// Copyright 2023 Memgraph Ltd. // // Use of this software is governed by the Business Source License // included in the file licenses/BSL.txt; by using this file, you agree to be bound by the terms of the Business Source // License, and you may not use this file except in compliance with the Business Source License. // // As of the Change Date specified in that file, in accordance with // the Business Source License, use of this software will be governed // by the Apache License, Version 2.0, included in the file // licenses/APL.txt. #include #include #include #include #include #include #include #include "cluster_config.hpp" #include "coordinator/coordinator_client.hpp" #include "coordinator/coordinator_rsm.hpp" #include "coordinator/shard_map.hpp" #include "generated_operations.hpp" #include "io/address.hpp" #include "io/message_histogram_collector.hpp" #include "io/simulator/simulator.hpp" #include "io/simulator/simulator_config.hpp" #include "io/simulator/simulator_transport.hpp" #include "machine_manager/machine_config.hpp" #include "machine_manager/machine_manager.hpp" #include "query/v2/request_router.hpp" #include "query/v2/requests.hpp" #include "testing_constants.hpp" #include "utils/print_helpers.hpp" #include "utils/variant_helpers.hpp" #include "simulation_interpreter.hpp" namespace memgraph::tests::simulation { using coordinator::Coordinator; using coordinator::CoordinatorClient; using coordinator::CoordinatorReadRequests; using coordinator::CoordinatorWriteRequests; using coordinator::CoordinatorWriteResponses; using coordinator::GetShardMapRequest; using coordinator::GetShardMapResponse; using coordinator::Hlc; using coordinator::HlcResponse; using coordinator::ShardMap; using coordinator::ShardMetadata; using io::Address; using io::Io; using io::rsm::RsmClient; using io::simulator::Simulator; using io::simulator::SimulatorConfig; using io::simulator::SimulatorStats; using io::simulator::SimulatorTransport; using machine_manager::MachineConfig; using machine_manager::MachineManager; using memgraph::io::LatencyHistogramSummaries; using msgs::ReadRequests; using msgs::ReadResponses; using msgs::WriteRequests; using msgs::WriteResponses; using storage::v3::LabelId; using storage::v3::SchemaProperty; using CompoundKey = std::pair; using ShardClient = RsmClient; MachineManager MkMm(Simulator &simulator, std::vector
coordinator_addresses, Address addr, ShardMap shard_map) { MachineConfig config{ .coordinator_addresses = coordinator_addresses, .is_storage = true, .is_coordinator = true, .listen_ip = addr.last_known_ip, .listen_port = addr.last_known_port, .shard_worker_threads = 4, .sync_message_handling = true, }; Io io = simulator.Register(addr); Coordinator coordinator{shard_map}; return MachineManager{io, config, coordinator}; } void RunMachine(MachineManager mm) { mm.Run(); } void WaitForShardsToInitialize(CoordinatorClient &coordinator_client) { // Call coordinator client's read method for GetShardMap and keep // reading it until the shard map contains proper replicas for // each shard in the label space. while (true) { GetShardMapRequest req{}; CoordinatorReadRequests read_req = req; auto read_res = coordinator_client.SendReadRequest(read_req); if (read_res.HasError()) { // timed out continue; } auto response_result = read_res.GetValue(); auto response = std::get(response_result); auto shard_map = response.shard_map; if (shard_map.ClusterInitialized()) { spdlog::info("cluster stabilized - beginning workload"); return; } } } ShardMap TestShardMap(int n_splits, int replication_factor) { ShardMap sm{}; const std::string label_name = std::string("test_label"); // register new properties const std::vector property_names = {"property_1", "property_2"}; const auto properties = sm.AllocatePropertyIds(property_names); const auto property_id_1 = properties.at("property_1"); const auto property_id_2 = properties.at("property_2"); const auto type_1 = memgraph::common::SchemaType::INT; const auto type_2 = memgraph::common::SchemaType::INT; // register new label space std::vector schema = { SchemaProperty{.property_id = property_id_1, .type = type_1}, SchemaProperty{.property_id = property_id_2, .type = type_2}, }; std::optional label_id = sm.InitializeNewLabel(label_name, schema, replication_factor, sm.shard_map_version); RC_ASSERT(label_id.has_value()); // split the shard at N split points for (int64_t i = 1; i < n_splits; ++i) { const auto key1 = memgraph::storage::v3::PropertyValue(i); const auto key2 = memgraph::storage::v3::PropertyValue(0); const auto split_point = {key1, key2}; const bool split_success = sm.SplitShard(sm.shard_map_version, label_id.value(), split_point); RC_ASSERT(split_success); } return sm; } void ExecuteOp(query::v2::RequestRouter &request_router, std::set &correctness_model, CreateVertex create_vertex) { const auto key1 = memgraph::storage::v3::PropertyValue(create_vertex.first); const auto key2 = memgraph::storage::v3::PropertyValue(create_vertex.second); std::vector primary_key = {msgs::Value(int64_t(create_vertex.first)), msgs::Value(int64_t(create_vertex.second))}; if (correctness_model.contains(std::make_pair(create_vertex.first, create_vertex.second))) { // TODO(tyler) remove this early-return when we have properly handled setting non-unique vertexes return; } auto label_id = request_router.NameToLabel("test_label"); msgs::NewVertex nv{.primary_key = primary_key}; nv.label_ids.push_back({label_id}); std::vector new_vertices; new_vertices.push_back(std::move(nv)); auto result = request_router.CreateVertices(std::move(new_vertices)); RC_ASSERT(result.size() == 1); RC_ASSERT(!result[0].error.has_value()); correctness_model.emplace(std::make_pair(create_vertex.first, create_vertex.second)); } void ExecuteOp(query::v2::RequestRouter &request_router, std::set &correctness_model, ScanAll scan_all) { auto results = request_router.ScanVertices("test_label"); RC_ASSERT(results.size() == correctness_model.size()); for (const auto &vertex_accessor : results) { const auto properties = vertex_accessor.Properties(); const auto primary_key = vertex_accessor.Id().second; const CompoundKey model_key = std::make_pair(primary_key[0].int_v, primary_key[1].int_v); RC_ASSERT(correctness_model.contains(model_key)); } } /// This struct exists as a way of detaching /// a thread if something causes an uncaught /// exception - because that thread would not /// receive a ShutDown message otherwise, and /// would cause the test to hang forever. struct DetachIfDropped { std::jthread &handle; bool detach = true; ~DetachIfDropped() { if (detach && handle.joinable()) { handle.detach(); } } }; std::pair RunClusterSimulation(const SimulatorConfig &sim_config, const ClusterConfig &cluster_config, const std::vector &ops) { spdlog::info("========================== NEW SIMULATION =========================="); auto simulator = Simulator(sim_config); auto machine_1_addr = Address::TestAddress(1); auto cli_addr = Address::TestAddress(2); auto cli_addr_2 = Address::TestAddress(3); Io cli_io = simulator.Register(cli_addr); Io cli_io_2 = simulator.Register(cli_addr_2); auto coordinator_addresses = std::vector{ machine_1_addr, }; ShardMap initialization_sm = TestShardMap(cluster_config.shards - 1, cluster_config.replication_factor); auto mm_1 = MkMm(simulator, coordinator_addresses, machine_1_addr, initialization_sm); Address coordinator_address = mm_1.CoordinatorAddress(); auto mm_thread_1 = std::jthread(RunMachine, std::move(mm_1)); simulator.IncrementServerCountAndWaitForQuiescentState(machine_1_addr); auto detach_on_error = DetachIfDropped{.handle = mm_thread_1}; // TODO(tyler) clarify addresses of coordinator etc... as it's a mess CoordinatorClient coordinator_client(cli_io, coordinator_address, {coordinator_address}); WaitForShardsToInitialize(coordinator_client); query::v2::RequestRouter request_router(std::move(coordinator_client), std::move(cli_io)); std::function tick_simulator = simulator.GetSimulatorTickClosure(); request_router.InstallSimulatorTicker(tick_simulator); request_router.StartTransaction(); auto correctness_model = std::set{}; for (const Op &op : ops) { std::visit([&](auto &o) { ExecuteOp(request_router, correctness_model, o); }, op.inner); } // We have now completed our workload without failing any assertions, so we can // disable detaching the worker thread, which will cause the mm_thread_1 jthread // to be joined when this function returns. detach_on_error.detach = false; simulator.ShutDown(); mm_thread_1.join(); SimulatorStats stats = simulator.Stats(); spdlog::info("total messages: {}", stats.total_messages); spdlog::info("dropped messages: {}", stats.dropped_messages); spdlog::info("timed out requests: {}", stats.timed_out_requests); spdlog::info("total requests: {}", stats.total_requests); spdlog::info("total responses: {}", stats.total_responses); spdlog::info("simulator ticks: {}", stats.simulator_ticks); auto histo = cli_io_2.ResponseLatencies(); spdlog::info("========================== SUCCESS :) =========================="); return std::make_pair(stats, histo); } std::pair RunClusterSimulationWithQueries( const SimulatorConfig &sim_config, const ClusterConfig &cluster_config, const std::vector &queries) { spdlog::info("========================== NEW SIMULATION =========================="); auto simulator = Simulator(sim_config); auto machine_1_addr = Address::TestAddress(1); auto cli_addr = Address::TestAddress(2); auto cli_addr_2 = Address::TestAddress(3); Io cli_io = simulator.Register(cli_addr); Io cli_io_2 = simulator.Register(cli_addr_2); auto coordinator_addresses = std::vector{ machine_1_addr, }; ShardMap initialization_sm = TestShardMap(cluster_config.shards - 1, cluster_config.replication_factor); auto mm_1 = MkMm(simulator, coordinator_addresses, machine_1_addr, initialization_sm); Address coordinator_address = mm_1.CoordinatorAddress(); auto mm_thread_1 = std::jthread(RunMachine, std::move(mm_1)); simulator.IncrementServerCountAndWaitForQuiescentState(machine_1_addr); auto detach_on_error = DetachIfDropped{.handle = mm_thread_1}; // TODO(tyler) clarify addresses of coordinator etc... as it's a mess CoordinatorClient coordinator_client(cli_io, coordinator_address, {coordinator_address}); WaitForShardsToInitialize(coordinator_client); auto simulated_interpreter = io::simulator::SetUpInterpreter(coordinator_address, simulator); simulated_interpreter.InstallSimulatorTicker(simulator); auto query_results = simulated_interpreter.RunQueries(queries); // We have now completed our workload without failing any assertions, so we can // disable detaching the worker thread, which will cause the mm_thread_1 jthread // to be joined when this function returns. detach_on_error.detach = false; simulator.ShutDown(); mm_thread_1.join(); SimulatorStats stats = simulator.Stats(); spdlog::info("total messages: {}", stats.total_messages); spdlog::info("dropped messages: {}", stats.dropped_messages); spdlog::info("timed out requests: {}", stats.timed_out_requests); spdlog::info("total requests: {}", stats.total_requests); spdlog::info("total responses: {}", stats.total_responses); spdlog::info("simulator ticks: {}", stats.simulator_ticks); auto histo = cli_io_2.ResponseLatencies(); spdlog::info("========================== SUCCESS :) =========================="); return std::make_pair(stats, histo); } } // namespace memgraph::tests::simulation