// // Copyright 2017 Memgraph // Created by Florijan Stamenkovic on 14.03.17. // #include #include #include #include "gmock/gmock.h" #include "gtest/gtest.h" #include "communication/result_stream_faker.hpp" #include "dbms/dbms.hpp" #include "query/context.hpp" #include "query/exceptions.hpp" #include "query/frontend/interpret/interpret.hpp" #include "query/frontend/logical/planner.hpp" #include "query_common.hpp" using namespace query; using namespace query::plan; /** * Helper function that collects all the results from the given * Produce into a ResultStreamFaker and returns that object. * * @param produce * @param symbol_table * @param db_accessor * @return */ auto CollectProduce(std::shared_ptr produce, SymbolTable &symbol_table, GraphDbAccessor &db_accessor) { ResultStreamFaker stream; Frame frame(symbol_table.max_position()); // top level node in the operator tree is a produce (return) // so stream out results // generate header std::vector header; for (auto named_expression : produce->named_expressions()) header.push_back(named_expression->name_); stream.Header(header); // collect the symbols from the return clause std::vector symbols; for (auto named_expression : produce->named_expressions()) symbols.emplace_back(symbol_table[*named_expression]); // stream out results auto cursor = produce->MakeCursor(db_accessor); while (cursor->Pull(frame, symbol_table)) { std::vector values; for (auto &symbol : symbols) values.emplace_back(frame[symbol]); stream.Result(values); } stream.Summary({{std::string("type"), TypedValue("r")}}); return stream; } int PullAll(std::shared_ptr logical_op, GraphDbAccessor &db, SymbolTable symbol_table) { Frame frame(symbol_table.max_position()); auto cursor = logical_op->MakeCursor(db); int count = 0; while (cursor->Pull(frame, symbol_table)) count++; return count; } template auto MakeProduce(std::shared_ptr input, TNamedExpressions... named_expressions) { return std::make_shared( input, std::vector{named_expressions...}); } struct ScanAllTuple { NodeAtom *node_; std::shared_ptr op_; Symbol sym_; }; /** * Creates and returns a tuple of stuff for a scan-all starting * from the node with the given name. * * Returns (node_atom, scan_all_logical_op, symbol). */ ScanAllTuple MakeScanAll(AstTreeStorage &storage, SymbolTable &symbol_table, const std::string &identifier, std::shared_ptr input = {nullptr}) { auto node = NODE(identifier); auto logical_op = std::make_shared(node, input); auto symbol = symbol_table.CreateSymbol(identifier); symbol_table[*node->identifier_] = symbol; // return std::make_tuple(node, logical_op, symbol); return ScanAllTuple{node, logical_op, symbol}; } struct ExpandTuple { EdgeAtom *edge_; Symbol edge_sym_; NodeAtom *node_; Symbol node_sym_; std::shared_ptr op_; }; ExpandTuple MakeExpand(AstTreeStorage &storage, SymbolTable &symbol_table, std::shared_ptr input, Symbol input_symbol, const std::string &edge_identifier, EdgeAtom::Direction direction, bool edge_cycle, const std::string &node_identifier, bool node_cycle) { auto edge = EDGE(edge_identifier, direction); auto edge_sym = symbol_table.CreateSymbol(edge_identifier); symbol_table[*edge->identifier_] = edge_sym; auto node = NODE(node_identifier); auto node_sym = symbol_table.CreateSymbol(node_identifier); symbol_table[*node->identifier_] = node_sym; auto op = std::make_shared(node, edge, input, input_symbol, node_cycle, edge_cycle); return ExpandTuple{edge, edge_sym, node, node_sym, op}; } template auto CountIterable(TIterable iterable) { return std::distance(iterable.begin(), iterable.end()); } /* * Actual tests start here. */ TEST(Interpreter, MatchReturn) { Dbms dbms; auto dba = dbms.active(); // add a few nodes to the database dba->insert_vertex(); dba->insert_vertex(); dba->advance_command(); AstTreeStorage storage; SymbolTable symbol_table; auto scan_all = MakeScanAll(storage, symbol_table, "n"); auto output = NEXPR("n", IDENT("n")); auto produce = MakeProduce(scan_all.op_, output); symbol_table[*output->expression_] = scan_all.sym_; symbol_table[*output] = symbol_table.CreateSymbol("named_expression_1"); ResultStreamFaker result = CollectProduce(produce, symbol_table, *dba); EXPECT_EQ(result.GetResults().size(), 2); } TEST(Interpreter, MatchReturnCartesian) { Dbms dbms; auto dba = dbms.active(); dba->insert_vertex().add_label(dba->label("l1")); dba->insert_vertex().add_label(dba->label("l2")); dba->advance_command(); AstTreeStorage storage; SymbolTable symbol_table; auto n = MakeScanAll(storage, symbol_table, "n"); auto m = MakeScanAll(storage, symbol_table, "m", n.op_); auto return_n = NEXPR("n", IDENT("n")); symbol_table[*return_n->expression_] = n.sym_; symbol_table[*return_n] = symbol_table.CreateSymbol("named_expression_1"); auto return_m = NEXPR("m", IDENT("m")); symbol_table[*return_m->expression_] = m.sym_; symbol_table[*return_m] = symbol_table.CreateSymbol("named_expression_2"); auto produce = MakeProduce(m.op_, return_n, return_m); ResultStreamFaker result = CollectProduce(produce, symbol_table, *dba); auto result_data = result.GetResults(); EXPECT_EQ(result_data.size(), 4); // ensure the result ordering is OK: // "n" from the results is the same for the first two rows, while "m" isn't EXPECT_EQ(result_data[0][0].Value(), result_data[1][0].Value()); EXPECT_NE(result_data[0][1].Value(), result_data[1][1].Value()); } TEST(Interpreter, StandaloneReturn) { Dbms dbms; auto dba = dbms.active(); // add a few nodes to the database dba->insert_vertex(); dba->insert_vertex(); dba->advance_command(); AstTreeStorage storage; SymbolTable symbol_table; auto output = NEXPR("n", LITERAL(42)); auto produce = MakeProduce(std::shared_ptr(nullptr), output); symbol_table[*output] = symbol_table.CreateSymbol("named_expression_1"); ResultStreamFaker result = CollectProduce(produce, symbol_table, *dba); EXPECT_EQ(result.GetResults().size(), 1); EXPECT_EQ(result.GetResults()[0].size(), 1); EXPECT_EQ(result.GetResults()[0][0].Value(), 42); } TEST(Interpreter, NodeFilterLabelsAndProperties) { Dbms dbms; auto dba = dbms.active(); // add a few nodes to the database GraphDbTypes::Label label = dba->label("Label"); GraphDbTypes::Property property = dba->property("Property"); auto v1 = dba->insert_vertex(); auto v2 = dba->insert_vertex(); auto v3 = dba->insert_vertex(); auto v4 = dba->insert_vertex(); auto v5 = dba->insert_vertex(); dba->insert_vertex(); // test all combination of (label | no_label) * (no_prop | wrong_prop | // right_prop) // only v1 will have the right labels v1.add_label(label); v2.add_label(label); v3.add_label(label); v1.PropsSet(property, 42); v2.PropsSet(property, 1); v4.PropsSet(property, 42); v5.PropsSet(property, 1); dba->advance_command(); AstTreeStorage storage; SymbolTable symbol_table; // make a scan all auto n = MakeScanAll(storage, symbol_table, "n"); n.node_->labels_.emplace_back(label); n.node_->properties_[property] = LITERAL(42); // node filtering auto node_filter = std::make_shared(n.op_, n.sym_, n.node_); // make a named expression and a produce auto output = NEXPR("x", IDENT("n")); symbol_table[*output->expression_] = n.sym_; symbol_table[*output] = symbol_table.CreateSymbol("named_expression_1"); auto produce = MakeProduce(node_filter, output); ResultStreamFaker result = CollectProduce(produce, symbol_table, *dba); EXPECT_EQ(result.GetResults().size(), 1); } TEST(Interpreter, NodeFilterMultipleLabels) { Dbms dbms; auto dba = dbms.active(); // add a few nodes to the database GraphDbTypes::Label label1 = dba->label("label1"); GraphDbTypes::Label label2 = dba->label("label2"); GraphDbTypes::Label label3 = dba->label("label3"); // the test will look for nodes that have label1 and label2 dba->insert_vertex(); // NOT accepted dba->insert_vertex().add_label(label1); // NOT accepted dba->insert_vertex().add_label(label2); // NOT accepted dba->insert_vertex().add_label(label3); // NOT accepted auto v1 = dba->insert_vertex(); // YES accepted v1.add_label(label1); v1.add_label(label2); auto v2 = dba->insert_vertex(); // NOT accepted v2.add_label(label1); v2.add_label(label3); auto v3 = dba->insert_vertex(); // YES accepted v3.add_label(label1); v3.add_label(label2); v3.add_label(label3); dba->advance_command(); AstTreeStorage storage; SymbolTable symbol_table; // make a scan all auto n = MakeScanAll(storage, symbol_table, "n"); n.node_->labels_.emplace_back(label1); n.node_->labels_.emplace_back(label2); // node filtering auto node_filter = std::make_shared(n.op_, n.sym_, n.node_); // make a named expression and a produce auto output = NEXPR("n", IDENT("n")); auto produce = MakeProduce(node_filter, output); // fill up the symbol table symbol_table[*output] = symbol_table.CreateSymbol("named_expression_1"); symbol_table[*output->expression_] = n.sym_; ResultStreamFaker result = CollectProduce(produce, symbol_table, *dba); EXPECT_EQ(result.GetResults().size(), 2); } TEST(Interpreter, CreateNodeWithAttributes) { Dbms dbms; auto dba = dbms.active(); GraphDbTypes::Label label = dba->label("Person"); GraphDbTypes::Property property = dba->label("age"); AstTreeStorage storage; SymbolTable symbol_table; auto node = NODE("n"); symbol_table[*node->identifier_] = symbol_table.CreateSymbol("n"); node->labels_.emplace_back(label); node->properties_[property] = LITERAL(42); auto create = std::make_shared(node, nullptr); PullAll(create, *dba, symbol_table); dba->advance_command(); // count the number of vertices int vertex_count = 0; for (VertexAccessor vertex : dba->vertices()) { vertex_count++; EXPECT_EQ(vertex.labels().size(), 1); EXPECT_EQ(*vertex.labels().begin(), label); EXPECT_EQ(vertex.Properties().size(), 1); auto prop_eq = vertex.PropsAt(property) == TypedValue(42); ASSERT_EQ(prop_eq.type(), TypedValue::Type::Bool); EXPECT_TRUE(prop_eq.Value()); } EXPECT_EQ(vertex_count, 1); } TEST(Interpreter, CreateReturn) { // test CREATE (n:Person {age: 42}) RETURN n, n.age Dbms dbms; auto dba = dbms.active(); GraphDbTypes::Label label = dba->label("Person"); GraphDbTypes::Property property = dba->label("age"); AstTreeStorage storage; SymbolTable symbol_table; auto node = NODE("n"); auto sym_n = symbol_table.CreateSymbol("n"); symbol_table[*node->identifier_] = sym_n; node->labels_.emplace_back(label); node->properties_[property] = LITERAL(42); auto create = std::make_shared(node, nullptr); auto named_expr_n = NEXPR("n", IDENT("n")); symbol_table[*named_expr_n] = symbol_table.CreateSymbol("named_expr_n"); symbol_table[*named_expr_n->expression_] = sym_n; auto prop_lookup = PROPERTY_LOOKUP("n", property); symbol_table[*prop_lookup->expression_] = sym_n; auto named_expr_n_p = NEXPR("n", prop_lookup); symbol_table[*named_expr_n_p] = symbol_table.CreateSymbol("named_expr_n_p"); symbol_table[*named_expr_n->expression_] = sym_n; auto produce = MakeProduce(create, named_expr_n, named_expr_n_p); auto result = CollectProduce(produce, symbol_table, *dba); EXPECT_EQ(1, result.GetResults().size()); EXPECT_EQ(2, result.GetResults()[0].size()); EXPECT_EQ(TypedValue::Type::Vertex, result.GetResults()[0][0].type()); EXPECT_EQ(1, result.GetResults()[0][0].Value().labels().size()); EXPECT_EQ(label, result.GetResults()[0][0].Value().labels()[0]); EXPECT_EQ(TypedValue::Type::Int, result.GetResults()[0][1].type()); EXPECT_EQ(42, result.GetResults()[0][1].Value()); dba->advance_command(); EXPECT_EQ(1, CountIterable(dba->vertices())); } TEST(Interpreter, CreateExpand) { Dbms dbms; auto dba = dbms.active(); GraphDbTypes::Label label_node_1 = dba->label("Node1"); GraphDbTypes::Label label_node_2 = dba->label("Node2"); GraphDbTypes::Property property = dba->label("prop"); GraphDbTypes::EdgeType edge_type = dba->label("edge_type"); SymbolTable symbol_table; AstTreeStorage storage; auto test_create_path = [&](bool cycle, int expected_nodes_created, int expected_edges_created) { int before_v = CountIterable(dba->vertices()); int before_e = CountIterable(dba->edges()); // data for the first node auto n = NODE("n"); n->labels_.emplace_back(label_node_1); n->properties_[property] = LITERAL(1); auto n_sym = symbol_table.CreateSymbol("n"); symbol_table[*n->identifier_] = n_sym; // data for the second node auto m = NODE("m"); m->labels_.emplace_back(label_node_2); m->properties_[property] = LITERAL(2); if (cycle) symbol_table[*m->identifier_] = n_sym; else symbol_table[*m->identifier_] = symbol_table.CreateSymbol("m"); auto r = EDGE("r", EdgeAtom::Direction::RIGHT); symbol_table[*r->identifier_] = symbol_table.CreateSymbol("r"); r->edge_types_.emplace_back(edge_type); r->properties_[property] = LITERAL(3); auto create_op = std::make_shared(n, nullptr); auto create_expand = std::make_shared(m, r, create_op, n_sym, cycle); PullAll(create_expand, *dba, symbol_table); dba->advance_command(); EXPECT_EQ(CountIterable(dba->vertices()) - before_v, expected_nodes_created); EXPECT_EQ(CountIterable(dba->edges()) - before_e, expected_edges_created); }; test_create_path(false, 2, 1); test_create_path(true, 1, 1); for (VertexAccessor vertex : dba->vertices()) { EXPECT_EQ(vertex.labels().size(), 1); GraphDbTypes::Label label = vertex.labels()[0]; if (label == label_node_1) { // node created by first op EXPECT_EQ(vertex.PropsAt(property).Value(), 1); } else if (label == label_node_2) { // node create by expansion EXPECT_EQ(vertex.PropsAt(property).Value(), 2); } else { // should not happen FAIL(); } for (EdgeAccessor edge : dba->edges()) { EXPECT_EQ(edge.edge_type(), edge_type); EXPECT_EQ(edge.PropsAt(property).Value(), 3); } } } TEST(Interpreter, MatchCreateNode) { Dbms dbms; auto dba = dbms.active(); // add three nodes we'll match and expand-create from dba->insert_vertex(); dba->insert_vertex(); dba->insert_vertex(); dba->advance_command(); SymbolTable symbol_table; AstTreeStorage storage; // first node auto n_scan_all = MakeScanAll(storage, symbol_table, "n"); // second node auto m = NODE("m"); symbol_table[*m->identifier_] = symbol_table.CreateSymbol("m"); // creation op auto create_node = std::make_shared(m, n_scan_all.op_); EXPECT_EQ(CountIterable(dba->vertices()), 3); PullAll(create_node, *dba, symbol_table); dba->advance_command(); EXPECT_EQ(CountIterable(dba->vertices()), 6); } TEST(Interpreter, MatchCreateExpand) { Dbms dbms; auto dba = dbms.active(); // add three nodes we'll match and expand-create from dba->insert_vertex(); dba->insert_vertex(); dba->insert_vertex(); dba->advance_command(); // GraphDbTypes::Label label_node_1 = dba->label("Node1"); // GraphDbTypes::Label label_node_2 = dba->label("Node2"); // GraphDbTypes::Property property = dba->label("prop"); GraphDbTypes::EdgeType edge_type = dba->label("edge_type"); SymbolTable symbol_table; AstTreeStorage storage; auto test_create_path = [&](bool cycle, int expected_nodes_created, int expected_edges_created) { int before_v = CountIterable(dba->vertices()); int before_e = CountIterable(dba->edges()); // data for the first node auto n_scan_all = MakeScanAll(storage, symbol_table, "n"); // data for the second node auto m = NODE("m"); if (cycle) symbol_table[*m->identifier_] = n_scan_all.sym_; else symbol_table[*m->identifier_] = symbol_table.CreateSymbol("m"); auto r = EDGE("r", EdgeAtom::Direction::RIGHT); symbol_table[*r->identifier_] = symbol_table.CreateSymbol("r"); r->edge_types_.emplace_back(edge_type); auto create_expand = std::make_shared(m, r, n_scan_all.op_, n_scan_all.sym_, cycle); PullAll(create_expand, *dba, symbol_table); dba->advance_command(); EXPECT_EQ(CountIterable(dba->vertices()) - before_v, expected_nodes_created); EXPECT_EQ(CountIterable(dba->edges()) - before_e, expected_edges_created); }; test_create_path(false, 3, 3); test_create_path(true, 0, 6); } TEST(Interpreter, Expand) { Dbms dbms; auto dba = dbms.active(); // make a V-graph (v3)<-[r2]-(v1)-[r1]->(v2) auto v1 = dba->insert_vertex(); v1.add_label((GraphDbTypes::Label)1); auto v2 = dba->insert_vertex(); v2.add_label((GraphDbTypes::Label)2); auto v3 = dba->insert_vertex(); v3.add_label((GraphDbTypes::Label)3); auto edge_type = dba->edge_type("Edge"); dba->insert_edge(v1, v2, edge_type); dba->insert_edge(v1, v3, edge_type); dba->advance_command(); AstTreeStorage storage; SymbolTable symbol_table; auto test_expand = [&](EdgeAtom::Direction direction, int expected_result_count) { auto n = MakeScanAll(storage, symbol_table, "n"); auto r_m = MakeExpand(storage, symbol_table, n.op_, n.sym_, "r", direction, false, "m", false); // make a named expression and a produce auto output = NEXPR("m", IDENT("m")); symbol_table[*output->expression_] = r_m.node_sym_; symbol_table[*output] = symbol_table.CreateSymbol("named_expression_1"); auto produce = MakeProduce(r_m.op_, output); ResultStreamFaker result = CollectProduce(produce, symbol_table, *dba); EXPECT_EQ(result.GetResults().size(), expected_result_count); }; test_expand(EdgeAtom::Direction::RIGHT, 2); test_expand(EdgeAtom::Direction::LEFT, 2); test_expand(EdgeAtom::Direction::BOTH, 4); } TEST(Interpreter, ExpandNodeCycle) { Dbms dbms; auto dba = dbms.active(); // make a graph (v1)->(v2) that // has a recursive edge (v1)->(v1) auto v1 = dba->insert_vertex(); auto v2 = dba->insert_vertex(); auto edge_type = dba->edge_type("Edge"); dba->insert_edge(v1, v1, edge_type); dba->insert_edge(v1, v2, edge_type); dba->advance_command(); AstTreeStorage storage; SymbolTable symbol_table; auto test_cycle = [&](bool with_cycle, int expected_result_count) { auto n = MakeScanAll(storage, symbol_table, "n"); auto r_n = MakeExpand(storage, symbol_table, n.op_, n.sym_, "r", EdgeAtom::Direction::RIGHT, false, "n", with_cycle); if (with_cycle) symbol_table[*r_n.node_->identifier_] = symbol_table[*n.node_->identifier_]; // make a named expression and a produce auto output = NEXPR("n", IDENT("n")); symbol_table[*output->expression_] = n.sym_; symbol_table[*output] = symbol_table.CreateSymbol("named_expression_1"); auto produce = MakeProduce(r_n.op_, output); ResultStreamFaker result = CollectProduce(produce, symbol_table, *dba); EXPECT_EQ(result.GetResults().size(), expected_result_count); }; test_cycle(true, 1); test_cycle(false, 2); } TEST(Interpreter, ExpandEdgeCycle) { Dbms dbms; auto dba = dbms.active(); // make a V-graph (v3)<-[r2]-(v1)-[r1]->(v2) auto v1 = dba->insert_vertex(); v1.add_label((GraphDbTypes::Label)1); auto v2 = dba->insert_vertex(); v2.add_label((GraphDbTypes::Label)2); auto v3 = dba->insert_vertex(); v3.add_label((GraphDbTypes::Label)3); auto edge_type = dba->edge_type("Edge"); dba->insert_edge(v1, v2, edge_type); dba->insert_edge(v1, v3, edge_type); dba->advance_command(); AstTreeStorage storage; SymbolTable symbol_table; auto test_cycle = [&](bool with_cycle, int expected_result_count) { auto i = MakeScanAll(storage, symbol_table, "i"); auto r_j = MakeExpand(storage, symbol_table, i.op_, i.sym_, "r", EdgeAtom::Direction::BOTH, false, "j", false); auto r_k = MakeExpand(storage, symbol_table, r_j.op_, r_j.node_sym_, "r", EdgeAtom::Direction::BOTH, with_cycle, "k", false); if (with_cycle) symbol_table[*r_k.edge_->identifier_] = symbol_table[*r_j.edge_->identifier_]; // make a named expression and a produce auto output = NEXPR("r", IDENT("r")); symbol_table[*output->expression_] = r_j.edge_sym_; symbol_table[*output] = symbol_table.CreateSymbol("named_expression_1"); auto produce = MakeProduce(r_k.op_, output); ResultStreamFaker result = CollectProduce(produce, symbol_table, *dba); EXPECT_EQ(result.GetResults().size(), expected_result_count); }; test_cycle(true, 4); test_cycle(false, 6); } TEST(Interpreter, EdgeFilter) { Dbms dbms; auto dba = dbms.active(); // make an N-star expanding from (v1) // where only one edge will qualify // and there are all combinations of // (edge_type yes|no) * (property yes|absent|no) std::vector edge_types; for (int j = 0; j < 2; ++j) edge_types.push_back(dba->edge_type("et" + std::to_string(j))); std::vector vertices; for (int i = 0; i < 7; ++i) vertices.push_back(dba->insert_vertex()); GraphDbTypes::Property prop = dba->property("prop"); std::vector edges; for (int i = 0; i < 6; ++i) { edges.push_back( dba->insert_edge(vertices[0], vertices[i + 1], edge_types[i % 2])); switch (i % 3) { case 0: edges.back().PropsSet(prop, 42); break; case 1: edges.back().PropsSet(prop, 100); break; default: break; } } dba->advance_command(); AstTreeStorage storage; SymbolTable symbol_table; // define an operator tree for query // MATCH (n)-[r]->(m) RETURN m auto n = MakeScanAll(storage, symbol_table, "n"); auto r_m = MakeExpand(storage, symbol_table, n.op_, n.sym_, "r", EdgeAtom::Direction::RIGHT, false, "m", false); r_m.edge_->edge_types_.push_back(edge_types[0]); r_m.edge_->properties_[prop] = LITERAL(42); auto edge_filter = std::make_shared(r_m.op_, r_m.edge_sym_, r_m.edge_); // make a named expression and a produce auto output = NEXPR("m", IDENT("m")); symbol_table[*output->expression_] = r_m.node_sym_; symbol_table[*output] = symbol_table.CreateSymbol("named_expression_1"); auto produce = MakeProduce(edge_filter, output); ResultStreamFaker result = CollectProduce(produce, symbol_table, *dba); EXPECT_EQ(result.GetResults().size(), 1); } TEST(Interpreter, EdgeFilterMultipleTypes) { Dbms dbms; auto dba = dbms.active(); auto v1 = dba->insert_vertex(); auto v2 = dba->insert_vertex(); auto type_1 = dba->edge_type("type_1"); auto type_2 = dba->edge_type("type_2"); auto type_3 = dba->edge_type("type_3"); dba->insert_edge(v1, v2, type_1); dba->insert_edge(v1, v2, type_2); dba->insert_edge(v1, v2, type_3); dba->advance_command(); AstTreeStorage storage; SymbolTable symbol_table; // make a scan all auto n = MakeScanAll(storage, symbol_table, "n"); auto r_m = MakeExpand(storage, symbol_table, n.op_, n.sym_, "r", EdgeAtom::Direction::RIGHT, false, "m", false); // add a property filter auto edge_filter = std::make_shared(r_m.op_, r_m.edge_sym_, r_m.edge_); r_m.edge_->edge_types_.push_back(type_1); r_m.edge_->edge_types_.push_back(type_2); // make a named expression and a produce auto output = NEXPR("m", IDENT("m")); auto produce = MakeProduce(edge_filter, output); // fill up the symbol table symbol_table[*output] = symbol_table.CreateSymbol("named_expression_1"); symbol_table[*output->expression_] = r_m.node_sym_; ResultStreamFaker result = CollectProduce(produce, symbol_table, *dba); EXPECT_EQ(result.GetResults().size(), 2); } TEST(Interpreter, Delete) { Dbms dbms; auto dba = dbms.active(); // make a fully-connected (one-direction, no cycles) with 4 nodes std::vector vertices; for (int i = 0; i < 4; ++i) vertices.push_back(dba->insert_vertex()); auto type = dba->edge_type("type"); for (int j = 0; j < 4; ++j) for (int k = j + 1; k < 4; ++k) dba->insert_edge(vertices[j], vertices[k], type); dba->advance_command(); EXPECT_EQ(4, CountIterable(dba->vertices())); EXPECT_EQ(6, CountIterable(dba->edges())); AstTreeStorage storage; SymbolTable symbol_table; // attempt to delete a vertex, and fail { auto n = MakeScanAll(storage, symbol_table, "n"); auto n_get = storage.Create("n"); symbol_table[*n_get] = n.sym_; auto delete_op = std::make_shared( n.op_, std::vector{n_get}, false); EXPECT_THROW(PullAll(delete_op, *dba, symbol_table), QueryRuntimeException); dba->advance_command(); EXPECT_EQ(4, CountIterable(dba->vertices())); EXPECT_EQ(6, CountIterable(dba->edges())); } // detach delete a single vertex { auto n = MakeScanAll(storage, symbol_table, "n"); auto n_get = storage.Create("n"); symbol_table[*n_get] = n.sym_; auto delete_op = std::make_shared( n.op_, std::vector{n_get}, true); Frame frame(symbol_table.max_position()); delete_op->MakeCursor(*dba)->Pull(frame, symbol_table); dba->advance_command(); EXPECT_EQ(3, CountIterable(dba->vertices())); EXPECT_EQ(3, CountIterable(dba->edges())); } // delete all remaining edges { auto n = MakeScanAll(storage, symbol_table, "n"); auto r_m = MakeExpand(storage, symbol_table, n.op_, n.sym_, "r", EdgeAtom::Direction::RIGHT, false, "m", false); auto r_get = storage.Create("r"); symbol_table[*r_get] = r_m.edge_sym_; auto delete_op = std::make_shared( r_m.op_, std::vector{r_get}, false); PullAll(delete_op, *dba, symbol_table); dba->advance_command(); EXPECT_EQ(3, CountIterable(dba->vertices())); EXPECT_EQ(0, CountIterable(dba->edges())); } // delete all remaining vertices { auto n = MakeScanAll(storage, symbol_table, "n"); auto n_get = storage.Create("n"); symbol_table[*n_get] = n.sym_; auto delete_op = std::make_shared( n.op_, std::vector{n_get}, false); PullAll(delete_op, *dba, symbol_table); dba->advance_command(); EXPECT_EQ(0, CountIterable(dba->vertices())); EXPECT_EQ(0, CountIterable(dba->edges())); } } TEST(Interpreter, DeleteReturn) { Dbms dbms; auto dba = dbms.active(); // make a fully-connected (one-direction, no cycles) with 4 nodes auto prop = dba->property("prop"); for (int i = 0; i < 4; ++i) { auto va = dba->insert_vertex(); va.PropsSet(prop, 42); } dba->advance_command(); EXPECT_EQ(4, CountIterable(dba->vertices())); EXPECT_EQ(0, CountIterable(dba->edges())); AstTreeStorage storage; SymbolTable symbol_table; auto n = MakeScanAll(storage, symbol_table, "n"); auto n_get = storage.Create("n"); symbol_table[*n_get] = n.sym_; auto delete_op = std::make_shared( n.op_, std::vector{n_get}, true); auto prop_lookup = storage.Create(storage.Create("n"), prop); symbol_table[*prop_lookup->expression_] = n.sym_; auto n_p = storage.Create("n", prop_lookup); symbol_table[*n_p] = symbol_table.CreateSymbol("bla"); auto produce = MakeProduce(delete_op, n_p); auto result = CollectProduce(produce, symbol_table, *dba); EXPECT_EQ(4, result.GetResults().size()); dba->advance_command(); EXPECT_EQ(0, CountIterable(dba->vertices())); } TEST(Interpreter, Filter) { Dbms dbms; auto dba = dbms.active(); // add a 6 nodes with property 'prop', 2 have true as value GraphDbTypes::Property property = dba->property("Property"); for (int i = 0; i < 6; ++i) dba->insert_vertex().PropsSet(property, i % 3 == 0); dba->insert_vertex(); // prop not set, gives NULL dba->advance_command(); AstTreeStorage storage; SymbolTable symbol_table; auto n = MakeScanAll(storage, symbol_table, "n"); auto e = storage.Create(storage.Create("n"), property); symbol_table[*e->expression_] = n.sym_; auto f = std::make_shared(n.op_, e); auto output = storage.Create("x", storage.Create("n")); symbol_table[*output->expression_] = n.sym_; symbol_table[*output] = symbol_table.CreateSymbol("named_expression_1"); auto produce = MakeProduce(f, output); EXPECT_EQ(CollectProduce(produce, symbol_table, *dba).GetResults().size(), 2); } TEST(Interpreter, SetProperty) { Dbms dbms; auto dba = dbms.active(); // graph with 4 vertices in connected pairs // the origin vertex in each par and both edges // have a property set auto v1 = dba->insert_vertex(); auto v2 = dba->insert_vertex(); auto v3 = dba->insert_vertex(); auto v4 = dba->insert_vertex(); auto edge_type = dba->edge_type("edge_type"); dba->insert_edge(v1, v3, edge_type); dba->insert_edge(v2, v4, edge_type); dba->advance_command(); AstTreeStorage storage; SymbolTable symbol_table; // scan (n)-[r]->(m) auto n = MakeScanAll(storage, symbol_table, "n"); auto r_m = MakeExpand(storage, symbol_table, n.op_, n.sym_, "r", EdgeAtom::Direction::RIGHT, false, "m", false); // set prop1 to 42 on n and r auto prop1 = dba->property("prop1"); auto literal = LITERAL(42); auto n_p = PROPERTY_LOOKUP("n", prop1); symbol_table[*n_p->expression_] = n.sym_; auto set_n_p = std::make_shared(r_m.op_, n_p, literal); auto r_p = PROPERTY_LOOKUP("r", prop1); symbol_table[*r_p->expression_] = r_m.edge_sym_; auto set_r_p = std::make_shared(set_n_p, r_p, literal); EXPECT_EQ(2, PullAll(set_r_p, *dba, symbol_table)); dba->advance_command(); EXPECT_EQ(CountIterable(dba->edges()), 2); for (EdgeAccessor edge : dba->edges()) { ASSERT_EQ(edge.PropsAt(prop1).type(), PropertyValue::Type::Int); EXPECT_EQ(edge.PropsAt(prop1).Value(), 42); VertexAccessor from = edge.from(); VertexAccessor to = edge.to(); ASSERT_EQ(from.PropsAt(prop1).type(), PropertyValue::Type::Int); EXPECT_EQ(from.PropsAt(prop1).Value(), 42); ASSERT_EQ(to.PropsAt(prop1).type(), PropertyValue::Type::Null); } } TEST(Interpreter, SetProperties) { auto test_set_properties = [](bool update) { Dbms dbms; auto dba = dbms.active(); // graph: ({a: 0})-[:R {b:1}]->({c:2}) auto prop_a = dba->property("a"); auto prop_b = dba->property("b"); auto prop_c = dba->property("c"); auto v1 = dba->insert_vertex(); auto v2 = dba->insert_vertex(); auto e = dba->insert_edge(v1, v2, dba->edge_type("R")); v1.PropsSet(prop_a, 0); e.PropsSet(prop_b, 1); v2.PropsSet(prop_c, 2); dba->advance_command(); AstTreeStorage storage; SymbolTable symbol_table; // scan (n)-[r]->(m) auto n = MakeScanAll(storage, symbol_table, "n"); auto r_m = MakeExpand(storage, symbol_table, n.op_, n.sym_, "r", EdgeAtom::Direction::RIGHT, false, "m", false); auto op = update ? plan::SetProperties::Op::UPDATE : plan::SetProperties::Op::REPLACE; // set properties on r to n, and on r to m auto r_ident = IDENT("r"); symbol_table[*r_ident] = r_m.edge_sym_; auto m_ident = IDENT("m"); symbol_table[*m_ident] = r_m.node_sym_; auto set_r_to_n = std::make_shared(r_m.op_, n.sym_, r_ident, op); auto set_m_to_r = std::make_shared( set_r_to_n, r_m.edge_sym_, m_ident, op); EXPECT_EQ(1, PullAll(set_m_to_r, *dba, symbol_table)); dba->advance_command(); EXPECT_EQ(CountIterable(dba->edges()), 1); for (EdgeAccessor edge : dba->edges()) { VertexAccessor from = edge.from(); EXPECT_EQ(from.Properties().size(), update ? 2 : 1); if (update) { ASSERT_EQ(from.PropsAt(prop_a).type(), PropertyValue::Type::Int); EXPECT_EQ(from.PropsAt(prop_a).Value(), 0); } ASSERT_EQ(from.PropsAt(prop_b).type(), PropertyValue::Type::Int); EXPECT_EQ(from.PropsAt(prop_b).Value(), 1); EXPECT_EQ(edge.Properties().size(), update ? 2 : 1); if (update) { ASSERT_EQ(edge.PropsAt(prop_b).type(), PropertyValue::Type::Int); EXPECT_EQ(edge.PropsAt(prop_b).Value(), 1); } ASSERT_EQ(edge.PropsAt(prop_c).type(), PropertyValue::Type::Int); EXPECT_EQ(edge.PropsAt(prop_c).Value(), 2); VertexAccessor to = edge.to(); EXPECT_EQ(to.Properties().size(), 1); ASSERT_EQ(to.PropsAt(prop_c).type(), PropertyValue::Type::Int); EXPECT_EQ(to.PropsAt(prop_c).Value(), 2); } }; test_set_properties(true); test_set_properties(false); } TEST(Interpreter, SetLabels) { Dbms dbms; auto dba = dbms.active(); auto label1 = dba->label("label1"); auto label2 = dba->label("label2"); auto label3 = dba->label("label3"); dba->insert_vertex().add_label(label1); dba->insert_vertex().add_label(label1); dba->advance_command(); AstTreeStorage storage; SymbolTable symbol_table; auto n = MakeScanAll(storage, symbol_table, "n"); auto label_set = std::make_shared( n.op_, n.sym_, std::vector{label2, label3}); EXPECT_EQ(2, PullAll(label_set, *dba, symbol_table)); for (VertexAccessor vertex : dba->vertices()) { vertex.SwitchNew(); EXPECT_EQ(3, vertex.labels().size()); EXPECT_TRUE(vertex.has_label(label2)); EXPECT_TRUE(vertex.has_label(label3)); } } TEST(Interpreter, RemoveProperty) { Dbms dbms; auto dba = dbms.active(); // graph with 4 vertices in connected pairs // the origin vertex in each par and both edges // have a property set auto prop1 = dba->property("prop1"); auto v1 = dba->insert_vertex(); auto v2 = dba->insert_vertex(); auto v3 = dba->insert_vertex(); auto v4 = dba->insert_vertex(); auto edge_type = dba->edge_type("edge_type"); dba->insert_edge(v1, v3, edge_type).PropsSet(prop1, 42); dba->insert_edge(v2, v4, edge_type); v2.PropsSet(prop1, 42); v3.PropsSet(prop1, 42); v4.PropsSet(prop1, 42); auto prop2 = dba->property("prop2"); v1.PropsSet(prop2, 0); v2.PropsSet(prop2, 0); dba->advance_command(); AstTreeStorage storage; SymbolTable symbol_table; // scan (n)-[r]->(m) auto n = MakeScanAll(storage, symbol_table, "n"); auto r_m = MakeExpand(storage, symbol_table, n.op_, n.sym_, "r", EdgeAtom::Direction::RIGHT, false, "m", false); auto n_p = PROPERTY_LOOKUP("n", prop1); symbol_table[*n_p->expression_] = n.sym_; auto set_n_p = std::make_shared(r_m.op_, n_p); auto r_p = PROPERTY_LOOKUP("r", prop1); symbol_table[*r_p->expression_] = r_m.edge_sym_; auto set_r_p = std::make_shared(set_n_p, r_p); EXPECT_EQ(2, PullAll(set_r_p, *dba, symbol_table)); dba->advance_command(); EXPECT_EQ(CountIterable(dba->edges()), 2); for (EdgeAccessor edge : dba->edges()) { EXPECT_EQ(edge.PropsAt(prop1).type(), PropertyValue::Type::Null); VertexAccessor from = edge.from(); VertexAccessor to = edge.to(); EXPECT_EQ(from.PropsAt(prop1).type(), PropertyValue::Type::Null); EXPECT_EQ(from.PropsAt(prop2).type(), PropertyValue::Type::Int); EXPECT_EQ(to.PropsAt(prop1).type(), PropertyValue::Type::Int); } } TEST(Interpreter, RemoveLabels) { Dbms dbms; auto dba = dbms.active(); auto label1 = dba->label("label1"); auto label2 = dba->label("label2"); auto label3 = dba->label("label3"); auto v1 = dba->insert_vertex(); v1.add_label(label1); v1.add_label(label2); v1.add_label(label3); auto v2 = dba->insert_vertex(); v2.add_label(label1); v2.add_label(label3); dba->advance_command(); AstTreeStorage storage; SymbolTable symbol_table; auto n = MakeScanAll(storage, symbol_table, "n"); auto label_remove = std::make_shared( n.op_, n.sym_, std::vector{label1, label2}); EXPECT_EQ(2, PullAll(label_remove, *dba, symbol_table)); for (VertexAccessor vertex : dba->vertices()) { vertex.SwitchNew(); EXPECT_EQ(1, vertex.labels().size()); EXPECT_FALSE(vertex.has_label(label1)); EXPECT_FALSE(vertex.has_label(label2)); } } TEST(Interpreter, NodeFilterSet) { Dbms dbms; auto dba = dbms.active(); // Create a graph such that (v1 {prop: 42}) is connected to v2 and v3. auto v1 = dba->insert_vertex(); auto prop = dba->property("prop"); v1.PropsSet(prop, 42); auto v2 = dba->insert_vertex(); auto v3 = dba->insert_vertex(); auto edge_type = dba->edge_type("Edge"); dba->insert_edge(v1, v2, edge_type); dba->insert_edge(v1, v3, edge_type); dba->advance_command(); // Create operations which match (v1 {prop: 42}) -- (v) and increment the // v1.prop. The expected result is two incremenentations, since v1 is matched // twice for 2 edges it has. AstTreeStorage storage; SymbolTable symbol_table; // MATCH (n {prop: 42}) -[r]- (m) auto scan_all = MakeScanAll(storage, symbol_table, "n"); scan_all.node_->properties_[prop] = LITERAL(42); auto expand = MakeExpand(storage, symbol_table, scan_all.op_, scan_all.sym_, "r", EdgeAtom::Direction::BOTH, false, "m", false); auto node_filter = std::make_shared(expand.op_, scan_all.sym_, scan_all.node_); // SET n.prop = n.prop + 1 auto set_prop = PROPERTY_LOOKUP("n", prop); symbol_table[*set_prop->expression_] = scan_all.sym_; auto add = ADD(set_prop, LITERAL(1)); auto set = std::make_shared(node_filter, set_prop, add); EXPECT_EQ(2, PullAll(set, *dba, symbol_table)); dba->advance_command(); v1.Reconstruct(); auto prop_eq = v1.PropsAt(prop) == TypedValue(42 + 2); ASSERT_EQ(prop_eq.type(), TypedValue::Type::Bool); EXPECT_TRUE(prop_eq.Value()); } TEST(Interpreter, FilterRemove) { Dbms dbms; auto dba = dbms.active(); // Create a graph such that (v1 {prop: 42}) is connected to v2 and v3. auto v1 = dba->insert_vertex(); auto prop = dba->property("prop"); v1.PropsSet(prop, 42); auto v2 = dba->insert_vertex(); auto v3 = dba->insert_vertex(); auto edge_type = dba->edge_type("Edge"); dba->insert_edge(v1, v2, edge_type); dba->insert_edge(v1, v3, edge_type); dba->advance_command(); // Create operations which match (v1 {prop: 42}) -- (v) and remove v1.prop. // The expected result is two matches, for each edge of v1. AstTreeStorage storage; SymbolTable symbol_table; // MATCH (n) -[r]- (m) WHERE n.prop < 43 auto scan_all = MakeScanAll(storage, symbol_table, "n"); scan_all.node_->properties_[prop] = LITERAL(42); auto expand = MakeExpand(storage, symbol_table, scan_all.op_, scan_all.sym_, "r", EdgeAtom::Direction::BOTH, false, "m", false); auto filter_prop = PROPERTY_LOOKUP("n", prop); symbol_table[*filter_prop->expression_] = scan_all.sym_; auto filter = std::make_shared(expand.op_, LESS(filter_prop, LITERAL(43))); // REMOVE n.prop auto rem_prop = PROPERTY_LOOKUP("n", prop); symbol_table[*rem_prop->expression_] = scan_all.sym_; auto rem = std::make_shared(filter, rem_prop); EXPECT_EQ(2, PullAll(rem, *dba, symbol_table)); dba->advance_command(); v1.Reconstruct(); EXPECT_EQ(v1.PropsAt(prop).type(), PropertyValue::Type::Null); } TEST(Interpreter, SetRemove) { Dbms dbms; auto dba = dbms.active(); auto v = dba->insert_vertex(); auto label1 = dba->label("label1"); auto label2 = dba->label("label2"); dba->advance_command(); // Create operations which match (v) and set and remove v :label. // The expected result is single (v) as it was at the start. AstTreeStorage storage; SymbolTable symbol_table; // MATCH (n) SET n :label1 :label2 REMOVE n :label1 :label2 auto scan_all = MakeScanAll(storage, symbol_table, "n"); auto set = std::make_shared( scan_all.op_, scan_all.sym_, std::vector{label1, label2}); auto rem = std::make_shared( set, scan_all.sym_, std::vector{label1, label2}); EXPECT_EQ(1, PullAll(rem, *dba, symbol_table)); dba->advance_command(); v.Reconstruct(); EXPECT_FALSE(v.has_label(label1)); EXPECT_FALSE(v.has_label(label2)); } TEST(Interpreter, ExpandUniquenessFilter) { Dbms dbms; auto dba = dbms.active(); // make a graph that has (v1)->(v2) and a recursive edge (v1)->(v1) auto v1 = dba->insert_vertex(); auto v2 = dba->insert_vertex(); auto edge_type = dba->edge_type("edge_type"); dba->insert_edge(v1, v2, edge_type); dba->insert_edge(v1, v1, edge_type); dba->advance_command(); auto check_expand_results = [&](bool vertex_uniqueness, bool edge_uniqueness) { AstTreeStorage storage; SymbolTable symbol_table; auto n1 = MakeScanAll(storage, symbol_table, "n1"); auto r1_n2 = MakeExpand(storage, symbol_table, n1.op_, n1.sym_, "r1", EdgeAtom::Direction::RIGHT, false, "n2", false); std::shared_ptr last_op = r1_n2.op_; if (vertex_uniqueness) last_op = std::make_shared>( last_op, r1_n2.node_sym_, std::vector{n1.sym_}); auto r2_n3 = MakeExpand(storage, symbol_table, last_op, r1_n2.node_sym_, "r2", EdgeAtom::Direction::RIGHT, false, "n3", false); last_op = r2_n3.op_; if (edge_uniqueness) last_op = std::make_shared>( last_op, r2_n3.edge_sym_, std::vector{r1_n2.edge_sym_}); if (vertex_uniqueness) last_op = std::make_shared>( last_op, r2_n3.node_sym_, std::vector{n1.sym_, r1_n2.node_sym_}); return PullAll(last_op, *dba, symbol_table); }; EXPECT_EQ(2, check_expand_results(false, false)); EXPECT_EQ(0, check_expand_results(true, false)); EXPECT_EQ(1, check_expand_results(false, true)); } TEST(Interpreter, Accumulate) { // simulate the following two query execution on an empty db // CREATE ({x:0})-[:T]->({x:0}) // MATCH (n)--(m) SET n.x = n.x + 1, m.x = m.x + 1 RETURN n.x, m.x // without accumulation we expected results to be [[1, 1], [2, 2]] // with accumulation we expect them to be [[2, 2], [2, 2]] auto check = [&](bool accumulate) { Dbms dbms; auto dba = dbms.active(); auto prop = dba->property("x"); auto v1 = dba->insert_vertex(); v1.PropsSet(prop, 0); auto v2 = dba->insert_vertex(); v2.PropsSet(prop, 0); dba->insert_edge(v1, v2, dba->edge_type("T")); dba->advance_command(); AstTreeStorage storage; SymbolTable symbol_table; auto n = MakeScanAll(storage, symbol_table, "n"); auto r_m = MakeExpand(storage, symbol_table, n.op_, n.sym_, "r", EdgeAtom::Direction::BOTH, false, "m", false); auto one = LITERAL(1); auto n_p = PROPERTY_LOOKUP("n", prop); symbol_table[*n_p->expression_] = n.sym_; auto set_n_p = std::make_shared(r_m.op_, n_p, ADD(n_p, one)); auto m_p = PROPERTY_LOOKUP("m", prop); symbol_table[*m_p->expression_] = r_m.node_sym_; auto set_m_p = std::make_shared(set_n_p, m_p, ADD(m_p, one)); std::shared_ptr last_op = set_m_p; if (accumulate) { last_op = std::make_shared( last_op, std::vector{n.sym_, r_m.node_sym_}); } auto n_p_ne = NEXPR("n.p", n_p); symbol_table[*n_p_ne] = symbol_table.CreateSymbol("n_p_ne"); auto m_p_ne = NEXPR("m.p", m_p); symbol_table[*m_p_ne] = symbol_table.CreateSymbol("m_p_ne"); auto produce = MakeProduce(last_op, n_p_ne, m_p_ne); ResultStreamFaker results = CollectProduce(produce, symbol_table, *dba); std::vector results_data; for (const auto &row : results.GetResults()) for (const auto &column : row) results_data.emplace_back(column.Value()); if (accumulate) EXPECT_THAT(results_data, testing::ElementsAre(2, 2, 2, 2)); else EXPECT_THAT(results_data, testing::ElementsAre(1, 1, 2, 2)); }; check(false); check(true); } TEST(Interpreter, AccumulateAdvance) { // we simulate 'CREATE (n) WITH n AS n MATCH (m) RETURN m' // to get correct results we need to advance the command auto check = [&](bool advance) { Dbms dbms; auto dba = dbms.active(); AstTreeStorage storage; SymbolTable symbol_table; auto node = NODE("n"); auto sym_n = symbol_table.CreateSymbol("n"); symbol_table[*node->identifier_] = sym_n; auto create = std::make_shared(node, nullptr); auto accumulate = std::make_shared( create, std::vector{sym_n}, advance); auto match = MakeScanAll(storage, symbol_table, "m", accumulate); EXPECT_EQ(advance ? 1 : 0, PullAll(match.op_, *dba, symbol_table)); }; check(false); check(true); }