memgraph/tests/unit/high_density_shard_create_scan.cpp

305 lines
11 KiB
C++

// Copyright 2022 Memgraph Ltd.
//
// Use of this software is governed by the Business Source License
// included in the file licenses/BSL.txt; by using this file, you agree to be bound by the terms of the Business Source
// License, and you may not use this file except in compliance with the Business Source License.
//
// As of the Change Date specified in that file, in accordance with
// the Business Source License, use of this software will be governed
// by the Apache License, Version 2.0, included in the file
// licenses/APL.txt.
#include <chrono>
#include <iostream>
#include <limits>
#include <memory>
#include <set>
#include <thread>
#include <gtest/gtest.h>
#include "coordinator/coordinator_client.hpp"
#include "coordinator/coordinator_rsm.hpp"
#include "coordinator/shard_map.hpp"
#include "io/address.hpp"
#include "io/local_transport/local_system.hpp"
#include "io/local_transport/local_transport.hpp"
#include "io/simulator/simulator.hpp"
#include "io/simulator/simulator_config.hpp"
#include "io/simulator/simulator_transport.hpp"
#include "machine_manager/machine_config.hpp"
#include "machine_manager/machine_manager.hpp"
#include "query/v2/requests.hpp"
#include "query/v2/shard_request_manager.hpp"
#include "utils/variant_helpers.hpp"
namespace memgraph::tests::simulation {
using coordinator::Coordinator;
using coordinator::CoordinatorClient;
using coordinator::CoordinatorReadRequests;
using coordinator::CoordinatorWriteRequests;
using coordinator::CoordinatorWriteResponses;
using coordinator::GetShardMapRequest;
using coordinator::GetShardMapResponse;
using coordinator::Hlc;
using coordinator::HlcResponse;
using coordinator::Shard;
using coordinator::ShardMap;
using io::Address;
using io::Io;
using io::local_transport::LocalSystem;
using io::local_transport::LocalTransport;
using io::rsm::RsmClient;
using machine_manager::MachineConfig;
using machine_manager::MachineManager;
using msgs::ReadRequests;
using msgs::ReadResponses;
using msgs::WriteRequests;
using msgs::WriteResponses;
using storage::v3::LabelId;
using storage::v3::SchemaProperty;
using CompoundKey = std::pair<int, int>;
using ShardClient = RsmClient<LocalTransport, WriteRequests, WriteResponses, ReadRequests, ReadResponses>;
struct CreateVertex {
int first;
int second;
friend std::ostream &operator<<(std::ostream &in, const CreateVertex &add) {
in << "CreateVertex { first: " << add.first << ", second: " << add.second << " }";
return in;
}
};
struct ScanAll {
friend std::ostream &operator<<(std::ostream &in, const ScanAll &get) {
in << "ScanAll {}";
return in;
}
};
MachineManager<LocalTransport> MkMm(LocalSystem &local_system, std::vector<Address> coordinator_addresses, Address addr,
ShardMap shard_map, size_t shard_worker_threads) {
MachineConfig config{
.coordinator_addresses = std::move(coordinator_addresses),
.is_storage = true,
.is_coordinator = true,
.listen_ip = addr.last_known_ip,
.listen_port = addr.last_known_port,
.shard_worker_threads = shard_worker_threads,
};
Io<LocalTransport> io = local_system.Register(addr);
Coordinator coordinator{shard_map};
return MachineManager{io, config, std::move(coordinator)};
}
void RunMachine(MachineManager<LocalTransport> mm) { mm.Run(); }
void WaitForShardsToInitialize(CoordinatorClient<LocalTransport> &coordinator_client) {
// Call coordinator client's read method for GetShardMap and keep
// reading it until the shard map contains proper replicas for
// each shard in the label space.
while (true) {
GetShardMapRequest req{};
CoordinatorReadRequests read_req = req;
auto read_res = coordinator_client.SendReadRequest(read_req);
if (read_res.HasError()) {
// timed out
continue;
}
auto response_result = read_res.GetValue();
auto response = std::get<GetShardMapResponse>(response_result);
auto shard_map = response.shard_map;
if (shard_map.ClusterInitialized()) {
spdlog::info("cluster stabilized - beginning workload");
return;
}
}
}
ShardMap TestShardMap(int shards, int replication_factor, int gap_between_shards) {
ShardMap sm{};
const auto label_name = std::string("test_label");
// register new properties
const std::vector<std::string> property_names = {"property_1", "property_2"};
const auto properties = sm.AllocatePropertyIds(property_names);
const auto property_id_1 = properties.at("property_1");
const auto property_id_2 = properties.at("property_2");
const auto type_1 = memgraph::common::SchemaType::INT;
const auto type_2 = memgraph::common::SchemaType::INT;
// register new label space
std::vector<SchemaProperty> schema = {
SchemaProperty{.property_id = property_id_1, .type = type_1},
SchemaProperty{.property_id = property_id_2, .type = type_2},
};
std::optional<LabelId> label_id = sm.InitializeNewLabel(label_name, schema, replication_factor, sm.shard_map_version);
MG_ASSERT(label_id.has_value());
// split the shard at N split points
for (int64_t i = 1; i < shards; ++i) {
const auto key1 = memgraph::storage::v3::PropertyValue(i * gap_between_shards);
const auto key2 = memgraph::storage::v3::PropertyValue(0);
const auto split_point = {key1, key2};
const bool split_success = sm.SplitShard(sm.shard_map_version, label_id.value(), split_point);
MG_ASSERT(split_success);
}
return sm;
}
void ExecuteOp(msgs::ShardRequestManager<LocalTransport> &shard_request_manager,
std::set<CompoundKey> &correctness_model, CreateVertex create_vertex) {
const auto key1 = memgraph::storage::v3::PropertyValue(create_vertex.first);
const auto key2 = memgraph::storage::v3::PropertyValue(create_vertex.second);
std::vector<msgs::Value> primary_key = {msgs::Value(int64_t(create_vertex.first)),
msgs::Value(int64_t(create_vertex.second))};
if (correctness_model.contains(std::make_pair(create_vertex.first, create_vertex.second))) {
// TODO(tyler) remove this early-return when we have properly handled setting non-unique vertexes
return;
}
msgs::ExecutionState<msgs::CreateVerticesRequest> state;
auto label_id = shard_request_manager.NameToLabel("test_label");
msgs::NewVertex nv{.primary_key = primary_key};
nv.label_ids.push_back({label_id});
std::vector<msgs::NewVertex> new_vertices;
new_vertices.push_back(std::move(nv));
auto result = shard_request_manager.Request(state, std::move(new_vertices));
MG_ASSERT(result.size() == 1);
MG_ASSERT(result[0].success);
correctness_model.emplace(std::make_pair(create_vertex.first, create_vertex.second));
}
void ExecuteOp(msgs::ShardRequestManager<LocalTransport> &shard_request_manager,
std::set<CompoundKey> &correctness_model, ScanAll scan_all) {
msgs::ExecutionState<msgs::ScanVerticesRequest> request{.label = "test_label"};
auto results = shard_request_manager.Request(request);
MG_ASSERT(results.size() == correctness_model.size());
for (const auto &vertex_accessor : results) {
const auto properties = vertex_accessor.Properties();
const auto primary_key = vertex_accessor.Id().second;
const CompoundKey model_key = std::make_pair(primary_key[0].int_v, primary_key[1].int_v);
MG_ASSERT(correctness_model.contains(model_key));
}
}
void RunWorkload(int shards, int replication_factor, int create_ops, int scan_ops, int shard_worker_threads,
int gap_between_shards) {
spdlog::info("======================== NEW TEST ========================");
spdlog::info("shards: ", shards);
spdlog::info("replication factor: ", replication_factor);
spdlog::info("create ops: ", create_ops);
spdlog::info("scan all ops: ", scan_ops);
spdlog::info("shard worker threads: ", shard_worker_threads);
spdlog::info("gap between shards: ", gap_between_shards);
LocalSystem local_system;
auto cli_addr = Address::TestAddress(1);
auto machine_1_addr = cli_addr.ForkUniqueAddress();
Io<LocalTransport> cli_io = local_system.Register(cli_addr);
Io<LocalTransport> cli_io_2 = local_system.Register(Address::TestAddress(2));
auto coordinator_addresses = std::vector{
machine_1_addr,
};
auto time_before_shard_map_creation = cli_io_2.Now();
ShardMap initialization_sm = TestShardMap(shards, replication_factor, gap_between_shards);
auto time_after_shard_map_creation = cli_io_2.Now();
auto mm_1 = MkMm(local_system, coordinator_addresses, machine_1_addr, initialization_sm, shard_worker_threads);
Address coordinator_address = mm_1.CoordinatorAddress();
auto mm_thread_1 = std::jthread(RunMachine, std::move(mm_1));
CoordinatorClient<LocalTransport> coordinator_client(cli_io, coordinator_address, {coordinator_address});
auto time_before_shard_stabilization = cli_io_2.Now();
WaitForShardsToInitialize(coordinator_client);
auto time_after_shard_stabilization = cli_io_2.Now();
msgs::ShardRequestManager<LocalTransport> shard_request_manager(std::move(coordinator_client), std::move(cli_io));
shard_request_manager.StartTransaction();
auto correctness_model = std::set<CompoundKey>{};
auto time_before_creates = cli_io_2.Now();
for (int i = 0; i < create_ops; i++) {
ExecuteOp(shard_request_manager, correctness_model, CreateVertex{.first = i, .second = i});
}
auto time_after_creates = cli_io_2.Now();
for (int i = 0; i < scan_ops; i++) {
ExecuteOp(shard_request_manager, correctness_model, ScanAll{});
}
auto time_after_scan = cli_io_2.Now();
local_system.ShutDown();
auto latencies = cli_io_2.ResponseLatencies();
spdlog::info("response latencies: \n{}", latencies.SummaryTable());
spdlog::info("serial time break-down: (μs)");
spdlog::info("{: >20}: {: >10}", "split shard map",
(time_after_shard_map_creation - time_before_shard_map_creation).count());
spdlog::info("{: >20}: {: >10}", "shard stabilization",
(time_after_shard_stabilization - time_before_shard_stabilization).count());
spdlog::info("{: >20}: {: >10}", "create nodes", (time_after_creates - time_before_creates).count());
spdlog::info("{: >20}: {: >10}", "scan nodes", (time_after_scan - time_after_creates).count());
std::cout << fmt::format("{} {} {}\n", shards, shard_worker_threads, (time_after_scan - time_after_creates).count());
}
TEST(MachineManager, ManyShards) {
auto shards_attempts = {1, 2, 4, 8};
auto shard_worker_thread_attempts = {1, 2, 4, 8};
auto replication_factor = 1;
auto create_ops = 1024;
auto scan_ops = 1;
std::cout << "splits threads scan_all_microseconds\n";
for (const auto shards : shards_attempts) {
auto gap_between_shards = create_ops / shards;
for (const auto shard_worker_threads : shard_worker_thread_attempts) {
RunWorkload(shards, replication_factor, create_ops, scan_ops, shard_worker_threads, gap_between_shards);
}
}
}
} // namespace memgraph::tests::simulation