoveProperty>(r_m.op_, n_p);
auto r_p = PROPERTY_LOOKUP("r", prop1);
symbol_table[*r_p->expression_] = r_m.edge_sym_;
auto set_r_p = std::make_shared<plan::RemoveProperty>(set_n_p, r_p);
EXPECT_EQ(2, PullAll(set_r_p, *dba, symbol_table));
dba->advance_command();
EXPECT_EQ(CountIterable(dba->edges()), 2);
for (EdgeAccessor edge : dba->edges()) {
EXPECT_EQ(edge.PropsAt(prop1).type(), PropertyValue::Type::Null);
VertexAccessor from = edge.from();
VertexAccessor to = edge.to();
EXPECT_EQ(from.PropsAt(prop1).type(), PropertyValue::Type::Null);
EXPECT_EQ(from.PropsAt(prop2).type(), PropertyValue::Type::Int);
EXPECT_EQ(to.PropsAt(prop1).type(), PropertyValue::Type::Int);
}
}
TEST(Interpreter, RemoveLabels) {
Dbms dbms;
auto dba = dbms.active();
auto label1 = dba->label("label1");
auto label2 = dba->label("label2");
auto label3 = dba->label("label3");
auto v1 = dba->insert_vertex();
v1.add_label(label1);
v1.add_label(label2);
v1.add_label(label3);
auto v2 = dba->insert_vertex();
v2.add_label(label1);
v2.add_label(label3);
dba->advance_command();
AstTreeStorage storage;
SymbolTable symbol_table;
auto n = MakeScanAll(storage, symbol_table, "n");
auto label_remove = std::make_shared<plan::RemoveLabels>(
n.op_, n.sym_, std::vector<GraphDbTypes::Label>{label1, label2});
EXPECT_EQ(2, PullAll(label_remove, *dba, symbol_table));
for (VertexAccessor vertex : dba->vertices()) {
vertex.SwitchNew();
EXPECT_EQ(1, vertex.labels().size());
EXPECT_FALSE(vertex.has_label(label1));
EXPECT_FALSE(vertex.has_label(label2));
}
}
TEST(Interpreter, NodeFilterSet) {
Dbms dbms;
auto dba = dbms.active();
// Create a graph such that (v1 {prop: 42}) is connected to v2 and v3.
auto v1 = dba->insert_vertex();
auto prop = dba->property("prop");
v1.PropsSet(prop, 42);
auto v2 = dba->insert_vertex();
auto v3 = dba->insert_vertex();
auto edge_type = dba->edge_type("Edge");
dba->insert_edge(v1, v2, edge_type);
dba->insert_edge(v1, v3, edge_type);
dba->advance_command();
// Create operations which match (v1 {prop: 42}) -- (v) and increment the
// v1.prop. The expected result is two incremenentations, since v1 is matched
// twice for 2 edges it has.
AstTreeStorage storage;
SymbolTable symbol_table;
// MATCH (n {prop: 42}) -[r]- (m)
auto scan_all = MakeScanAll(storage, symbol_table, "n");
scan_all.node_->properties_[prop] = LITERAL(42);
auto expand = MakeExpand(storage, symbol_table, scan_all.op_, scan_all.sym_,
"r", EdgeAtom::Direction::BOTH, false, "m", false);
auto node_filter =
std::make_shared<NodeFilter>(expand.op_, scan_all.sym_, scan_all.node_);
// SET n.prop = n.prop + 1
auto set_prop = PROPERTY_LOOKUP("n", prop);
auto add = ADD(PROPERTY_LOOKUP("n", prop), LITERAL(1));
auto set = std::make_shared<plan::SetProperty>(node_filter, set_prop, add);
EXPECT_EQ(2, PullAll(set, *dba, symbol_table));
dba->advance_command();
v1.Reconstruct();
auto prop_eq = v1.PropsAt(prop) == TypedValue(42 + 2);
ASSERT_EQ(prop_eq.type(), TypedValue::Type::Bool);
EXPECT_TRUE(prop_eq.Value<bool>());
}
TEST(Interpreter, FilterRemove) {
Dbms dbms;
auto dba = dbms.active();
// Create a graph such that (v1 {prop: 42}) is connected to v2 and v3.
auto v1 = dba->insert_vertex();
auto prop = dba->property("prop");
v1.PropsSet(prop, 42);
auto v2 = dba->insert_vertex();
auto v3 = dba->insert_vertex();
auto edge_type = dba->edge_type("Edge");
dba->insert_edge(v1, v2, edge_type);
dba->insert_edge(v1, v3, edge_type);
dba->advance_command();
// Create operations which match (v1 {prop: 42}) -- (v) and remove v1.prop.
// The expected result is two matches, for each edge of v1.
AstTreeStorage storage;
SymbolTable symbol_table;
// MATCH (n) -[r]- (m) WHERE n.prop < 43
auto scan_all = MakeScanAll(storage, symbol_table, "n");
scan_all.node_->properties_[prop] = LITERAL(42);
auto expand = MakeExpand(storage, symbol_table, scan_all.op_, scan_all.sym_,
"r", EdgeAtom::Direction::BOTH, false, "m", false);
auto filter_prop = PROPERTY_LOOKUP("n", prop);
symbol_table[*filter_prop->expression_] = scan_all.sym_;
auto filter =
std::make_shared<Filter>(expand.op_, LESS(filter_prop, LITERAL(43)));
// REMOVE n.prop
auto rem_prop = PROPERTY_LOOKUP("n", prop);
symbol_table[*rem_prop->expression_] = scan_all.sym_;
auto rem = std::make_shared<plan::RemoveProperty>(filter, rem_prop);
EXPECT_EQ(2, PullAll(rem, *dba, symbol_table));
dba->advance_command();
v1.Reconstruct();
EXPECT_EQ(v1.PropsAt(prop).type(), PropertyValue::Type::Null);
}
TEST(Interpreter, SetRemove) {
Dbms dbms;
auto dba = dbms.active();
auto v = dba->insert_vertex();
auto label1 = dba->label("label1");
auto label2 = dba->label("label2");
dba->advance_command();
// Create operations which match (v) and set and remove v :label.
// The expected result is single (v) as it was at the start.
AstTreeStorage storage;
SymbolTable symbol_table;
// MATCH (n) SET n :label1 :label2 REMOVE n :label1 :label2
auto scan_all = MakeScanAll(storage, symbol_table, "n");
auto set = std::make_shared<plan::SetLabels>(
scan_all.op_, scan_all.sym_,
std::vector<GraphDbTypes::Label>{label1, label2});
auto rem = std::make_shared<plan::RemoveLabels>(
set, scan_all.sym_, std::vector<GraphDbTypes::Label>{label1, label2});
EXPECT_EQ(1, PullAll(rem, *dba, symbol_table));
dba->advance_command();
v.Reconstruct();
EXPECT_FALSE(v.has_label(label1));
EXPECT_FALSE(v.has_label(label2));
}