#!/usr/bin/env python3 # Copyright 2021 Memgraph Ltd. # # Use of this software is governed by the Business Source License # included in the file licenses/BSL.txt; by using this file, you agree to be bound by the terms of the Business Source # License, and you may not use this file except in compliance with the Business Source License. # # As of the Change Date specified in that file, in accordance with # the Business Source License, use of this software will be governed # by the Apache License, Version 2.0, included in the file # licenses/APL.txt. import argparse import collections import copy import fnmatch import inspect import json import multiprocessing import random import sys import datasets import log import helpers import runners def get_queries(gen, count): # Make the generator deterministic. random.seed(gen.__name__) # Generate queries. ret = [] for i in range(count): ret.append(gen()) return ret def match_patterns(dataset, variant, group, test, is_default_variant, patterns): for pattern in patterns: verdict = [fnmatch.fnmatchcase(dataset, pattern[0])] if pattern[1] != "": verdict.append(fnmatch.fnmatchcase(variant, pattern[1])) else: verdict.append(is_default_variant) verdict.append(fnmatch.fnmatchcase(group, pattern[2])) verdict.append(fnmatch.fnmatchcase(test, pattern[3])) if all(verdict): return True return False def filter_benchmarks(generators, patterns): patterns = copy.deepcopy(patterns) for i in range(len(patterns)): pattern = patterns[i].split("/") if len(pattern) > 4 or len(pattern) == 0: raise Exception("Invalid benchmark description '" + pattern + "'!") pattern.extend(["", "*", "*"][len(pattern) - 1:]) patterns[i] = pattern filtered = [] for dataset in sorted(generators.keys()): generator, tests = generators[dataset] for variant in generator.VARIANTS: is_default_variant = variant == generator.DEFAULT_VARIANT current = collections.defaultdict(list) for group in tests: for test_name, test_func in tests[group]: if match_patterns(dataset, variant, group, test_name, is_default_variant, patterns): current[group].append((test_name, test_func)) if len(current) > 0: filtered.append((generator(variant), dict(current))) return filtered # Parse options. parser = argparse.ArgumentParser( description="Memgraph benchmark executor.", formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument("benchmarks", nargs="*", default="", help="descriptions of benchmarks that should be run; " "multiple descriptions can be specified to run multiple " "benchmarks; the description is specified as " "dataset/variant/group/test; Unix shell-style wildcards " "can be used in the descriptions; variant, group and test " "are optional and they can be left out; the default " "variant is '' which selects the default dataset variant; " "the default group is '*' which selects all groups; the " "default test is '*' which selects all tests") parser.add_argument("--memgraph-binary", default=helpers.get_binary_path("memgraph"), help="Memgraph binary used for benchmarking") parser.add_argument("--client-binary", default=helpers.get_binary_path("tests/mgbench/client"), help="client binary used for benchmarking") parser.add_argument("--num-workers-for-import", type=int, default=multiprocessing.cpu_count() // 2, help="number of workers used to import the dataset") parser.add_argument("--num-workers-for-benchmark", type=int, default=1, help="number of workers used to execute the benchmark") parser.add_argument("--single-threaded-runtime-sec", type=int, default=10, help="single threaded duration of each test") parser.add_argument("--no-load-query-counts", action="store_true", help="disable loading of cached query counts") parser.add_argument("--no-save-query-counts", action="store_true", help="disable storing of cached query counts") parser.add_argument("--export-results", default="", help="file path into which results should be exported") parser.add_argument("--temporary-directory", default="/tmp", help="directory path where temporary data should " "be stored") parser.add_argument("--no-properties-on-edges", action="store_true", help="disable properties on edges") args = parser.parse_args() # Detect available datasets. generators = {} for key in dir(datasets): if key.startswith("_"): continue dataset = getattr(datasets, key) if not inspect.isclass(dataset) or dataset == datasets.Dataset or \ not issubclass(dataset, datasets.Dataset): continue tests = collections.defaultdict(list) for funcname in dir(dataset): if not funcname.startswith("benchmark__"): continue group, test = funcname.split("__")[1:] tests[group].append((test, funcname)) generators[dataset.NAME] = (dataset, dict(tests)) if dataset.PROPERTIES_ON_EDGES and args.no_properties_on_edges: raise Exception("The \"{}\" dataset requires properties on edges, " "but you have disabled them!".format(dataset.NAME)) # List datasets if there is no specified dataset. if len(args.benchmarks) == 0: log.init("Available tests") for name in sorted(generators.keys()): print("Dataset:", name) dataset, tests = generators[name] print(" Variants:", ", ".join(dataset.VARIANTS), "(default: " + dataset.DEFAULT_VARIANT + ")") for group in sorted(tests.keys()): print(" Group:", group) for test_name, test_func in tests[group]: print(" Test:", test_name) sys.exit(0) # Create cache, config and results objects. cache = helpers.Cache() if not args.no_load_query_counts: config = cache.load_config() else: config = helpers.RecursiveDict() results = helpers.RecursiveDict() # Filter out the generators. benchmarks = filter_benchmarks(generators, args.benchmarks) # Run all specified benchmarks. for dataset, tests in benchmarks: log.init("Preparing", dataset.NAME + "/" + dataset.get_variant(), "dataset") dataset.prepare(cache.cache_directory("datasets", dataset.NAME, dataset.get_variant())) # Prepare runners and import the dataset. memgraph = runners.Memgraph(args.memgraph_binary, args.temporary_directory, not args.no_properties_on_edges) client = runners.Client(args.client_binary, args.temporary_directory) memgraph.start_preparation() ret = client.execute(file_path=dataset.get_file(), num_workers=args.num_workers_for_import) usage = memgraph.stop() # Display import statistics. print() for row in ret: print("Executed", row["count"], "queries in", row["duration"], "seconds using", row["num_workers"], "workers with a total throughput of", row["throughput"], "queries/second.") print() print("The database used", usage["cpu"], "seconds of CPU time and peaked at", usage["memory"] / 1024 / 1024, "MiB of RAM.") # Save import results. import_key = [dataset.NAME, dataset.get_variant(), "__import__"] results.set_value(*import_key, value={"client": ret, "database": usage}) # TODO: cache import data # Run all benchmarks in all available groups. for group in sorted(tests.keys()): for test, funcname in tests[group]: log.info("Running test:", "{}/{}".format(group, test)) func = getattr(dataset, funcname) # Get number of queries to execute. # TODO: implement minimum number of queries, `max(10, num_workers)` config_key = [dataset.NAME, dataset.get_variant(), group, test] cached_count = config.get_value(*config_key) if cached_count is None: print("Determining the number of queries necessary for", args.single_threaded_runtime_sec, "seconds of single-threaded runtime...") # First run to prime the query caches. memgraph.start_benchmark() client.execute(queries=get_queries(func, 1), num_workers=1) # Get a sense of the runtime. count = 1 while True: ret = client.execute(queries=get_queries(func, count), num_workers=1) duration = ret[0]["duration"] should_execute = int(args.single_threaded_runtime_sec / (duration / count)) print("executed_queries={}, total_duration={}, " "query_duration={}, estimated_count={}".format( count, duration, duration / count, should_execute)) # We don't have to execute the next iteration when # `should_execute` becomes the same order of magnitude as # `count * 10`. if should_execute / (count * 10) < 10: count = should_execute break else: count = count * 10 memgraph.stop() config.set_value(*config_key, value={ "count": count, "duration": args.single_threaded_runtime_sec}) else: print("Using cached query count of", cached_count["count"], "queries for", cached_count["duration"], "seconds of single-threaded runtime.") count = int(cached_count["count"] * args.single_threaded_runtime_sec / cached_count["duration"]) # Benchmark run. print("Sample query:", get_queries(func, 1)[0][0]) print("Executing benchmark with", count, "queries that should " "yield a single-threaded runtime of", args.single_threaded_runtime_sec, "seconds.") print("Queries are executed using", args.num_workers_for_benchmark, "concurrent clients.") memgraph.start_benchmark() ret = client.execute(queries=get_queries(func, count), num_workers=args.num_workers_for_benchmark)[0] usage = memgraph.stop() ret["database"] = usage # Output summary. print() print("Executed", ret["count"], "queries in", ret["duration"], "seconds.") print("Queries have been retried", ret["retries"], "times.") print("Database used {:.3f} seconds of CPU time.".format( usage["cpu"])) print("Database peaked at {:.3f} MiB of memory.".format( usage["memory"] / 1024.0 / 1024.0)) print("{:<31} {:>20} {:>20} {:>20}".format("Metadata:", "min", "avg", "max")) metadata = ret["metadata"] for key in sorted(metadata.keys()): print("{name:>30}: {minimum:>20.06f} {average:>20.06f} " "{maximum:>20.06f}".format(name=key, **metadata[key])) log.success("Throughput: {:02f} QPS".format(ret["throughput"])) # Save results. results_key = [dataset.NAME, dataset.get_variant(), group, test] results.set_value(*results_key, value=ret) # Save configuration. if not args.no_save_query_counts: cache.save_config(config) # Export results. if args.export_results: with open(args.export_results, "w") as f: json.dump(results.get_data(), f)