// Copyright 2022 Memgraph Ltd. // // Use of this software is governed by the Business Source License // included in the file licenses/BSL.txt; by using this file, you agree to be bound by the terms of the Business Source // License, and you may not use this file except in compliance with the Business Source License. // // As of the Change Date specified in that file, in accordance with // the Business Source License, use of this software will be governed // by the Apache License, Version 2.0, included in the file // licenses/APL.txt. #include #include #include #include #include #include #include #include #include "common/types.hpp" #include "coordinator/coordinator_client.hpp" #include "coordinator/coordinator_rsm.hpp" #include "io/address.hpp" #include "io/errors.hpp" #include "io/rsm/raft.hpp" #include "io/rsm/rsm_client.hpp" #include "io/rsm/shard_rsm.hpp" #include "io/simulator/simulator.hpp" #include "io/simulator/simulator_transport.hpp" #include "storage/v3/id_types.hpp" #include "storage/v3/schemas.hpp" #include "utils/result.hpp" using memgraph::common::SchemaType; using memgraph::coordinator::AddressAndStatus; using memgraph::coordinator::Coordinator; using memgraph::coordinator::CoordinatorClient; using memgraph::coordinator::CoordinatorRsm; using memgraph::coordinator::HlcRequest; using memgraph::coordinator::HlcResponse; using memgraph::coordinator::PrimaryKey; using memgraph::coordinator::Shard; using memgraph::coordinator::ShardMap; using memgraph::coordinator::Shards; using memgraph::coordinator::Status; using memgraph::io::Address; using memgraph::io::Io; using memgraph::io::ResponseEnvelope; using memgraph::io::ResponseFuture; using memgraph::io::Time; using memgraph::io::TimedOut; using memgraph::io::rsm::Raft; using memgraph::io::rsm::ReadRequest; using memgraph::io::rsm::ReadResponse; using memgraph::io::rsm::RsmClient; using memgraph::io::rsm::ShardRsm; using memgraph::io::rsm::StorageReadRequest; using memgraph::io::rsm::StorageReadResponse; using memgraph::io::rsm::StorageWriteRequest; using memgraph::io::rsm::StorageWriteResponse; using memgraph::io::rsm::WriteRequest; using memgraph::io::rsm::WriteResponse; using memgraph::io::simulator::Simulator; using memgraph::io::simulator::SimulatorConfig; using memgraph::io::simulator::SimulatorStats; using memgraph::io::simulator::SimulatorTransport; using memgraph::storage::v3::LabelId; using memgraph::storage::v3::PropertyValue; using memgraph::storage::v3::SchemaProperty; using memgraph::utils::BasicResult; using PrimaryKey = std::vector; using ShardClient = RsmClient; namespace { const std::string label_name = std::string("test_label"); ShardMap CreateDummyShardmap(Address a_io_1, Address a_io_2, Address a_io_3, Address b_io_1, Address b_io_2, Address b_io_3) { ShardMap sm; // register new properties const std::vector property_names = {"property_1", "property_2"}; const auto properties = sm.AllocatePropertyIds(property_names); const auto property_id_1 = properties.at("property_1"); const auto property_id_2 = properties.at("property_2"); const auto type_1 = SchemaType::INT; const auto type_2 = SchemaType::INT; // register new label space std::vector schema = { SchemaProperty{.property_id = property_id_1, .type = type_1}, SchemaProperty{.property_id = property_id_2, .type = type_2}, }; size_t replication_factor = 3; std::optional label_id_opt = sm.InitializeNewLabel(label_name, schema, replication_factor, sm.shard_map_version); MG_ASSERT(label_id_opt.has_value()); const LabelId label_id = label_id_opt.value(); auto &label_space = sm.label_spaces.at(label_id); Shards &shards_for_label = label_space.shards; shards_for_label.clear(); // add first shard at [0, 0] AddressAndStatus aas1_1{.address = a_io_1, .status = Status::CONSENSUS_PARTICIPANT}; AddressAndStatus aas1_2{.address = a_io_2, .status = Status::CONSENSUS_PARTICIPANT}; AddressAndStatus aas1_3{.address = a_io_3, .status = Status::CONSENSUS_PARTICIPANT}; Shard shard1 = {aas1_1, aas1_2, aas1_3}; const auto key1 = PropertyValue(0); const auto key2 = PropertyValue(0); const PrimaryKey compound_key_1 = {key1, key2}; shards_for_label.emplace(compound_key_1, shard1); // add second shard at [12, 13] AddressAndStatus aas2_1{.address = b_io_1, .status = Status::CONSENSUS_PARTICIPANT}; AddressAndStatus aas2_2{.address = b_io_2, .status = Status::CONSENSUS_PARTICIPANT}; AddressAndStatus aas2_3{.address = b_io_3, .status = Status::CONSENSUS_PARTICIPANT}; Shard shard2 = {aas2_1, aas2_2, aas2_3}; auto key3 = PropertyValue(12); auto key4 = PropertyValue(13); PrimaryKey compound_key_2 = {key3, key4}; shards_for_label[compound_key_2] = shard2; return sm; } std::optional DetermineShardLocation(const Shard &target_shard, const std::vector
&a_addrs, ShardClient a_client, const std::vector
&b_addrs, ShardClient b_client) { for (const auto &addr : target_shard) { if (addr.address == b_addrs[0]) { return b_client; } if (addr.address == a_addrs[0]) { return a_client; } } return {}; } } // namespace using ConcreteCoordinatorRsm = CoordinatorRsm; using ConcreteShardRsm = Raft; template void RunStorageRaft( Raft server) { server.Run(); } int main() { SimulatorConfig config{ .drop_percent = 5, .perform_timeouts = true, .scramble_messages = true, .rng_seed = 0, .start_time = Time::min() + std::chrono::microseconds{256 * 1024}, .abort_time = Time::min() + std::chrono::microseconds{2 * 8 * 1024 * 1024}, }; auto simulator = Simulator(config); Io cli_io = simulator.RegisterNew(); // Register Io a_io_1 = simulator.RegisterNew(); Io a_io_2 = simulator.RegisterNew(); Io a_io_3 = simulator.RegisterNew(); Io b_io_1 = simulator.RegisterNew(); Io b_io_2 = simulator.RegisterNew(); Io b_io_3 = simulator.RegisterNew(); // Preconfigure coordinator with kv shard 'A' and 'B' auto sm1 = CreateDummyShardmap(a_io_1.GetAddress(), a_io_2.GetAddress(), a_io_3.GetAddress(), b_io_1.GetAddress(), b_io_2.GetAddress(), b_io_3.GetAddress()); auto sm2 = CreateDummyShardmap(a_io_1.GetAddress(), a_io_2.GetAddress(), a_io_3.GetAddress(), b_io_1.GetAddress(), b_io_2.GetAddress(), b_io_3.GetAddress()); auto sm3 = CreateDummyShardmap(a_io_1.GetAddress(), a_io_2.GetAddress(), a_io_3.GetAddress(), b_io_1.GetAddress(), b_io_2.GetAddress(), b_io_3.GetAddress()); // Spin up shard A std::vector
a_addrs = {a_io_1.GetAddress(), a_io_2.GetAddress(), a_io_3.GetAddress()}; std::vector
a_1_peers = {a_addrs[1], a_addrs[2]}; std::vector
a_2_peers = {a_addrs[0], a_addrs[2]}; std::vector
a_3_peers = {a_addrs[0], a_addrs[1]}; ConcreteShardRsm a_1{std::move(a_io_1), a_1_peers, ShardRsm{}}; ConcreteShardRsm a_2{std::move(a_io_2), a_2_peers, ShardRsm{}}; ConcreteShardRsm a_3{std::move(a_io_3), a_3_peers, ShardRsm{}}; auto a_thread_1 = std::jthread(RunStorageRaft, std::move(a_1)); simulator.IncrementServerCountAndWaitForQuiescentState(a_addrs[0]); auto a_thread_2 = std::jthread(RunStorageRaft, std::move(a_2)); simulator.IncrementServerCountAndWaitForQuiescentState(a_addrs[1]); auto a_thread_3 = std::jthread(RunStorageRaft, std::move(a_3)); simulator.IncrementServerCountAndWaitForQuiescentState(a_addrs[2]); // Spin up shard B std::vector
b_addrs = {b_io_1.GetAddress(), b_io_2.GetAddress(), b_io_3.GetAddress()}; std::vector
b_1_peers = {b_addrs[1], b_addrs[2]}; std::vector
b_2_peers = {b_addrs[0], b_addrs[2]}; std::vector
b_3_peers = {b_addrs[0], b_addrs[1]}; ConcreteShardRsm b_1{std::move(b_io_1), b_1_peers, ShardRsm{}}; ConcreteShardRsm b_2{std::move(b_io_2), b_2_peers, ShardRsm{}}; ConcreteShardRsm b_3{std::move(b_io_3), b_3_peers, ShardRsm{}}; auto b_thread_1 = std::jthread(RunStorageRaft, std::move(b_1)); simulator.IncrementServerCountAndWaitForQuiescentState(b_addrs[0]); auto b_thread_2 = std::jthread(RunStorageRaft, std::move(b_2)); simulator.IncrementServerCountAndWaitForQuiescentState(b_addrs[1]); auto b_thread_3 = std::jthread(RunStorageRaft, std::move(b_3)); simulator.IncrementServerCountAndWaitForQuiescentState(b_addrs[2]); // Spin up coordinators Io c_io_1 = simulator.RegisterNew(); Io c_io_2 = simulator.RegisterNew(); Io c_io_3 = simulator.RegisterNew(); std::vector
c_addrs = {c_io_1.GetAddress(), c_io_2.GetAddress(), c_io_3.GetAddress()}; std::vector
c_1_peers = {c_addrs[1], c_addrs[2]}; std::vector
c_2_peers = {c_addrs[0], c_addrs[2]}; std::vector
c_3_peers = {c_addrs[0], c_addrs[1]}; ConcreteCoordinatorRsm c_1{std::move(c_io_1), c_1_peers, Coordinator{(sm1)}}; ConcreteCoordinatorRsm c_2{std::move(c_io_2), c_2_peers, Coordinator{(sm2)}}; ConcreteCoordinatorRsm c_3{std::move(c_io_3), c_3_peers, Coordinator{(sm3)}}; auto c_thread_1 = std::jthread([c_1]() mutable { c_1.Run(); }); simulator.IncrementServerCountAndWaitForQuiescentState(c_addrs[0]); auto c_thread_2 = std::jthread([c_2]() mutable { c_2.Run(); }); simulator.IncrementServerCountAndWaitForQuiescentState(c_addrs[1]); auto c_thread_3 = std::jthread([c_3]() mutable { c_3.Run(); }); simulator.IncrementServerCountAndWaitForQuiescentState(c_addrs[2]); std::cout << "beginning test after servers have become quiescent" << std::endl; // Have client contact coordinator RSM for a new transaction ID and // also get the current shard map CoordinatorClient coordinator_client(cli_io, c_addrs[0], c_addrs); ShardClient shard_a_client(cli_io, a_addrs[0], a_addrs); ShardClient shard_b_client(cli_io, b_addrs[0], b_addrs); memgraph::coordinator::HlcRequest req; // Last ShardMap Version The query engine knows about. ShardMap client_shard_map; req.last_shard_map_version = client_shard_map.GetHlc(); while (true) { // Create PrimaryKey const auto cm_key_1 = PropertyValue(3); const auto cm_key_2 = PropertyValue(4); const PrimaryKey compound_key = {cm_key_1, cm_key_2}; // Look for Shard BasicResult read_res = coordinator_client.SendWriteRequest(req); if (read_res.HasError()) { // timeout continue; } auto coordinator_read_response = read_res.GetValue(); HlcResponse hlc_response = std::get(coordinator_read_response); // Transaction ID to be used later... auto transaction_id = hlc_response.new_hlc; if (hlc_response.fresher_shard_map) { client_shard_map = hlc_response.fresher_shard_map.value(); } auto target_shard = client_shard_map.GetShardForKey(label_name, compound_key); // Determine which shard to send the requests to. This should be a more proper client cache in the "real" version. auto storage_client_opt = DetermineShardLocation(target_shard, a_addrs, shard_a_client, b_addrs, shard_b_client); MG_ASSERT(storage_client_opt); auto storage_client = storage_client_opt.value(); LabelId label_id = client_shard_map.labels.at(label_name); // Have client use shard map to decide which shard to communicate // with in order to write a new value // client_shard_map. StorageWriteRequest storage_req; storage_req.label_id = label_id; storage_req.key = compound_key; storage_req.value = 1000; storage_req.transaction_id = transaction_id; auto write_response_result = storage_client.SendWriteRequest(storage_req); if (write_response_result.HasError()) { // timed out continue; } auto write_response = write_response_result.GetValue(); bool cas_succeeded = write_response.shard_rsm_success; if (!cas_succeeded) { continue; } // Have client use shard map to decide which shard to communicate // with to read that same value back StorageReadRequest storage_get_req; storage_get_req.label_id = label_id; storage_get_req.key = compound_key; storage_get_req.transaction_id = transaction_id; auto get_response_result = storage_client.SendReadRequest(storage_get_req); if (get_response_result.HasError()) { // timed out continue; } auto get_response = get_response_result.GetValue(); auto val = get_response.value.value(); MG_ASSERT(val == 1000); break; } simulator.ShutDown(); SimulatorStats stats = simulator.Stats(); std::cout << "total messages: " << stats.total_messages << std::endl; std::cout << "dropped messages: " << stats.dropped_messages << std::endl; std::cout << "timed out requests: " << stats.timed_out_requests << std::endl; std::cout << "total requests: " << stats.total_requests << std::endl; std::cout << "total responses: " << stats.total_responses << std::endl; std::cout << "simulator ticks: " << stats.simulator_ticks << std::endl; std::cout << "========================== SUCCESS :) ==========================" << std::endl; return 0; }