#pragma once #include "math.hpp" #include "point.hpp" #include "kdnode.hpp" namespace kd { // helper class for calculating the nearest neighbour in a kdtree template struct Result { Result() : node(nullptr), distance_sq(std::numeric_limits::infinity()) {} Result(const KdNode* node, T distance_sq) : node(node), distance_sq(distance_sq) {} const KdNode* node; T distance_sq; }; // a recursive implementation for the kdtree nearest neighbour search // \param p the point for which we search for the nearest neighbour // \param node the root of the subtree during recursive descent // \param best the place to save the best result so far template void nns(const Point& p, const KdNode* const node, Result& best) { if(node == nullptr) return; T d = math::distance_sq(p, node->coord); // keep record of the closest point C found so far if(d < best.distance_sq) { best.node = node; best.distance_sq = d; } // where to traverse next? // what to prune? // | // possible | // prune * // area | - - - - -* P // | // // |----------| // dx // // possible prune // RIGHT area // // --------*------ --- // | | // LEFT | // | | dy // | // | | // * p --- T axd = math::axial_distance(p, node->coord, node->axis); // traverse the subtree in order that // maximizes the probability for pruning auto near = axd > 0 ? node->right : node->left; auto far = axd > 0 ? node->left : node->right; // try near first nns(p, near, best); // prune subtrees once their bounding boxes say // that they can't contain any point closer than C if(axd * axd >= best.distance_sq) return; // try other subtree nns(p, far, best); } // an implementation for the kdtree nearest neighbour search // \param p the point for which we search for the nearest neighbour // \param root the root of the tree // \return the nearest neighbour for the point p template const KdNode* nns(const Point& p, const KdNode* root) { Result best; // begin recursive search nns(p, root, best); return best.node; } }