memgraph/tests/e2e/streams/kafka_streams_tests.py
Marko Barišić b0cdcd3483
Run CI in mgbuilder containers (#1749)
* Update deployment files for mgbuilders because of toolchain upgrade
* Fix args parameter in builder yaml files
* Add fedora 38, 39 and rockylinux 9.3 mgbuilder Dockerfiles
* Change format of ARG TOOLCHAIN_VERSION from toolchain-vX to vX
* Add function to check supported arch, build type, os and toolchain
* Add options to init subcommand
* Add image names to mgbuilders
* Add v2 of the run.sh script
* Add testing to run2.sh
* Add option for threads --thread
* Add options for enterprise license and organization name
* Make stop mgbuild container step run always
* Add --ci flag to init script
* Move init conditionals under build-memgraph flags
* Add --community flag to build-memgraph
* Change target dir inside mgbuild container
* Add node fix to debian 11, ubuntu 20.04 and ubuntu 22.04
* rm memgraph repo after installing deps
* Add mg user in Dockerfile
* Add step to install rust on all OSs
* Chown files copied into mgbuild container
* Add e2e tests
* Add jepsen test
* Bugfix: Using reference in a callback
* Bugfix: Broad target for e2e tests
* Up db info test limit
* Disable e2e streams tests
* Fix default THREADS
* Prioretize docker compose over docker-compose
* Improve selection between docker compose and docker-compose
* Install PyYAML as mg user
* Fix doxygen install for rocky linux 9.3
* Fix rocky-9.3 environment script to properly install sbcl
* Rename all rocky-9 mentions to rocky-9.3
* Add mgdeps-cache and benchgraph-api hostnames to mgbuild images
* Add logic to pull mgbuild image if missing
* Fix build errors on toolchain-v5 (#1806)
* Rename run2 script, remove run script, add small features to mgbuild.sh
* Add --no-copy flag to build-memgraph to resolve TODO
* Add timeouts to diff jobs
* Fix asio flaky clone, try mgdeps-cache first

---------

Co-authored-by: Andreja Tonev <andreja.tonev@memgraph.io>
Co-authored-by: Ante Pušić <ante.f.pusic@gmail.com>
Co-authored-by: antoniofilipovic <filipovicantonio1998@gmail.com>
2024-03-14 12:19:59 +01:00

508 lines
20 KiB
Python
Executable File

#!/usr/bin/python3
# Copyright 2021 Memgraph Ltd.
#
# Use of this software is governed by the Business Source License
# included in the file licenses/BSL.txt; by using this file, you agree to be bound by the terms of the Business Source
# License, and you may not use this file except in compliance with the Business Source License.
#
# As of the Change Date specified in that file, in accordance with
# the Business Source License, use of this software will be governed
# by the Apache License, Version 2.0, included in the file
# licenses/APL.txt.
# import os
import sys
import time
from multiprocessing import Process
import common
import mgclient
import pytest
from mg_utils import mg_sleep_and_assert
TRANSFORMATIONS_TO_CHECK_C = ["c_transformations.empty_transformation"]
TRANSFORMATIONS_TO_CHECK_PY = ["kafka_transform.simple", "kafka_transform.with_parameters"]
KAFKA_PRODUCER_SENDING_MSG_DEFAULT_TIMEOUT = 60
# KAFKA_HOSTNAME=os.getenv("KAFKA_HOSTNAME", "localhost")
@pytest.mark.parametrize("transformation", TRANSFORMATIONS_TO_CHECK_PY)
def test_simple(kafka_producer, kafka_topics, connection, transformation):
assert len(kafka_topics) > 0
stream_name = "test_simple_" + transformation.split(".")[1]
cursor = connection.cursor()
common.create_stream(cursor, stream_name, ",".join(kafka_topics), transformation)
common.start_stream(cursor, stream_name)
for topic in kafka_topics:
kafka_producer.send(topic, common.SIMPLE_MSG).get(timeout=KAFKA_PRODUCER_SENDING_MSG_DEFAULT_TIMEOUT)
for topic in kafka_topics:
common.kafka_check_vertex_exists_with_topic_and_payload(cursor, topic, common.SIMPLE_MSG)
@pytest.mark.parametrize("transformation", TRANSFORMATIONS_TO_CHECK_PY)
def test_separate_consumers(kafka_producer, kafka_topics, connection, transformation):
assert len(kafka_topics) > 0
cursor = connection.cursor()
stream_names = ["stream_" + transformation.split(".")[1] + "_" + topic for topic in kafka_topics]
for stream_name, topic in zip(stream_names, kafka_topics):
common.create_stream(cursor, stream_name, topic, transformation)
common.start_streams(cursor, stream_names)
for topic in kafka_topics:
kafka_producer.send(topic, common.SIMPLE_MSG).get(timeout=KAFKA_PRODUCER_SENDING_MSG_DEFAULT_TIMEOUT)
for topic in kafka_topics:
common.kafka_check_vertex_exists_with_topic_and_payload(cursor, topic, common.SIMPLE_MSG)
def test_start_from_last_committed_offset(kafka_producer, kafka_topics, connection):
# This test creates a stream, consumes a message to have a committed
# offset, then destroys the stream. A new message is sent before the
# stream is recreated and then restarted. This simulates when Memgraph is
# stopped (stream is destroyed) and then restarted (stream is recreated).
# This is of course not as good as restarting memgraph would be, but
# restarting Memgraph during a single workload cannot be done currently.
assert len(kafka_topics) > 0
cursor = connection.cursor()
stream_name = "test_start_from_last_committed_offset"
common.create_stream(cursor, stream_name, kafka_topics[0], "kafka_transform.simple")
common.start_stream(cursor, stream_name)
kafka_producer.send(kafka_topics[0], common.SIMPLE_MSG).get(timeout=KAFKA_PRODUCER_SENDING_MSG_DEFAULT_TIMEOUT)
common.kafka_check_vertex_exists_with_topic_and_payload(cursor, kafka_topics[0], common.SIMPLE_MSG)
common.stop_stream(cursor, stream_name)
common.drop_stream(cursor, stream_name)
messages = [b"second message", b"third message"]
for message in messages:
kafka_producer.send(kafka_topics[0], message).get(timeout=KAFKA_PRODUCER_SENDING_MSG_DEFAULT_TIMEOUT)
for message in messages:
vertices_with_msg = common.execute_and_fetch_all(
cursor,
f"MATCH (n: MESSAGE {{payload: '{message.decode('utf-8')}'}}) RETURN n",
)
assert len(vertices_with_msg) == 0
common.create_stream(cursor, stream_name, kafka_topics[0], "kafka_transform.simple")
common.start_stream(cursor, stream_name)
for message in messages:
common.kafka_check_vertex_exists_with_topic_and_payload(cursor, kafka_topics[0], message)
@pytest.mark.parametrize("transformation", TRANSFORMATIONS_TO_CHECK_PY)
def test_check_stream(kafka_producer, kafka_topics, connection, transformation):
assert len(kafka_topics) > 0
BATCH_SIZE = 1
INDEX_OF_FIRST_BATCH = 0
stream_name = "test_check_stream_" + transformation.split(".")[1]
cursor = connection.cursor()
common.create_stream(cursor, stream_name, kafka_topics[0], transformation, batch_size=BATCH_SIZE)
common.start_stream(cursor, stream_name)
kafka_producer.send(kafka_topics[0], common.SIMPLE_MSG).get(timeout=KAFKA_PRODUCER_SENDING_MSG_DEFAULT_TIMEOUT)
common.stop_stream(cursor, stream_name)
messages = [b"first message", b"second message", b"third message"]
for message in messages:
kafka_producer.send(kafka_topics[0], message).get(timeout=KAFKA_PRODUCER_SENDING_MSG_DEFAULT_TIMEOUT)
def check_check_stream(batch_limit):
test_results = common.execute_and_fetch_all(cursor, f"CHECK STREAM {stream_name} BATCH_LIMIT {batch_limit}")
assert len(test_results) == batch_limit
for i in range(batch_limit):
message_as_str = messages[i].decode("utf-8")
# If batch size != 1, then the usage of INDEX_OF_FIRST_BATCH must change: the result will have a list of queries (pair<parameters,query>)
if transformation == "kafka_transform.simple":
assert (
f"payload: '{message_as_str}'"
in test_results[i][common.QUERIES][INDEX_OF_FIRST_BATCH][common.QUERY_LITERAL]
)
assert test_results[i][common.QUERIES][INDEX_OF_FIRST_BATCH][common.PARAMETERS_LITERAL] is None
else:
assert (
f"payload: $payload" in test_results[i][common.QUERIES][INDEX_OF_FIRST_BATCH][common.QUERY_LITERAL]
and f"topic: $topic" in test_results[i][common.QUERIES][INDEX_OF_FIRST_BATCH][common.QUERY_LITERAL]
)
parameters = test_results[i][common.QUERIES][INDEX_OF_FIRST_BATCH][common.PARAMETERS_LITERAL]
# this is not a very sofisticated test, but checks if
# timestamp has some kind of value
assert parameters["timestamp"] > 1000000000000
assert parameters["topic"] == kafka_topics[0]
assert parameters["payload"] == message_as_str
check_check_stream(1)
check_check_stream(2)
check_check_stream(3)
common.start_stream(cursor, stream_name)
for message in messages:
common.kafka_check_vertex_exists_with_topic_and_payload(cursor, kafka_topics[0], message)
def test_show_streams(kafka_topics, connection):
assert len(kafka_topics) > 1
cursor = connection.cursor()
consumer_group = "my_special_consumer_group"
BATCH_INTERVAL = 42
BATCH_SIZE = 3
default_values_stream = "default_values"
complex_values_stream = "complex_values"
common.create_stream(
cursor, default_values_stream, kafka_topics[0], "kafka_transform.simple", bootstrap_servers="'localhost:29092'"
)
common.create_stream(
cursor,
complex_values_stream,
",".join(kafka_topics),
"kafka_transform.with_parameters",
consumer_group=consumer_group,
batch_interval=BATCH_INTERVAL,
batch_size=BATCH_SIZE,
)
assert len(common.execute_and_fetch_all(cursor, "SHOW STREAMS")) == 2
common.check_stream_info(
cursor,
default_values_stream,
(default_values_stream, "kafka", 100, 1000, "kafka_transform.simple", None, False),
)
common.check_stream_info(
cursor,
complex_values_stream,
(
complex_values_stream,
"kafka",
BATCH_INTERVAL,
BATCH_SIZE,
"kafka_transform.with_parameters",
None,
False,
),
)
@pytest.mark.parametrize("operation", ["START", "STOP"])
def test_start_and_stop_during_check(kafka_producer, kafka_topics, connection, operation):
assert len(kafka_topics) > 1
BATCH_SIZE = 1
def stream_creator(stream_name):
return f"CREATE KAFKA STREAM {stream_name} TOPICS {kafka_topics[0]} TRANSFORM kafka_transform.simple BATCH_SIZE {BATCH_SIZE}"
def message_sender(msg):
kafka_producer.send(kafka_topics[0], msg).get(timeout=KAFKA_PRODUCER_SENDING_MSG_DEFAULT_TIMEOUT)
common.test_start_and_stop_during_check(
operation,
connection,
stream_creator,
message_sender,
"Kafka consumer test_stream is already stopped",
BATCH_SIZE,
)
def test_check_already_started_stream(kafka_topics, connection):
assert len(kafka_topics) > 0
cursor = connection.cursor()
stream_name = "test_check_already_started_stream"
common.create_stream(cursor, stream_name, kafka_topics[0], "kafka_transform.simple")
common.start_stream(cursor, stream_name)
with pytest.raises(mgclient.DatabaseError):
common.execute_and_fetch_all(cursor, f"CHECK STREAM {stream_name}")
def test_start_checked_stream_after_timeout(kafka_topics, connection):
def stream_creator(stream_name):
return f"CREATE KAFKA STREAM {stream_name} TOPICS {kafka_topics[0]} TRANSFORM kafka_transform.simple"
common.test_start_checked_stream_after_timeout(connection, stream_creator)
def test_restart_after_error(kafka_producer, kafka_topics, connection):
cursor = connection.cursor()
stream_name = "test_restart_after_error"
common.create_stream(cursor, stream_name, kafka_topics[0], "kafka_transform.query")
common.start_stream(cursor, stream_name)
kafka_producer.send(kafka_topics[0], common.SIMPLE_MSG).get(timeout=KAFKA_PRODUCER_SENDING_MSG_DEFAULT_TIMEOUT)
assert common.timed_wait(lambda: not common.get_is_running(cursor, stream_name))
common.start_stream(cursor, stream_name)
kafka_producer.send(kafka_topics[0], b"CREATE (n:VERTEX { id : 42 })")
assert common.check_one_result_row(cursor, "MATCH (n:VERTEX { id : 42 }) RETURN n")
@pytest.mark.parametrize("transformation", TRANSFORMATIONS_TO_CHECK_PY)
def test_bootstrap_server(kafka_producer, kafka_topics, connection, transformation):
assert len(kafka_topics) > 0
cursor = connection.cursor()
local = "'localhost:29092'"
stream_name = "test_bootstrap_server_" + transformation.split(".")[1]
common.create_stream(cursor, stream_name, ",".join(kafka_topics), transformation, bootstrap_servers=local)
common.start_stream(cursor, stream_name)
for topic in kafka_topics:
kafka_producer.send(topic, common.SIMPLE_MSG).get(timeout=KAFKA_PRODUCER_SENDING_MSG_DEFAULT_TIMEOUT)
for topic in kafka_topics:
common.kafka_check_vertex_exists_with_topic_and_payload(cursor, topic, common.SIMPLE_MSG)
@pytest.mark.parametrize("transformation", TRANSFORMATIONS_TO_CHECK_PY)
def test_bootstrap_server_empty(kafka_topics, connection, transformation):
assert len(kafka_topics) > 0
cursor = connection.cursor()
with pytest.raises(mgclient.DatabaseError):
common.execute_and_fetch_all(
cursor,
f"CREATE KAFKA STREAM test TOPICS {','.join(kafka_topics)} TRANSFORM {transformation} BOOTSTRAP_SERVERS ''",
)
@pytest.mark.parametrize("transformation", TRANSFORMATIONS_TO_CHECK_PY)
def test_set_offset(kafka_producer, kafka_topics, connection, transformation):
assert len(kafka_topics) > 0
cursor = connection.cursor()
common.execute_and_fetch_all(
cursor,
f"CREATE KAFKA STREAM test TOPICS {kafka_topics[0]} TRANSFORM {transformation} BATCH_SIZE 1",
)
messages = [f"{i} message" for i in range(1, 21)]
for message in messages:
kafka_producer.send(kafka_topics[0], message.encode()).get(timeout=KAFKA_PRODUCER_SENDING_MSG_DEFAULT_TIMEOUT)
def consume(expected_msgs):
common.start_stream(cursor, "test")
if len(expected_msgs) == 0:
time.sleep(2)
else:
assert common.check_one_result_row(
cursor,
(f"MATCH (n: MESSAGE {{payload: '{expected_msgs[-1]}'}})" "RETURN n"),
)
common.stop_stream(cursor, "test")
res = common.execute_and_fetch_all(cursor, "MATCH (n) RETURN n.payload")
return res
def execute_set_offset_and_consume(id, expected_msgs):
common.execute_and_fetch_all(cursor, f"CALL mg.kafka_set_stream_offset('test', {id})")
return consume(expected_msgs)
with pytest.raises(mgclient.DatabaseError):
res = common.execute_and_fetch_all(cursor, "CALL mg.kafka_set_stream_offset('foo', 10)")
def comparison_check(a, b):
return a == str(b).strip("'(,)")
res = execute_set_offset_and_consume(10, messages[10:])
assert len(res) == 10
assert all([comparison_check(a, b) for a, b in zip(messages[10:], res)])
common.execute_and_fetch_all(cursor, "MATCH (n) DETACH DELETE n")
res = execute_set_offset_and_consume(-1, messages)
assert len(res) == len(messages)
assert all([comparison_check(a, b) for a, b in zip(messages, res)])
res = common.execute_and_fetch_all(cursor, "MATCH (n) return n.offset")
assert all([comparison_check(str(i), res[i]) for i in range(1, 20)])
res = common.execute_and_fetch_all(cursor, "MATCH (n) DETACH DELETE n")
res = execute_set_offset_and_consume(-2, [])
assert len(res) == 0
last_msg = "Final Message"
kafka_producer.send(kafka_topics[0], last_msg.encode()).get(timeout=KAFKA_PRODUCER_SENDING_MSG_DEFAULT_TIMEOUT)
res = consume([last_msg])
assert len(res) == 1
assert comparison_check("Final Message", res[0])
common.execute_and_fetch_all(cursor, "MATCH (n) DETACH DELETE n")
def test_info_procedure(kafka_topics, connection):
cursor = connection.cursor()
stream_name = "test_stream"
configs = {"sasl.username": "michael.scott"}
local = "localhost:29092"
credentials = {"sasl.password": "S3cr3tP4ssw0rd"}
consumer_group = "ConsumerGr"
common.create_stream(
cursor,
stream_name,
",".join(kafka_topics),
"kafka_transform.simple",
consumer_group=consumer_group,
bootstrap_servers=f"'{local}'",
configs=configs,
credentials=credentials,
)
stream_info = common.execute_and_fetch_all(cursor, f"CALL mg.kafka_stream_info('{stream_name}') YIELD *")
reducted_credentials = {key: "<REDUCTED>" for key in credentials.keys()}
expected_stream_info = [(local, configs, consumer_group, reducted_credentials, kafka_topics)]
common.validate_info(stream_info, expected_stream_info)
@pytest.mark.parametrize("transformation", TRANSFORMATIONS_TO_CHECK_C)
def test_load_c_transformations(connection, transformation):
cursor = connection.cursor()
query = f"CALL mg.transformations() YIELD * WITH name WHERE name STARTS WITH '{transformation}' RETURN name"
result = common.execute_and_fetch_all(cursor, query)
assert len(result) == 1
assert result[0][0] == transformation
def test_check_stream_same_number_of_queries_than_messages(kafka_producer, kafka_topics, connection):
assert len(kafka_topics) > 0
TRANSFORMATION = "common_transform.check_stream_no_filtering"
def stream_creator(stream_name, batch_size):
return f"CREATE KAFKA STREAM {stream_name} TOPICS {kafka_topics[0]} TRANSFORM {TRANSFORMATION} BATCH_INTERVAL 3000 BATCH_SIZE {batch_size}"
def message_sender(msg):
kafka_producer.send(kafka_topics[0], msg).get(timeout=KAFKA_PRODUCER_SENDING_MSG_DEFAULT_TIMEOUT)
common.test_check_stream_same_number_of_queries_than_messages(connection, stream_creator, message_sender)
def test_check_stream_different_number_of_queries_than_messages(kafka_producer, kafka_topics, connection):
assert len(kafka_topics) > 0
TRANSFORMATION = "common_transform.check_stream_with_filtering"
def stream_creator(stream_name, batch_size):
return f"CREATE KAFKA STREAM {stream_name} TOPICS {kafka_topics[0]} TRANSFORM {TRANSFORMATION} BATCH_INTERVAL 3000 BATCH_SIZE {batch_size}"
def message_sender(msg):
kafka_producer.send(kafka_topics[0], msg).get(timeout=KAFKA_PRODUCER_SENDING_MSG_DEFAULT_TIMEOUT)
common.test_check_stream_different_number_of_queries_than_messages(connection, stream_creator, message_sender)
def test_start_stream_with_batch_limit(kafka_producer, kafka_topics, connection):
assert len(kafka_topics) > 0
STREAM_NAME = "test_start_stream_with_batch_limit"
def stream_creator():
return (
f"CREATE KAFKA STREAM {STREAM_NAME} TOPICS {kafka_topics[0]} TRANSFORM kafka_transform.simple BATCH_SIZE 1"
)
def messages_sender(nof_messages):
for _ in range(nof_messages):
kafka_producer.send(kafka_topics[0], common.SIMPLE_MSG).get(
timeout=KAFKA_PRODUCER_SENDING_MSG_DEFAULT_TIMEOUT
)
common.test_start_stream_with_batch_limit(connection, STREAM_NAME, stream_creator, messages_sender)
def test_start_stream_with_batch_limit_timeout(kafka_topics, connection):
assert len(kafka_topics) > 0
def stream_creator(stream_name):
return (
f"CREATE KAFKA STREAM {stream_name} TOPICS {kafka_topics[0]} TRANSFORM kafka_transform.simple BATCH_SIZE 1"
)
common.test_start_stream_with_batch_limit_timeout(connection, stream_creator)
def test_start_stream_with_batch_limit_reaching_timeout(kafka_topics, connection):
assert len(kafka_topics) > 0
def stream_creator(stream_name, batch_size):
return f"CREATE KAFKA STREAM {stream_name} TOPICS {kafka_topics[0]} TRANSFORM kafka_transform.simple BATCH_SIZE {batch_size}"
common.test_start_stream_with_batch_limit_reaching_timeout(connection, stream_creator)
def test_start_stream_with_batch_limit_while_check_running(kafka_producer, kafka_topics, connection):
assert len(kafka_topics) > 0
def stream_creator(stream_name):
return (
f"CREATE KAFKA STREAM {stream_name} TOPICS {kafka_topics[0]} TRANSFORM kafka_transform.simple BATCH_SIZE 1"
)
def message_sender(message):
kafka_producer.send(kafka_topics[0], message).get(timeout=KAFKA_PRODUCER_SENDING_MSG_DEFAULT_TIMEOUT)
def setup_function(start_check_stream, cursor, stream_name, batch_limit, timeout):
thread_stream_check = Process(target=start_check_stream, daemon=True, args=(stream_name, batch_limit, timeout))
thread_stream_check.start()
def is_running():
return common.get_is_running(cursor, stream_name)
assert mg_sleep_and_assert(True, is_running)
message_sender(common.SIMPLE_MSG)
thread_stream_check.join()
common.test_start_stream_with_batch_limit_while_check_running(
connection, stream_creator, message_sender, setup_function
)
def test_check_while_stream_with_batch_limit_running(kafka_producer, kafka_topics, connection):
assert len(kafka_topics) > 0
def stream_creator(stream_name):
return (
f"CREATE KAFKA STREAM {stream_name} TOPICS {kafka_topics[0]} TRANSFORM kafka_transform.simple BATCH_SIZE 1"
)
def message_sender(message):
kafka_producer.send(kafka_topics[0], message).get(timeout=KAFKA_PRODUCER_SENDING_MSG_DEFAULT_TIMEOUT)
common.test_check_while_stream_with_batch_limit_running(connection, stream_creator, message_sender)
def test_start_stream_with_batch_limit_with_invalid_batch_limit(kafka_topics, connection):
assert len(kafka_topics) > 0
def stream_creator(stream_name):
return (
f"CREATE KAFKA STREAM {stream_name} TOPICS {kafka_topics[0]} TRANSFORM kafka_transform.simple BATCH_SIZE 1"
)
common.test_start_stream_with_batch_limit_with_invalid_batch_limit(connection, stream_creator)
def test_check_stream_with_batch_limit_with_invalid_batch_limit(kafka_topics, connection):
assert len(kafka_topics) > 0
def stream_creator(stream_name):
return (
f"CREATE KAFKA STREAM {stream_name} TOPICS {kafka_topics[0]} TRANSFORM kafka_transform.simple BATCH_SIZE 1"
)
common.test_check_stream_with_batch_limit_with_invalid_batch_limit(connection, stream_creator)
if __name__ == "__main__":
sys.exit(pytest.main([__file__, "-rA"]))