#include #include #include #include #include #include #include "boost/archive/binary_iarchive.hpp" #include "boost/archive/binary_oarchive.hpp" #include "gmock/gmock.h" #include "gtest/gtest.h" #include "query/frontend/ast/ast.hpp" #include "query/frontend/semantic/symbol_generator.hpp" #include "query/frontend/semantic/symbol_table.hpp" #include "query/plan/distributed.hpp" #include "query/plan/operator.hpp" #include "query/plan/planner.hpp" #include "query_common.hpp" namespace query { ::std::ostream &operator<<(::std::ostream &os, const Symbol &sym) { return os << "Symbol{\"" << sym.name() << "\" [" << sym.position() << "] " << Symbol::TypeToString(sym.type()) << "}"; } } // namespace query using namespace query::plan; using query::AstTreeStorage; using query::SingleQuery; using query::Symbol; using query::SymbolGenerator; using query::SymbolTable; using Direction = query::EdgeAtom::Direction; using Bound = ScanAllByLabelPropertyRange::Bound; namespace { class BaseOpChecker { public: virtual ~BaseOpChecker() {} virtual void CheckOp(LogicalOperator &, const SymbolTable &) = 0; }; class PlanChecker : public HierarchicalLogicalOperatorVisitor { public: using HierarchicalLogicalOperatorVisitor::PostVisit; using HierarchicalLogicalOperatorVisitor::PreVisit; using HierarchicalLogicalOperatorVisitor::Visit; PlanChecker(const std::list> &checkers, const SymbolTable &symbol_table) : symbol_table_(symbol_table) { for (const auto &checker : checkers) checkers_.emplace_back(checker.get()); } PlanChecker(const std::list &checkers, const SymbolTable &symbol_table) : checkers_(checkers), symbol_table_(symbol_table) {} #define PRE_VISIT(TOp) \ bool PreVisit(TOp &op) override { \ CheckOp(op); \ return true; \ } PRE_VISIT(CreateNode); PRE_VISIT(CreateExpand); PRE_VISIT(Delete); PRE_VISIT(ScanAll); PRE_VISIT(ScanAllByLabel); PRE_VISIT(ScanAllByLabelPropertyValue); PRE_VISIT(ScanAllByLabelPropertyRange); PRE_VISIT(Expand); PRE_VISIT(ExpandVariable); PRE_VISIT(Filter); PRE_VISIT(ConstructNamedPath); PRE_VISIT(Produce); PRE_VISIT(SetProperty); PRE_VISIT(SetProperties); PRE_VISIT(SetLabels); PRE_VISIT(RemoveProperty); PRE_VISIT(RemoveLabels); PRE_VISIT(ExpandUniquenessFilter); PRE_VISIT(ExpandUniquenessFilter); PRE_VISIT(Accumulate); PRE_VISIT(Aggregate); PRE_VISIT(Skip); PRE_VISIT(Limit); PRE_VISIT(OrderBy); bool PreVisit(Merge &op) override { CheckOp(op); op.input()->Accept(*this); return false; } bool PreVisit(Optional &op) override { CheckOp(op); op.input()->Accept(*this); return false; } PRE_VISIT(Unwind); PRE_VISIT(Distinct); bool Visit(Once &) override { // Ignore checking Once, it is implicitly at the end. return true; } bool Visit(CreateIndex &op) override { CheckOp(op); return true; } PRE_VISIT(ProduceRemote); PRE_VISIT(PullRemote); bool PreVisit(Synchronize &op) override { CheckOp(op); op.input()->Accept(*this); return false; } #undef PRE_VISIT std::list checkers_; private: void CheckOp(LogicalOperator &op) { ASSERT_FALSE(checkers_.empty()); checkers_.back()->CheckOp(op, symbol_table_); checkers_.pop_back(); } const SymbolTable &symbol_table_; }; template class OpChecker : public BaseOpChecker { public: void CheckOp(LogicalOperator &op, const SymbolTable &symbol_table) override { auto *expected_op = dynamic_cast(&op); ASSERT_TRUE(expected_op); ExpectOp(*expected_op, symbol_table); } virtual void ExpectOp(TOp &, const SymbolTable &) {} }; using ExpectCreateNode = OpChecker; using ExpectCreateExpand = OpChecker; using ExpectDelete = OpChecker; using ExpectScanAll = OpChecker; using ExpectScanAllByLabel = OpChecker; using ExpectExpand = OpChecker; using ExpectFilter = OpChecker; using ExpectConstructNamedPath = OpChecker; using ExpectProduce = OpChecker; using ExpectSetProperty = OpChecker; using ExpectSetProperties = OpChecker; using ExpectSetLabels = OpChecker; using ExpectRemoveProperty = OpChecker; using ExpectRemoveLabels = OpChecker; template using ExpectExpandUniquenessFilter = OpChecker>; using ExpectSkip = OpChecker; using ExpectLimit = OpChecker; using ExpectOrderBy = OpChecker; using ExpectUnwind = OpChecker; using ExpectDistinct = OpChecker; class ExpectExpandVariable : public OpChecker { public: void ExpectOp(ExpandVariable &op, const SymbolTable &) override { EXPECT_EQ(op.type(), query::EdgeAtom::Type::DEPTH_FIRST); } }; class ExpectExpandBreadthFirst : public OpChecker { public: void ExpectOp(ExpandVariable &op, const SymbolTable &) override { EXPECT_EQ(op.type(), query::EdgeAtom::Type::BREADTH_FIRST); } }; class ExpectAccumulate : public OpChecker { public: explicit ExpectAccumulate(const std::unordered_set &symbols) : symbols_(symbols) {} void ExpectOp(Accumulate &op, const SymbolTable &) override { std::unordered_set got_symbols(op.symbols().begin(), op.symbols().end()); EXPECT_EQ(symbols_, got_symbols); } private: const std::unordered_set symbols_; }; class ExpectAggregate : public OpChecker { public: ExpectAggregate(bool is_master, const std::vector &aggregations, const std::unordered_set &group_by) : is_master_(is_master), aggregations_(aggregations), group_by_(group_by) {} ExpectAggregate(const std::vector &aggregations, const std::unordered_set &group_by) : is_master_(false), aggregations_(aggregations), group_by_(group_by) {} void ExpectOp(Aggregate &op, const SymbolTable &symbol_table) override { auto aggr_it = aggregations_.begin(); for (const auto &aggr_elem : op.aggregations()) { ASSERT_NE(aggr_it, aggregations_.end()); auto aggr = *aggr_it++; // TODO: Proper expression equality EXPECT_EQ(typeid(aggr_elem.value).hash_code(), typeid(aggr->expression1_).hash_code()); EXPECT_EQ(typeid(aggr_elem.key).hash_code(), typeid(aggr->expression2_).hash_code()); EXPECT_EQ(aggr_elem.op, aggr->op_); if (!is_master_) { // Skip checking virtual merge aggregation symbol when the plan is // distributed. EXPECT_EQ(aggr_elem.output_sym, symbol_table.at(*aggr)); } } EXPECT_EQ(aggr_it, aggregations_.end()); // TODO: Proper group by expression equality std::unordered_set got_group_by; for (auto *expr : op.group_by()) got_group_by.insert(typeid(*expr).hash_code()); std::unordered_set expected_group_by; for (auto *expr : group_by_) expected_group_by.insert(typeid(*expr).hash_code()); EXPECT_EQ(got_group_by, expected_group_by); } private: bool is_master_ = false; std::vector aggregations_; std::unordered_set group_by_; }; auto ExpectMasterAggregate( const std::vector &aggregations, const std::unordered_set &group_by) { return ExpectAggregate(true, aggregations, group_by); } class ExpectMerge : public OpChecker { public: ExpectMerge(const std::list &on_match, const std::list &on_create) : on_match_(on_match), on_create_(on_create) {} void ExpectOp(Merge &merge, const SymbolTable &symbol_table) override { PlanChecker check_match(on_match_, symbol_table); merge.merge_match()->Accept(check_match); PlanChecker check_create(on_create_, symbol_table); merge.merge_create()->Accept(check_create); } private: const std::list &on_match_; const std::list &on_create_; }; class ExpectOptional : public OpChecker { public: explicit ExpectOptional(const std::list &optional) : optional_(optional) {} ExpectOptional(const std::vector &optional_symbols, const std::list &optional) : optional_symbols_(optional_symbols), optional_(optional) {} void ExpectOp(Optional &optional, const SymbolTable &symbol_table) override { if (!optional_symbols_.empty()) { EXPECT_THAT(optional.optional_symbols(), testing::UnorderedElementsAreArray(optional_symbols_)); } PlanChecker check_optional(optional_, symbol_table); optional.optional()->Accept(check_optional); } private: std::vector optional_symbols_; const std::list &optional_; }; class ExpectScanAllByLabelPropertyValue : public OpChecker { public: ExpectScanAllByLabelPropertyValue( storage::Label label, const std::pair &prop_pair, query::Expression *expression) : label_(label), property_(prop_pair.second), expression_(expression) {} void ExpectOp(ScanAllByLabelPropertyValue &scan_all, const SymbolTable &) override { EXPECT_EQ(scan_all.label(), label_); EXPECT_EQ(scan_all.property(), property_); // TODO: Proper expression equality EXPECT_EQ(typeid(scan_all.expression()).hash_code(), typeid(expression_).hash_code()); } private: storage::Label label_; storage::Property property_; query::Expression *expression_; }; class ExpectScanAllByLabelPropertyRange : public OpChecker { public: ExpectScanAllByLabelPropertyRange( storage::Label label, storage::Property property, std::experimental::optional lower_bound, std::experimental::optional upper_bound) : label_(label), property_(property), lower_bound_(lower_bound), upper_bound_(upper_bound) {} void ExpectOp(ScanAllByLabelPropertyRange &scan_all, const SymbolTable &) override { EXPECT_EQ(scan_all.label(), label_); EXPECT_EQ(scan_all.property(), property_); if (lower_bound_) { ASSERT_TRUE(scan_all.lower_bound()); // TODO: Proper expression equality EXPECT_EQ(typeid(scan_all.lower_bound()->value()).hash_code(), typeid(lower_bound_->value()).hash_code()); EXPECT_EQ(scan_all.lower_bound()->type(), lower_bound_->type()); } if (upper_bound_) { ASSERT_TRUE(scan_all.upper_bound()); // TODO: Proper expression equality EXPECT_EQ(typeid(scan_all.upper_bound()->value()).hash_code(), typeid(upper_bound_->value()).hash_code()); EXPECT_EQ(scan_all.upper_bound()->type(), upper_bound_->type()); } } private: storage::Label label_; storage::Property property_; std::experimental::optional lower_bound_; std::experimental::optional upper_bound_; }; class ExpectCreateIndex : public OpChecker { public: ExpectCreateIndex(storage::Label label, storage::Property property) : label_(label), property_(property) {} void ExpectOp(CreateIndex &create_index, const SymbolTable &) override { EXPECT_EQ(create_index.label(), label_); EXPECT_EQ(create_index.property(), property_); } private: storage::Label label_; storage::Property property_; }; class ExpectPullRemote : public OpChecker { public: ExpectPullRemote() {} ExpectPullRemote(const std::vector &symbols) : symbols_(symbols) {} void ExpectOp(PullRemote &op, const SymbolTable &) override { EXPECT_THAT(op.symbols(), testing::UnorderedElementsAreArray(symbols_)); } private: std::vector symbols_; }; class ExpectSynchronize : public OpChecker { public: ExpectSynchronize() {} ExpectSynchronize(const std::vector &symbols) : expect_pull_(symbols) {} void ExpectOp(Synchronize &op, const SymbolTable &symbol_table) override { expect_pull_.ExpectOp(*op.pull_remote(), symbol_table); } private: ExpectPullRemote expect_pull_; }; auto MakeSymbolTable(query::Query &query) { SymbolTable symbol_table; SymbolGenerator symbol_generator(symbol_table); query.Accept(symbol_generator); return symbol_table; } class Planner { public: Planner(std::vector single_query_parts, PlanningContext &context) { plan_ = MakeLogicalPlanForSingleQuery(single_query_parts, context); } auto &plan() { return *plan_; } private: std::unique_ptr plan_; }; class SerializedPlanner { public: SerializedPlanner(std::vector single_query_parts, PlanningContext &context) { std::stringstream stream; { auto original_plan = MakeLogicalPlanForSingleQuery( single_query_parts, context); boost::archive::binary_oarchive out_archive(stream); out_archive << original_plan; } { boost::archive::binary_iarchive in_archive(stream); std::tie(plan_, ast_storage_) = LoadPlan(in_archive); } } auto &plan() { return *plan_; } private: AstTreeStorage ast_storage_; std::unique_ptr plan_; }; template TPlanner MakePlanner(database::MasterBase &master_db, AstTreeStorage &storage, SymbolTable &symbol_table) { database::GraphDbAccessor dba(master_db); auto planning_context = MakePlanningContext(storage, symbol_table, dba); auto query_parts = CollectQueryParts(symbol_table, storage); auto single_query_parts = query_parts.query_parts.at(0).single_query_parts; return TPlanner(single_query_parts, planning_context); } template auto CheckPlan(LogicalOperator &plan, const SymbolTable &symbol_table, TChecker... checker) { std::list checkers{&checker...}; PlanChecker plan_checker(checkers, symbol_table); plan.Accept(plan_checker); EXPECT_TRUE(plan_checker.checkers_.empty()); } template auto CheckPlan(AstTreeStorage &storage, TChecker... checker) { auto symbol_table = MakeSymbolTable(*storage.query()); database::SingleNode db; auto planner = MakePlanner(db, storage, symbol_table); CheckPlan(planner.plan(), symbol_table, checker...); } struct ExpectedDistributedPlan { std::list> master_checkers; std::list> worker_checkers; }; template DistributedPlan MakeDistributedPlan(query::AstTreeStorage &storage) { database::Master db; auto symbol_table = MakeSymbolTable(*storage.query()); auto planner = MakePlanner(db, storage, symbol_table); std::atomic next_plan_id{0}; return MakeDistributedPlan(planner.plan(), symbol_table, next_plan_id); } void CheckDistributedPlan(DistributedPlan &distributed_plan, ExpectedDistributedPlan &expected) { PlanChecker plan_checker(expected.master_checkers, distributed_plan.symbol_table); distributed_plan.master_plan->Accept(plan_checker); EXPECT_TRUE(plan_checker.checkers_.empty()); if (expected.worker_checkers.empty()) { EXPECT_FALSE(distributed_plan.worker_plan); } else { ASSERT_TRUE(distributed_plan.worker_plan); PlanChecker plan_checker(expected.worker_checkers, distributed_plan.symbol_table); distributed_plan.worker_plan->Accept(plan_checker); EXPECT_TRUE(plan_checker.checkers_.empty()); } } void CheckDistributedPlan(const LogicalOperator &plan, const SymbolTable &symbol_table, ExpectedDistributedPlan &expected_distributed_plan) { std::atomic next_plan_id{0}; auto distributed_plan = MakeDistributedPlan(plan, symbol_table, next_plan_id); CheckDistributedPlan(distributed_plan, expected_distributed_plan); } template void CheckDistributedPlan(AstTreeStorage &storage, ExpectedDistributedPlan &expected_distributed_plan) { auto distributed_plan = MakeDistributedPlan(storage); CheckDistributedPlan(distributed_plan, expected_distributed_plan); } template std::list> MakeCheckers(T arg) { std::list> l; l.emplace_back(std::make_unique(arg)); return l; } template std::list> MakeCheckers(T arg, Rest &&... rest) { auto l = MakeCheckers(std::forward(rest)...); l.emplace_front(std::make_unique(arg)); return std::move(l); } template class TestPlanner : public ::testing::Test {}; using PlannerTypes = ::testing::Types; TYPED_TEST_CASE(TestPlanner, PlannerTypes); TYPED_TEST(TestPlanner, MatchNodeReturn) { // Test MATCH (n) RETURN n AstTreeStorage storage; auto *as_n = NEXPR("n", IDENT("n")); QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("n"))), RETURN(as_n))); auto symbol_table = MakeSymbolTable(*storage.query()); database::Master db; auto planner = MakePlanner(db, storage, symbol_table); CheckPlan(planner.plan(), symbol_table, ExpectScanAll(), ExpectProduce()); ExpectPullRemote pull({symbol_table.at(*as_n)}); ExpectedDistributedPlan expected{ MakeCheckers(ExpectScanAll(), ExpectProduce(), pull), MakeCheckers(ExpectScanAll(), ExpectProduce())}; CheckDistributedPlan(planner.plan(), symbol_table, expected); } TYPED_TEST(TestPlanner, CreateNodeReturn) { // Test CREATE (n) RETURN n AS n AstTreeStorage storage; auto ident_n = IDENT("n"); auto query = QUERY(SINGLE_QUERY(CREATE(PATTERN(NODE("n"))), RETURN(ident_n, AS("n")))); auto symbol_table = MakeSymbolTable(*query); auto acc = ExpectAccumulate({symbol_table.at(*ident_n)}); database::SingleNode db; auto planner = MakePlanner(db, storage, symbol_table); CheckPlan(planner.plan(), symbol_table, ExpectCreateNode(), acc, ExpectProduce()); { ExpectedDistributedPlan expected{ MakeCheckers(ExpectCreateNode(), acc, ExpectProduce()), {}}; std::atomic next_plan_id{0}; auto distributed_plan = MakeDistributedPlan(planner.plan(), symbol_table, next_plan_id); CheckDistributedPlan(distributed_plan, expected); } } TYPED_TEST(TestPlanner, CreateExpand) { // Test CREATE (n) -[r :rel1]-> (m) AstTreeStorage storage; database::SingleNode db; database::GraphDbAccessor dba(db); auto relationship = dba.EdgeType("relationship"); QUERY(SINGLE_QUERY(CREATE(PATTERN( NODE("n"), EDGE("r", Direction::OUT, {relationship}), NODE("m"))))); CheckPlan(storage, ExpectCreateNode(), ExpectCreateExpand()); } TYPED_TEST(TestPlanner, CreateMultipleNode) { // Test CREATE (n), (m) AstTreeStorage storage; QUERY(SINGLE_QUERY(CREATE(PATTERN(NODE("n")), PATTERN(NODE("m"))))); CheckPlan(storage, ExpectCreateNode(), ExpectCreateNode()); } TYPED_TEST(TestPlanner, CreateNodeExpandNode) { // Test CREATE (n) -[r :rel]-> (m), (l) AstTreeStorage storage; database::SingleNode db; database::GraphDbAccessor dba(db); auto relationship = dba.EdgeType("rel"); QUERY(SINGLE_QUERY(CREATE( PATTERN(NODE("n"), EDGE("r", Direction::OUT, {relationship}), NODE("m")), PATTERN(NODE("l"))))); CheckPlan(storage, ExpectCreateNode(), ExpectCreateExpand(), ExpectCreateNode()); } TYPED_TEST(TestPlanner, CreateNamedPattern) { // Test CREATE p = (n) -[r :rel]-> (m) AstTreeStorage storage; database::SingleNode db; database::GraphDbAccessor dba(db); auto relationship = dba.EdgeType("rel"); QUERY(SINGLE_QUERY(CREATE(NAMED_PATTERN( "p", NODE("n"), EDGE("r", Direction::OUT, {relationship}), NODE("m"))))); CheckPlan(storage, ExpectCreateNode(), ExpectCreateExpand(), ExpectConstructNamedPath()); } TYPED_TEST(TestPlanner, MatchCreateExpand) { // Test MATCH (n) CREATE (n) -[r :rel1]-> (m) AstTreeStorage storage; database::SingleNode db; database::GraphDbAccessor dba(db); auto relationship = dba.EdgeType("relationship"); QUERY(SINGLE_QUERY( MATCH(PATTERN(NODE("n"))), CREATE(PATTERN(NODE("n"), EDGE("r", Direction::OUT, {relationship}), NODE("m"))))); CheckPlan(storage, ExpectScanAll(), ExpectCreateExpand()); ExpectedDistributedPlan expected{ MakeCheckers(ExpectScanAll(), ExpectCreateExpand(), ExpectPullRemote()), MakeCheckers(ExpectScanAll(), ExpectCreateExpand())}; CheckDistributedPlan(storage, expected); } TYPED_TEST(TestPlanner, MatchLabeledNodes) { // Test MATCH (n :label) RETURN n AstTreeStorage storage; database::SingleNode db; database::GraphDbAccessor dba(db); auto label = dba.Label("label"); auto *as_n = NEXPR("n", IDENT("n")); QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("n", label))), RETURN(as_n))); auto symbol_table = MakeSymbolTable(*storage.query()); auto planner = MakePlanner(db, storage, symbol_table); CheckPlan(planner.plan(), symbol_table, ExpectScanAllByLabel(), ExpectProduce()); ExpectPullRemote pull({symbol_table.at(*as_n)}); ExpectedDistributedPlan expected{ MakeCheckers(ExpectScanAllByLabel(), ExpectProduce(), pull), MakeCheckers(ExpectScanAllByLabel(), ExpectProduce())}; CheckDistributedPlan(planner.plan(), symbol_table, expected); } TYPED_TEST(TestPlanner, MatchPathReturn) { // Test MATCH (n) -[r :relationship]- (m) RETURN n AstTreeStorage storage; database::SingleNode db; database::GraphDbAccessor dba(db); auto relationship = dba.EdgeType("relationship"); auto *as_n = NEXPR("n", IDENT("n")); QUERY(SINGLE_QUERY( MATCH(PATTERN(NODE("n"), EDGE("r", Direction::BOTH, {relationship}), NODE("m"))), RETURN(as_n))); auto symbol_table = MakeSymbolTable(*storage.query()); auto planner = MakePlanner(db, storage, symbol_table); CheckPlan(planner.plan(), symbol_table, ExpectScanAll(), ExpectExpand(), ExpectProduce()); ExpectPullRemote pull({symbol_table.at(*as_n)}); ExpectedDistributedPlan expected{ MakeCheckers(ExpectScanAll(), ExpectExpand(), ExpectProduce(), pull), MakeCheckers(ExpectScanAll(), ExpectExpand(), ExpectProduce())}; CheckDistributedPlan(planner.plan(), symbol_table, expected); } TYPED_TEST(TestPlanner, MatchNamedPatternReturn) { // Test MATCH p = (n) -[r :relationship]- (m) RETURN p AstTreeStorage storage; database::SingleNode db; database::GraphDbAccessor dba(db); auto relationship = dba.EdgeType("relationship"); auto *as_p = NEXPR("p", IDENT("p")); QUERY(SINGLE_QUERY( MATCH(NAMED_PATTERN("p", NODE("n"), EDGE("r", Direction::BOTH, {relationship}), NODE("m"))), RETURN(as_p))); auto symbol_table = MakeSymbolTable(*storage.query()); auto planner = MakePlanner(db, storage, symbol_table); CheckPlan(planner.plan(), symbol_table, ExpectScanAll(), ExpectExpand(), ExpectConstructNamedPath(), ExpectProduce()); ExpectPullRemote pull({symbol_table.at(*as_p)}); ExpectedDistributedPlan expected{ MakeCheckers(ExpectScanAll(), ExpectExpand(), ExpectConstructNamedPath(), ExpectProduce(), pull), MakeCheckers(ExpectScanAll(), ExpectExpand(), ExpectConstructNamedPath(), ExpectProduce())}; CheckDistributedPlan(planner.plan(), symbol_table, expected); } TYPED_TEST(TestPlanner, MatchNamedPatternWithPredicateReturn) { // Test MATCH p = (n) -[r :relationship]- (m) WHERE 2 = p RETURN p AstTreeStorage storage; database::SingleNode db; database::GraphDbAccessor dba(db); auto relationship = dba.EdgeType("relationship"); auto *as_p = NEXPR("p", IDENT("p")); QUERY(SINGLE_QUERY( MATCH(NAMED_PATTERN("p", NODE("n"), EDGE("r", Direction::BOTH, {relationship}), NODE("m"))), WHERE(EQ(LITERAL(2), IDENT("p"))), RETURN(as_p))); auto symbol_table = MakeSymbolTable(*storage.query()); auto planner = MakePlanner(db, storage, symbol_table); CheckPlan(planner.plan(), symbol_table, ExpectScanAll(), ExpectExpand(), ExpectConstructNamedPath(), ExpectFilter(), ExpectProduce()); ExpectPullRemote pull({symbol_table.at(*as_p)}); ExpectedDistributedPlan expected{ MakeCheckers(ExpectScanAll(), ExpectExpand(), ExpectConstructNamedPath(), ExpectFilter(), ExpectProduce(), pull), MakeCheckers(ExpectScanAll(), ExpectExpand(), ExpectConstructNamedPath(), ExpectFilter(), ExpectProduce())}; CheckDistributedPlan(planner.plan(), symbol_table, expected); } TYPED_TEST(TestPlanner, OptionalMatchNamedPatternReturn) { // Test OPTIONAL MATCH p = (n) -[r]- (m) RETURN p database::SingleNode db; AstTreeStorage storage; auto node_n = NODE("n"); auto edge = EDGE("r"); auto node_m = NODE("m"); auto pattern = NAMED_PATTERN("p", node_n, edge, node_m); QUERY(SINGLE_QUERY(OPTIONAL_MATCH(pattern), RETURN("p"))); auto symbol_table = MakeSymbolTable(*storage.query()); std::list optional{new ExpectScanAll(), new ExpectExpand(), new ExpectConstructNamedPath()}; auto get_symbol = [&symbol_table](const auto *ast_node) { return symbol_table.at(*ast_node->identifier_); }; std::vector optional_symbols{get_symbol(pattern), get_symbol(node_n), get_symbol(edge), get_symbol(node_m)}; auto planner = MakePlanner(db, storage, symbol_table); CheckPlan(planner.plan(), symbol_table, ExpectOptional(optional_symbols, optional), ExpectProduce()); } TYPED_TEST(TestPlanner, MatchWhereReturn) { // Test MATCH (n) WHERE n.property < 42 RETURN n AstTreeStorage storage; database::SingleNode db; database::GraphDbAccessor dba(db); auto property = dba.Property("property"); auto *as_n = NEXPR("n", IDENT("n")); QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("n"))), WHERE(LESS(PROPERTY_LOOKUP("n", property), LITERAL(42))), RETURN(as_n))); auto symbol_table = MakeSymbolTable(*storage.query()); auto planner = MakePlanner(db, storage, symbol_table); CheckPlan(planner.plan(), symbol_table, ExpectScanAll(), ExpectFilter(), ExpectProduce()); ExpectPullRemote pull({symbol_table.at(*as_n)}); ExpectedDistributedPlan expected{ MakeCheckers(ExpectScanAll(), ExpectFilter(), ExpectProduce(), pull), MakeCheckers(ExpectScanAll(), ExpectFilter(), ExpectProduce())}; CheckDistributedPlan(planner.plan(), symbol_table, expected); } TYPED_TEST(TestPlanner, MatchDelete) { // Test MATCH (n) DELETE n AstTreeStorage storage; QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("n"))), DELETE(IDENT("n")))); CheckPlan(storage, ExpectScanAll(), ExpectDelete()); ExpectedDistributedPlan expected{ MakeCheckers(ExpectScanAll(), ExpectDelete(), ExpectPullRemote()), MakeCheckers(ExpectScanAll(), ExpectDelete())}; CheckDistributedPlan(storage, expected); } TYPED_TEST(TestPlanner, MatchNodeSet) { // Test MATCH (n) SET n.prop = 42, n = n, n :label AstTreeStorage storage; database::SingleNode db; database::GraphDbAccessor dba(db); auto prop = dba.Property("prop"); auto label = dba.Label("label"); QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("n"))), SET(PROPERTY_LOOKUP("n", prop), LITERAL(42)), SET("n", IDENT("n")), SET("n", {label}))); CheckPlan(storage, ExpectScanAll(), ExpectSetProperty(), ExpectSetProperties(), ExpectSetLabels()); ExpectedDistributedPlan expected{ MakeCheckers(ExpectScanAll(), ExpectSetProperty(), ExpectSetProperties(), ExpectSetLabels(), ExpectPullRemote()), MakeCheckers(ExpectScanAll(), ExpectSetProperty(), ExpectSetProperties(), ExpectSetLabels())}; CheckDistributedPlan(storage, expected); } TYPED_TEST(TestPlanner, MatchRemove) { // Test MATCH (n) REMOVE n.prop REMOVE n :label AstTreeStorage storage; database::SingleNode db; database::GraphDbAccessor dba(db); auto prop = dba.Property("prop"); auto label = dba.Label("label"); QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("n"))), REMOVE(PROPERTY_LOOKUP("n", prop)), REMOVE("n", {label}))); CheckPlan(storage, ExpectScanAll(), ExpectRemoveProperty(), ExpectRemoveLabels()); ExpectedDistributedPlan expected{ MakeCheckers(ExpectScanAll(), ExpectRemoveProperty(), ExpectRemoveLabels(), ExpectPullRemote()), MakeCheckers(ExpectScanAll(), ExpectRemoveProperty(), ExpectRemoveLabels())}; CheckDistributedPlan(storage, expected); } TYPED_TEST(TestPlanner, MatchMultiPattern) { // Test MATCH (n) -[r]- (m), (j) -[e]- (i) RETURN n AstTreeStorage storage; QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("n"), EDGE("r"), NODE("m")), PATTERN(NODE("j"), EDGE("e"), NODE("i"))), RETURN("n"))); // We expect the expansions after the first to have a uniqueness filter in a // single MATCH clause. CheckPlan( storage, ExpectScanAll(), ExpectExpand(), ExpectScanAll(), ExpectExpand(), ExpectExpandUniquenessFilter(), ExpectProduce()); } TYPED_TEST(TestPlanner, MatchMultiPatternSameStart) { // Test MATCH (n), (n) -[e]- (m) RETURN n AstTreeStorage storage; QUERY(SINGLE_QUERY( MATCH(PATTERN(NODE("n")), PATTERN(NODE("n"), EDGE("e"), NODE("m"))), RETURN("n"))); // We expect the second pattern to generate only an Expand, since another // ScanAll would be redundant. CheckPlan(storage, ExpectScanAll(), ExpectExpand(), ExpectProduce()); } TYPED_TEST(TestPlanner, MatchMultiPatternSameExpandStart) { // Test MATCH (n) -[r]- (m), (m) -[e]- (l) RETURN n AstTreeStorage storage; QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("n"), EDGE("r"), NODE("m")), PATTERN(NODE("m"), EDGE("e"), NODE("l"))), RETURN("n"))); // We expect the second pattern to generate only an Expand. Another // ScanAll would be redundant, as it would generate the nodes obtained from // expansion. Additionally, a uniqueness filter is expected. CheckPlan(storage, ExpectScanAll(), ExpectExpand(), ExpectExpand(), ExpectExpandUniquenessFilter(), ExpectProduce()); } TYPED_TEST(TestPlanner, MultiMatch) { // Test MATCH (n) -[r]- (m) MATCH (j) -[e]- (i) -[f]- (h) RETURN n AstTreeStorage storage; QUERY(SINGLE_QUERY( MATCH(PATTERN(NODE("n"), EDGE("r"), NODE("m"))), MATCH(PATTERN(NODE("j"), EDGE("e"), NODE("i"), EDGE("f"), NODE("h"))), RETURN("n"))); // Multiple MATCH clauses form a Cartesian product, so the uniqueness should // not cross MATCH boundaries. CheckPlan(storage, ExpectScanAll(), ExpectExpand(), ExpectScanAll(), ExpectExpand(), ExpectExpand(), ExpectExpandUniquenessFilter(), ExpectProduce()); } TYPED_TEST(TestPlanner, MultiMatchSameStart) { // Test MATCH (n) MATCH (n) -[r]- (m) RETURN n AstTreeStorage storage; auto *as_n = NEXPR("n", IDENT("n")); QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("n"))), MATCH(PATTERN(NODE("n"), EDGE("r"), NODE("m"))), RETURN(as_n))); // Similar to MatchMultiPatternSameStart, we expect only Expand from second // MATCH clause. auto symbol_table = MakeSymbolTable(*storage.query()); database::SingleNode db; auto planner = MakePlanner(db, storage, symbol_table); CheckPlan(planner.plan(), symbol_table, ExpectScanAll(), ExpectExpand(), ExpectProduce()); ExpectPullRemote pull({symbol_table.at(*as_n)}); ExpectedDistributedPlan expected{ MakeCheckers(ExpectScanAll(), ExpectExpand(), ExpectProduce(), pull), MakeCheckers(ExpectScanAll(), ExpectExpand(), ExpectProduce())}; CheckDistributedPlan(planner.plan(), symbol_table, expected); } TYPED_TEST(TestPlanner, MatchWithReturn) { // Test MATCH (old) WITH old AS new RETURN new AstTreeStorage storage; auto *as_new = NEXPR("new", IDENT("new")); QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("old"))), WITH("old", AS("new")), RETURN(as_new))); // No accumulation since we only do reads. auto symbol_table = MakeSymbolTable(*storage.query()); database::SingleNode db; auto planner = MakePlanner(db, storage, symbol_table); CheckPlan(planner.plan(), symbol_table, ExpectScanAll(), ExpectProduce(), ExpectProduce()); ExpectPullRemote pull({symbol_table.at(*as_new)}); ExpectedDistributedPlan expected{ MakeCheckers(ExpectScanAll(), ExpectProduce(), ExpectProduce(), pull), MakeCheckers(ExpectScanAll(), ExpectProduce(), ExpectProduce())}; CheckDistributedPlan(planner.plan(), symbol_table, expected); } TYPED_TEST(TestPlanner, MatchWithWhereReturn) { // Test MATCH (old) WITH old AS new WHERE new.prop < 42 RETURN new database::SingleNode db; database::GraphDbAccessor dba(db); auto prop = dba.Property("prop"); AstTreeStorage storage; auto *as_new = NEXPR("new", IDENT("new")); QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("old"))), WITH("old", AS("new")), WHERE(LESS(PROPERTY_LOOKUP("new", prop), LITERAL(42))), RETURN(as_new))); // No accumulation since we only do reads. auto symbol_table = MakeSymbolTable(*storage.query()); auto planner = MakePlanner(db, storage, symbol_table); CheckPlan(planner.plan(), symbol_table, ExpectScanAll(), ExpectProduce(), ExpectFilter(), ExpectProduce()); ExpectPullRemote pull({symbol_table.at(*as_new)}); ExpectedDistributedPlan expected{ MakeCheckers(ExpectScanAll(), ExpectProduce(), ExpectFilter(), ExpectProduce(), pull), MakeCheckers(ExpectScanAll(), ExpectProduce(), ExpectFilter(), ExpectProduce())}; CheckDistributedPlan(planner.plan(), symbol_table, expected); } TYPED_TEST(TestPlanner, CreateMultiExpand) { // Test CREATE (n) -[r :r]-> (m), (n) - [p :p]-> (l) database::SingleNode db; database::GraphDbAccessor dba(db); auto r = dba.EdgeType("r"); auto p = dba.EdgeType("p"); AstTreeStorage storage; QUERY(SINGLE_QUERY( CREATE(PATTERN(NODE("n"), EDGE("r", Direction::OUT, {r}), NODE("m")), PATTERN(NODE("n"), EDGE("p", Direction::OUT, {p}), NODE("l"))))); CheckPlan(storage, ExpectCreateNode(), ExpectCreateExpand(), ExpectCreateExpand()); } TYPED_TEST(TestPlanner, MatchWithSumWhereReturn) { // Test MATCH (n) WITH SUM(n.prop) + 42 AS sum WHERE sum < 42 // RETURN sum AS result database::SingleNode db; database::GraphDbAccessor dba(db); auto prop = dba.Property("prop"); AstTreeStorage storage; auto sum = SUM(PROPERTY_LOOKUP("n", prop)); auto literal = LITERAL(42); QUERY(SINGLE_QUERY( MATCH(PATTERN(NODE("n"))), WITH(ADD(sum, literal), AS("sum")), WHERE(LESS(IDENT("sum"), LITERAL(42))), RETURN("sum", AS("result")))); auto aggr = ExpectAggregate({sum}, {literal}); CheckPlan(storage, ExpectScanAll(), aggr, ExpectProduce(), ExpectFilter(), ExpectProduce()); } TYPED_TEST(TestPlanner, MatchReturnSum) { // Test MATCH (n) RETURN SUM(n.prop1) AS sum, n.prop2 AS group database::SingleNode db; database::GraphDbAccessor dba(db); auto prop1 = dba.Property("prop1"); auto prop2 = dba.Property("prop2"); AstTreeStorage storage; auto sum = SUM(PROPERTY_LOOKUP("n", prop1)); auto n_prop2 = PROPERTY_LOOKUP("n", prop2); QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("n"))), RETURN(sum, AS("sum"), n_prop2, AS("group")))); auto aggr = ExpectAggregate({sum}, {n_prop2}); auto symbol_table = MakeSymbolTable(*storage.query()); auto planner = MakePlanner(db, storage, symbol_table); CheckPlan(planner.plan(), symbol_table, ExpectScanAll(), aggr, ExpectProduce()); { std::atomic next_plan_id{0}; auto distributed_plan = MakeDistributedPlan(planner.plan(), symbol_table, next_plan_id); auto merge_sum = SUM(IDENT("worker_sum")); auto master_aggr = ExpectMasterAggregate({merge_sum}, {n_prop2}); ExpectPullRemote pull( {symbol_table.at(*sum), symbol_table.at(*n_prop2->expression_)}); ExpectedDistributedPlan expected{ MakeCheckers(ExpectScanAll(), aggr, pull, master_aggr, ExpectProduce(), ExpectProduce()), MakeCheckers(ExpectScanAll(), aggr)}; CheckDistributedPlan(distributed_plan, expected); } } TYPED_TEST(TestPlanner, CreateWithSum) { // Test CREATE (n) WITH SUM(n.prop) AS sum database::SingleNode db; database::GraphDbAccessor dba(db); auto prop = dba.Property("prop"); AstTreeStorage storage; auto n_prop = PROPERTY_LOOKUP("n", prop); auto sum = SUM(n_prop); auto query = QUERY(SINGLE_QUERY(CREATE(PATTERN(NODE("n"))), WITH(sum, AS("sum")))); auto symbol_table = MakeSymbolTable(*query); auto acc = ExpectAccumulate({symbol_table.at(*n_prop->expression_)}); auto aggr = ExpectAggregate({sum}, {}); auto planner = MakePlanner(db, storage, symbol_table); // We expect both the accumulation and aggregation because the part before // WITH updates the database. CheckPlan(planner.plan(), symbol_table, ExpectCreateNode(), acc, aggr, ExpectProduce()); } TYPED_TEST(TestPlanner, MatchWithCreate) { // Test MATCH (n) WITH n AS a CREATE (a) -[r :r]-> (b) database::SingleNode db; database::GraphDbAccessor dba(db); auto r_type = dba.EdgeType("r"); AstTreeStorage storage; QUERY(SINGLE_QUERY( MATCH(PATTERN(NODE("n"))), WITH("n", AS("a")), CREATE( PATTERN(NODE("a"), EDGE("r", Direction::OUT, {r_type}), NODE("b"))))); CheckPlan(storage, ExpectScanAll(), ExpectProduce(), ExpectCreateExpand()); ExpectedDistributedPlan expected{ MakeCheckers(ExpectScanAll(), ExpectProduce(), ExpectCreateExpand(), ExpectPullRemote()), MakeCheckers(ExpectScanAll(), ExpectProduce(), ExpectCreateExpand())}; CheckDistributedPlan(storage, expected); } TYPED_TEST(TestPlanner, MatchReturnSkipLimit) { // Test MATCH (n) RETURN n SKIP 2 LIMIT 1 AstTreeStorage storage; auto *as_n = NEXPR("n", IDENT("n")); QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("n"))), RETURN(as_n, SKIP(LITERAL(2)), LIMIT(LITERAL(1))))); auto symbol_table = MakeSymbolTable(*storage.query()); database::SingleNode db; auto planner = MakePlanner(db, storage, symbol_table); CheckPlan(planner.plan(), symbol_table, ExpectScanAll(), ExpectProduce(), ExpectSkip(), ExpectLimit()); ExpectPullRemote pull({symbol_table.at(*as_n)}); ExpectedDistributedPlan expected{ MakeCheckers(ExpectScanAll(), ExpectProduce(), pull, ExpectSkip(), ExpectLimit()), MakeCheckers(ExpectScanAll(), ExpectProduce())}; CheckDistributedPlan(planner.plan(), symbol_table, expected); } TYPED_TEST(TestPlanner, CreateWithSkipReturnLimit) { // Test CREATE (n) WITH n AS m SKIP 2 RETURN m LIMIT 1 AstTreeStorage storage; auto ident_n = IDENT("n"); auto query = QUERY(SINGLE_QUERY(CREATE(PATTERN(NODE("n"))), WITH(ident_n, AS("m"), SKIP(LITERAL(2))), RETURN("m", LIMIT(LITERAL(1))))); auto symbol_table = MakeSymbolTable(*query); auto acc = ExpectAccumulate({symbol_table.at(*ident_n)}); database::SingleNode db; auto planner = MakePlanner(db, storage, symbol_table); // Since we have a write query, we need to have Accumulate. This is a bit // different than Neo4j 3.0, which optimizes WITH followed by RETURN as a // single RETURN clause and then moves Skip and Limit before Accumulate. This // causes different behaviour. A newer version of Neo4j does the same thing as // us here (but who knows if they change it again). CheckPlan(planner.plan(), symbol_table, ExpectCreateNode(), acc, ExpectProduce(), ExpectSkip(), ExpectProduce(), ExpectLimit()); } TYPED_TEST(TestPlanner, CreateReturnSumSkipLimit) { // Test CREATE (n) RETURN SUM(n.prop) AS s SKIP 2 LIMIT 1 database::SingleNode db; database::GraphDbAccessor dba(db); auto prop = dba.Property("prop"); AstTreeStorage storage; auto n_prop = PROPERTY_LOOKUP("n", prop); auto sum = SUM(n_prop); auto query = QUERY( SINGLE_QUERY(CREATE(PATTERN(NODE("n"))), RETURN(sum, AS("s"), SKIP(LITERAL(2)), LIMIT(LITERAL(1))))); auto symbol_table = MakeSymbolTable(*query); auto acc = ExpectAccumulate({symbol_table.at(*n_prop->expression_)}); auto aggr = ExpectAggregate({sum}, {}); auto planner = MakePlanner(db, storage, symbol_table); CheckPlan(planner.plan(), symbol_table, ExpectCreateNode(), acc, aggr, ExpectProduce(), ExpectSkip(), ExpectLimit()); } TYPED_TEST(TestPlanner, MatchReturnOrderBy) { // Test MATCH (n) RETURN n ORDER BY n.prop database::SingleNode db; database::GraphDbAccessor dba(db); auto prop = dba.Property("prop"); AstTreeStorage storage; auto *as_n = NEXPR("n", IDENT("n")); auto ret = RETURN(as_n, ORDER_BY(PROPERTY_LOOKUP("n", prop))); QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("n"))), ret)); auto symbol_table = MakeSymbolTable(*storage.query()); auto planner = MakePlanner(db, storage, symbol_table); CheckPlan(planner.plan(), symbol_table, ExpectScanAll(), ExpectProduce(), ExpectOrderBy()); ExpectPullRemote pull({symbol_table.at(*as_n)}); ExpectedDistributedPlan expected{ MakeCheckers(ExpectScanAll(), ExpectProduce(), pull, ExpectOrderBy()), MakeCheckers(ExpectScanAll(), ExpectProduce())}; CheckDistributedPlan(planner.plan(), symbol_table, expected); } TYPED_TEST(TestPlanner, CreateWithOrderByWhere) { // Test CREATE (n) -[r :r]-> (m) // WITH n AS new ORDER BY new.prop, r.prop WHERE m.prop < 42 database::SingleNode db; database::GraphDbAccessor dba(db); auto prop = dba.Property("prop"); auto r_type = dba.EdgeType("r"); AstTreeStorage storage; auto ident_n = IDENT("n"); auto new_prop = PROPERTY_LOOKUP("new", prop); auto r_prop = PROPERTY_LOOKUP("r", prop); auto m_prop = PROPERTY_LOOKUP("m", prop); auto query = QUERY(SINGLE_QUERY( CREATE( PATTERN(NODE("n"), EDGE("r", Direction::OUT, {r_type}), NODE("m"))), WITH(ident_n, AS("new"), ORDER_BY(new_prop, r_prop)), WHERE(LESS(m_prop, LITERAL(42))))); auto symbol_table = MakeSymbolTable(*query); // Since this is a write query, we expect to accumulate to old used symbols. auto acc = ExpectAccumulate({ symbol_table.at(*ident_n), // `n` in WITH symbol_table.at(*r_prop->expression_), // `r` in ORDER BY symbol_table.at(*m_prop->expression_), // `m` in WHERE }); auto planner = MakePlanner(db, storage, symbol_table); CheckPlan(planner.plan(), symbol_table, ExpectCreateNode(), ExpectCreateExpand(), acc, ExpectProduce(), ExpectOrderBy(), ExpectFilter()); } TYPED_TEST(TestPlanner, ReturnAddSumCountOrderBy) { // Test RETURN SUM(1) + COUNT(2) AS result ORDER BY result AstTreeStorage storage; auto sum = SUM(LITERAL(1)); auto count = COUNT(LITERAL(2)); QUERY(SINGLE_QUERY( RETURN(ADD(sum, count), AS("result"), ORDER_BY(IDENT("result"))))); auto aggr = ExpectAggregate({sum, count}, {}); CheckPlan(storage, aggr, ExpectProduce(), ExpectOrderBy()); } TYPED_TEST(TestPlanner, MatchMerge) { // Test MATCH (n) MERGE (n) -[r :r]- (m) // ON MATCH SET n.prop = 42 ON CREATE SET m = n // RETURN n AS n database::SingleNode db; database::GraphDbAccessor dba(db); auto r_type = dba.EdgeType("r"); auto prop = dba.Property("prop"); AstTreeStorage storage; auto ident_n = IDENT("n"); auto query = QUERY(SINGLE_QUERY( MATCH(PATTERN(NODE("n"))), MERGE(PATTERN(NODE("n"), EDGE("r", Direction::BOTH, {r_type}), NODE("m")), ON_MATCH(SET(PROPERTY_LOOKUP("n", prop), LITERAL(42))), ON_CREATE(SET("m", IDENT("n")))), RETURN(ident_n, AS("n")))); std::list on_match{new ExpectExpand(), new ExpectSetProperty()}; std::list on_create{new ExpectCreateExpand(), new ExpectSetProperties()}; auto symbol_table = MakeSymbolTable(*query); // We expect Accumulate after Merge, because it is considered as a write. auto acc = ExpectAccumulate({symbol_table.at(*ident_n)}); auto planner = MakePlanner(db, storage, symbol_table); CheckPlan(planner.plan(), symbol_table, ExpectScanAll(), ExpectMerge(on_match, on_create), acc, ExpectProduce()); for (auto &op : on_match) delete op; on_match.clear(); for (auto &op : on_create) delete op; on_create.clear(); } TYPED_TEST(TestPlanner, MatchOptionalMatchWhereReturn) { // Test MATCH (n) OPTIONAL MATCH (n) -[r]- (m) WHERE m.prop < 42 RETURN r database::SingleNode db; database::GraphDbAccessor dba(db); auto prop = dba.Property("prop"); AstTreeStorage storage; QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("n"))), OPTIONAL_MATCH(PATTERN(NODE("n"), EDGE("r"), NODE("m"))), WHERE(LESS(PROPERTY_LOOKUP("m", prop), LITERAL(42))), RETURN("r"))); std::list optional{new ExpectScanAll(), new ExpectExpand(), new ExpectFilter()}; CheckPlan(storage, ExpectScanAll(), ExpectOptional(optional), ExpectProduce()); } TYPED_TEST(TestPlanner, MatchUnwindReturn) { // Test MATCH (n) UNWIND [1,2,3] AS x RETURN n, x AstTreeStorage storage; auto *as_n = NEXPR("n", IDENT("n")); auto *as_x = NEXPR("x", IDENT("x")); QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("n"))), UNWIND(LIST(LITERAL(1), LITERAL(2), LITERAL(3)), AS("x")), RETURN(as_n, as_x))); auto symbol_table = MakeSymbolTable(*storage.query()); database::SingleNode db; auto planner = MakePlanner(db, storage, symbol_table); CheckPlan(planner.plan(), symbol_table, ExpectScanAll(), ExpectUnwind(), ExpectProduce()); ExpectPullRemote pull({symbol_table.at(*as_n), symbol_table.at(*as_x)}); ExpectedDistributedPlan expected{ MakeCheckers(ExpectScanAll(), ExpectUnwind(), ExpectProduce(), pull), MakeCheckers(ExpectScanAll(), ExpectUnwind(), ExpectProduce())}; CheckDistributedPlan(planner.plan(), symbol_table, expected); } TYPED_TEST(TestPlanner, ReturnDistinctOrderBySkipLimit) { // Test RETURN DISTINCT 1 ORDER BY 1 SKIP 1 LIMIT 1 AstTreeStorage storage; QUERY(SINGLE_QUERY(RETURN_DISTINCT(LITERAL(1), AS("1"), ORDER_BY(LITERAL(1)), SKIP(LITERAL(1)), LIMIT(LITERAL(1))))); CheckPlan(storage, ExpectProduce(), ExpectDistinct(), ExpectOrderBy(), ExpectSkip(), ExpectLimit()); ExpectedDistributedPlan expected{ MakeCheckers(ExpectProduce(), ExpectDistinct(), ExpectOrderBy(), ExpectSkip(), ExpectLimit()), {}}; CheckDistributedPlan(storage, expected); } TYPED_TEST(TestPlanner, CreateWithDistinctSumWhereReturn) { // Test CREATE (n) WITH DISTINCT SUM(n.prop) AS s WHERE s < 42 RETURN s database::SingleNode db; database::GraphDbAccessor dba(db); auto prop = dba.Property("prop"); AstTreeStorage storage; auto node_n = NODE("n"); auto sum = SUM(PROPERTY_LOOKUP("n", prop)); auto query = QUERY(SINGLE_QUERY(CREATE(PATTERN(node_n)), WITH_DISTINCT(sum, AS("s")), WHERE(LESS(IDENT("s"), LITERAL(42))), RETURN("s"))); auto symbol_table = MakeSymbolTable(*query); auto acc = ExpectAccumulate({symbol_table.at(*node_n->identifier_)}); auto aggr = ExpectAggregate({sum}, {}); auto planner = MakePlanner(db, storage, symbol_table); CheckPlan(planner.plan(), symbol_table, ExpectCreateNode(), acc, aggr, ExpectProduce(), ExpectDistinct(), ExpectFilter(), ExpectProduce()); } TYPED_TEST(TestPlanner, MatchCrossReferenceVariable) { // Test MATCH (n {prop: m.prop}), (m {prop: n.prop}) RETURN n database::SingleNode db; database::GraphDbAccessor dba(db); auto prop = PROPERTY_PAIR("prop"); AstTreeStorage storage; auto node_n = NODE("n"); auto m_prop = PROPERTY_LOOKUP("m", prop.second); node_n->properties_[prop] = m_prop; auto node_m = NODE("m"); auto n_prop = PROPERTY_LOOKUP("n", prop.second); node_m->properties_[prop] = n_prop; QUERY(SINGLE_QUERY(MATCH(PATTERN(node_n), PATTERN(node_m)), RETURN("n"))); // We expect both ScanAll to come before filters (2 are joined into one), // because they need to populate the symbol values. CheckPlan(storage, ExpectScanAll(), ExpectScanAll(), ExpectFilter(), ExpectProduce()); } TYPED_TEST(TestPlanner, MatchWhereBeforeExpand) { // Test MATCH (n) -[r]- (m) WHERE n.prop < 42 RETURN n database::SingleNode db; database::GraphDbAccessor dba(db); auto prop = dba.Property("prop"); AstTreeStorage storage; auto *as_n = NEXPR("n", IDENT("n")); QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("n"), EDGE("r"), NODE("m"))), WHERE(LESS(PROPERTY_LOOKUP("n", prop), LITERAL(42))), RETURN(as_n))); // We expect Fitler to come immediately after ScanAll, since it only uses `n`. auto symbol_table = MakeSymbolTable(*storage.query()); auto planner = MakePlanner(db, storage, symbol_table); CheckPlan(planner.plan(), symbol_table, ExpectScanAll(), ExpectFilter(), ExpectExpand(), ExpectProduce()); ExpectPullRemote pull({symbol_table.at(*as_n)}); ExpectedDistributedPlan expected{ MakeCheckers(ExpectScanAll(), ExpectFilter(), ExpectExpand(), ExpectProduce(), pull), MakeCheckers(ExpectScanAll(), ExpectFilter(), ExpectExpand(), ExpectProduce())}; CheckDistributedPlan(planner.plan(), symbol_table, expected); } TYPED_TEST(TestPlanner, MultiMatchWhere) { // Test MATCH (n) -[r]- (m) MATCH (l) WHERE n.prop < 42 RETURN n database::SingleNode db; database::GraphDbAccessor dba(db); auto prop = dba.Property("prop"); AstTreeStorage storage; QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("n"), EDGE("r"), NODE("m"))), MATCH(PATTERN(NODE("l"))), WHERE(LESS(PROPERTY_LOOKUP("n", prop), LITERAL(42))), RETURN("n"))); // Even though WHERE is in the second MATCH clause, we expect Filter to come // before second ScanAll, since it only uses the value from first ScanAll. CheckPlan(storage, ExpectScanAll(), ExpectFilter(), ExpectExpand(), ExpectScanAll(), ExpectProduce()); } TYPED_TEST(TestPlanner, MatchOptionalMatchWhere) { // Test MATCH (n) -[r]- (m) OPTIONAL MATCH (l) WHERE n.prop < 42 RETURN n database::SingleNode db; database::GraphDbAccessor dba(db); auto prop = dba.Property("prop"); AstTreeStorage storage; QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("n"), EDGE("r"), NODE("m"))), OPTIONAL_MATCH(PATTERN(NODE("l"))), WHERE(LESS(PROPERTY_LOOKUP("n", prop), LITERAL(42))), RETURN("n"))); // Even though WHERE is in the second MATCH clause, and it uses the value from // first ScanAll, it must remain part of the Optional. It should come before // optional ScanAll. std::list optional{new ExpectFilter(), new ExpectScanAll()}; CheckPlan(storage, ExpectScanAll(), ExpectExpand(), ExpectOptional(optional), ExpectProduce()); } TYPED_TEST(TestPlanner, MatchReturnAsterisk) { // Test MATCH (n) -[e]- (m) RETURN *, m.prop database::SingleNode db; database::GraphDbAccessor dba(db); auto prop = dba.Property("prop"); AstTreeStorage storage; auto ret = RETURN(PROPERTY_LOOKUP("m", prop), AS("m.prop")); ret->body_.all_identifiers = true; auto query = QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("n"), EDGE("e"), NODE("m"))), ret)); auto symbol_table = MakeSymbolTable(*query); auto planner = MakePlanner(db, storage, symbol_table); CheckPlan(planner.plan(), symbol_table, ExpectScanAll(), ExpectExpand(), ExpectProduce()); std::vector output_names; for (const auto &output_symbol : planner.plan().OutputSymbols(symbol_table)) { output_names.emplace_back(output_symbol.name()); } std::vector expected_names{"e", "m", "n", "m.prop"}; EXPECT_EQ(output_names, expected_names); } TYPED_TEST(TestPlanner, MatchReturnAsteriskSum) { // Test MATCH (n) RETURN *, SUM(n.prop) AS s database::SingleNode db; database::GraphDbAccessor dba(db); auto prop = dba.Property("prop"); AstTreeStorage storage; auto sum = SUM(PROPERTY_LOOKUP("n", prop)); auto ret = RETURN(sum, AS("s")); ret->body_.all_identifiers = true; auto query = QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("n"))), ret)); auto symbol_table = MakeSymbolTable(*query); auto planner = MakePlanner(db, storage, symbol_table); auto *produce = dynamic_cast(&planner.plan()); ASSERT_TRUE(produce); const auto &named_expressions = produce->named_expressions(); ASSERT_EQ(named_expressions.size(), 2); auto *expanded_ident = dynamic_cast(named_expressions[0]->expression_); ASSERT_TRUE(expanded_ident); auto aggr = ExpectAggregate({sum}, {expanded_ident}); CheckPlan(planner.plan(), symbol_table, ExpectScanAll(), aggr, ExpectProduce()); std::vector output_names; for (const auto &output_symbol : planner.plan().OutputSymbols(symbol_table)) { output_names.emplace_back(output_symbol.name()); } std::vector expected_names{"n", "s"}; EXPECT_EQ(output_names, expected_names); } TYPED_TEST(TestPlanner, UnwindMergeNodeProperty) { // Test UNWIND [1] AS i MERGE (n {prop: i}) database::SingleNode db; database::GraphDbAccessor dba(db); AstTreeStorage storage; auto node_n = NODE("n"); node_n->properties_[PROPERTY_PAIR("prop")] = IDENT("i"); QUERY( SINGLE_QUERY(UNWIND(LIST(LITERAL(1)), AS("i")), MERGE(PATTERN(node_n)))); std::list on_match{new ExpectScanAll(), new ExpectFilter()}; std::list on_create{new ExpectCreateNode()}; CheckPlan(storage, ExpectUnwind(), ExpectMerge(on_match, on_create)); for (auto &op : on_match) delete op; for (auto &op : on_create) delete op; } TYPED_TEST(TestPlanner, MultipleOptionalMatchReturn) { // Test OPTIONAL MATCH (n) OPTIONAL MATCH (m) RETURN n AstTreeStorage storage; QUERY(SINGLE_QUERY(OPTIONAL_MATCH(PATTERN(NODE("n"))), OPTIONAL_MATCH(PATTERN(NODE("m"))), RETURN("n"))); std::list optional{new ExpectScanAll()}; CheckPlan(storage, ExpectOptional(optional), ExpectOptional(optional), ExpectProduce()); } TYPED_TEST(TestPlanner, FunctionAggregationReturn) { // Test RETURN sqrt(SUM(2)) AS result, 42 AS group_by AstTreeStorage storage; auto sum = SUM(LITERAL(2)); auto group_by_literal = LITERAL(42); QUERY(SINGLE_QUERY( RETURN(FN("sqrt", sum), AS("result"), group_by_literal, AS("group_by")))); auto aggr = ExpectAggregate({sum}, {group_by_literal}); CheckPlan(storage, aggr, ExpectProduce()); ExpectedDistributedPlan expected{MakeCheckers(aggr, ExpectProduce()), {}}; CheckDistributedPlan(storage, expected); } TYPED_TEST(TestPlanner, FunctionWithoutArguments) { // Test RETURN pi() AS pi AstTreeStorage storage; QUERY(SINGLE_QUERY(RETURN(FN("pi"), AS("pi")))); CheckPlan(storage, ExpectProduce()); ExpectedDistributedPlan expected{MakeCheckers(ExpectProduce()), {}}; CheckDistributedPlan(storage, expected); } TYPED_TEST(TestPlanner, ListLiteralAggregationReturn) { // Test RETURN [SUM(2)] AS result, 42 AS group_by AstTreeStorage storage; auto sum = SUM(LITERAL(2)); auto group_by_literal = LITERAL(42); QUERY(SINGLE_QUERY( RETURN(LIST(sum), AS("result"), group_by_literal, AS("group_by")))); auto aggr = ExpectAggregate({sum}, {group_by_literal}); CheckPlan(storage, aggr, ExpectProduce()); } TYPED_TEST(TestPlanner, MapLiteralAggregationReturn) { // Test RETURN {sum: SUM(2)} AS result, 42 AS group_by AstTreeStorage storage; database::SingleNode db; database::GraphDbAccessor dba(db); auto sum = SUM(LITERAL(2)); auto group_by_literal = LITERAL(42); QUERY(SINGLE_QUERY(RETURN(MAP({PROPERTY_PAIR("sum"), sum}), AS("result"), group_by_literal, AS("group_by")))); auto aggr = ExpectAggregate({sum}, {group_by_literal}); CheckPlan(storage, aggr, ExpectProduce()); } TYPED_TEST(TestPlanner, EmptyListIndexAggregation) { // Test RETURN [][SUM(2)] AS result, 42 AS group_by AstTreeStorage storage; auto sum = SUM(LITERAL(2)); auto empty_list = LIST(); auto group_by_literal = LITERAL(42); QUERY(SINGLE_QUERY( RETURN(storage.Create(empty_list, sum), AS("result"), group_by_literal, AS("group_by")))); // We expect to group by '42' and the empty list, because it is a // sub-expression of a binary operator which contains an aggregation. This is // similar to grouping by '1' in `RETURN 1 + SUM(2)`. auto aggr = ExpectAggregate({sum}, {empty_list, group_by_literal}); CheckPlan(storage, aggr, ExpectProduce()); } TYPED_TEST(TestPlanner, ListSliceAggregationReturn) { // Test RETURN [1, 2][0..SUM(2)] AS result, 42 AS group_by AstTreeStorage storage; auto sum = SUM(LITERAL(2)); auto list = LIST(LITERAL(1), LITERAL(2)); auto group_by_literal = LITERAL(42); QUERY(SINGLE_QUERY(RETURN(SLICE(list, LITERAL(0), sum), AS("result"), group_by_literal, AS("group_by")))); // Similarly to EmptyListIndexAggregation test, we expect grouping by list and // '42', because slicing is an operator. auto aggr = ExpectAggregate({sum}, {list, group_by_literal}); CheckPlan(storage, aggr, ExpectProduce()); } TYPED_TEST(TestPlanner, ListWithAggregationAndGroupBy) { // Test RETURN [sum(2), 42] AstTreeStorage storage; auto sum = SUM(LITERAL(2)); auto group_by_literal = LITERAL(42); QUERY(SINGLE_QUERY(RETURN(LIST(sum, group_by_literal), AS("result")))); auto aggr = ExpectAggregate({sum}, {group_by_literal}); CheckPlan(storage, aggr, ExpectProduce()); } TYPED_TEST(TestPlanner, AggregatonWithListWithAggregationAndGroupBy) { // Test RETURN sum(2), [sum(3), 42] AstTreeStorage storage; auto sum2 = SUM(LITERAL(2)); auto sum3 = SUM(LITERAL(3)); auto group_by_literal = LITERAL(42); QUERY(SINGLE_QUERY( RETURN(sum2, AS("sum2"), LIST(sum3, group_by_literal), AS("list")))); auto aggr = ExpectAggregate({sum2, sum3}, {group_by_literal}); CheckPlan(storage, aggr, ExpectProduce()); } TYPED_TEST(TestPlanner, MapWithAggregationAndGroupBy) { // Test RETURN {lit: 42, sum: sum(2)} database::SingleNode db; AstTreeStorage storage; auto sum = SUM(LITERAL(2)); auto group_by_literal = LITERAL(42); QUERY(SINGLE_QUERY(RETURN(MAP({PROPERTY_PAIR("sum"), sum}, {PROPERTY_PAIR("lit"), group_by_literal}), AS("result")))); auto aggr = ExpectAggregate({sum}, {group_by_literal}); CheckPlan(storage, aggr, ExpectProduce()); } TYPED_TEST(TestPlanner, CreateIndex) { // Test CREATE INDEX ON :Label(property) database::SingleNode db; database::GraphDbAccessor dba(db); auto label = dba.Label("label"); auto property = dba.Property("property"); AstTreeStorage storage; QUERY(SINGLE_QUERY(CREATE_INDEX_ON(label, property))); CheckPlan(storage, ExpectCreateIndex(label, property)); ExpectedDistributedPlan expected{ MakeCheckers(ExpectCreateIndex(label, property)), {}}; CheckDistributedPlan(storage, expected); } TYPED_TEST(TestPlanner, AtomIndexedLabelProperty) { // Test MATCH (n :label {property: 42, not_indexed: 0}) RETURN n AstTreeStorage storage; database::SingleNode db; database::GraphDbAccessor dba(db); auto label = dba.Label("label"); auto property = PROPERTY_PAIR("property"); auto not_indexed = PROPERTY_PAIR("not_indexed"); auto vertex = dba.InsertVertex(); vertex.add_label(label); vertex.PropsSet(property.second, 42); dba.Commit(); database::GraphDbAccessor(db).BuildIndex(label, property.second); { auto node = NODE("n", label); auto lit_42 = LITERAL(42); node->properties_[property] = lit_42; node->properties_[not_indexed] = LITERAL(0); QUERY(SINGLE_QUERY(MATCH(PATTERN(node)), RETURN("n"))); auto symbol_table = MakeSymbolTable(*storage.query()); auto planner = MakePlanner(db, storage, symbol_table); CheckPlan(planner.plan(), symbol_table, ExpectScanAllByLabelPropertyValue(label, property, lit_42), ExpectFilter(), ExpectProduce()); } } TYPED_TEST(TestPlanner, AtomPropertyWhereLabelIndexing) { // Test MATCH (n {property: 42}) WHERE n.not_indexed AND n:label RETURN n AstTreeStorage storage; database::SingleNode db; database::GraphDbAccessor dba(db); auto label = dba.Label("label"); auto property = PROPERTY_PAIR("property"); auto not_indexed = PROPERTY_PAIR("not_indexed"); dba.BuildIndex(label, property.second); { auto node = NODE("n"); auto lit_42 = LITERAL(42); node->properties_[property] = lit_42; QUERY(SINGLE_QUERY( MATCH(PATTERN(node)), WHERE(AND(PROPERTY_LOOKUP("n", not_indexed), storage.Create( IDENT("n"), std::vector{label}))), RETURN("n"))); auto symbol_table = MakeSymbolTable(*storage.query()); auto planner = MakePlanner(db, storage, symbol_table); CheckPlan(planner.plan(), symbol_table, ExpectScanAllByLabelPropertyValue(label, property, lit_42), ExpectFilter(), ExpectProduce()); } } TYPED_TEST(TestPlanner, WhereIndexedLabelProperty) { // Test MATCH (n :label) WHERE n.property = 42 RETURN n AstTreeStorage storage; database::SingleNode db; database::GraphDbAccessor dba(db); auto label = dba.Label("label"); auto property = PROPERTY_PAIR("property"); dba.BuildIndex(label, property.second); { auto lit_42 = LITERAL(42); QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("n", label))), WHERE(EQ(PROPERTY_LOOKUP("n", property), lit_42)), RETURN("n"))); auto symbol_table = MakeSymbolTable(*storage.query()); auto planner = MakePlanner(db, storage, symbol_table); CheckPlan(planner.plan(), symbol_table, ExpectScanAllByLabelPropertyValue(label, property, lit_42), ExpectProduce()); } } TYPED_TEST(TestPlanner, BestPropertyIndexed) { // Test MATCH (n :label) WHERE n.property = 1 AND n.better = 42 RETURN n AstTreeStorage storage; database::SingleNode db; auto label = database::GraphDbAccessor(db).Label("label"); auto property = database::GraphDbAccessor(db).Property("property"); { database::GraphDbAccessor(db).BuildIndex(label, property); database::GraphDbAccessor dba(db); // Add a vertex with :label+property combination, so that the best // :label+better remains empty and thus better choice. auto vertex = dba.InsertVertex(); vertex.add_label(label); vertex.PropsSet(property, 1); dba.Commit(); } ASSERT_EQ(database::GraphDbAccessor(db).VerticesCount(label, property), 1); auto better = PROPERTY_PAIR("better"); database::GraphDbAccessor(db).BuildIndex(label, better.second); { database::GraphDbAccessor dba(db); ASSERT_EQ(dba.VerticesCount(label, better.second), 0); auto lit_42 = LITERAL(42); QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("n", label))), WHERE(AND(EQ(PROPERTY_LOOKUP("n", property), LITERAL(1)), EQ(PROPERTY_LOOKUP("n", better), lit_42))), RETURN("n"))); auto symbol_table = MakeSymbolTable(*storage.query()); auto planner = MakePlanner(db, storage, symbol_table); CheckPlan(planner.plan(), symbol_table, ExpectScanAllByLabelPropertyValue(label, better, lit_42), ExpectFilter(), ExpectProduce()); } } TYPED_TEST(TestPlanner, MultiPropertyIndexScan) { // Test MATCH (n :label1), (m :label2) WHERE n.prop1 = 1 AND m.prop2 = 2 // RETURN n, m database::SingleNode db; auto label1 = database::GraphDbAccessor(db).Label("label1"); auto label2 = database::GraphDbAccessor(db).Label("label2"); auto prop1 = PROPERTY_PAIR("prop1"); auto prop2 = PROPERTY_PAIR("prop2"); database::GraphDbAccessor(db).BuildIndex(label1, prop1.second); database::GraphDbAccessor(db).BuildIndex(label2, prop2.second); AstTreeStorage storage; auto lit_1 = LITERAL(1); auto lit_2 = LITERAL(2); QUERY(SINGLE_QUERY( MATCH(PATTERN(NODE("n", label1)), PATTERN(NODE("m", label2))), WHERE(AND(EQ(PROPERTY_LOOKUP("n", prop1), lit_1), EQ(PROPERTY_LOOKUP("m", prop2), lit_2))), RETURN("n", "m"))); auto symbol_table = MakeSymbolTable(*storage.query()); auto planner = MakePlanner(db, storage, symbol_table); CheckPlan(planner.plan(), symbol_table, ExpectScanAllByLabelPropertyValue(label1, prop1, lit_1), ExpectScanAllByLabelPropertyValue(label2, prop2, lit_2), ExpectProduce()); } TYPED_TEST(TestPlanner, WhereIndexedLabelPropertyRange) { // Test MATCH (n :label) WHERE n.property REL_OP 42 RETURN n // REL_OP is one of: `<`, `<=`, `>`, `>=` database::SingleNode db; auto label = database::GraphDbAccessor(db).Label("label"); auto property = database::GraphDbAccessor(db).Property("property"); database::GraphDbAccessor(db).BuildIndex(label, property); AstTreeStorage storage; auto lit_42 = LITERAL(42); auto n_prop = PROPERTY_LOOKUP("n", property); auto check_planned_range = [&label, &property, &db](const auto &rel_expr, auto lower_bound, auto upper_bound) { // Shadow the first storage, so that the query is created in this one. AstTreeStorage storage; QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("n", label))), WHERE(rel_expr), RETURN("n"))); auto symbol_table = MakeSymbolTable(*storage.query()); auto planner = MakePlanner(db, storage, symbol_table); CheckPlan(planner.plan(), symbol_table, ExpectScanAllByLabelPropertyRange(label, property, lower_bound, upper_bound), ExpectProduce()); }; { // Test relation operators which form an upper bound for range. std::vector> upper_bound_rel_op{ std::make_pair(LESS(n_prop, lit_42), Bound::Type::EXCLUSIVE), std::make_pair(LESS_EQ(n_prop, lit_42), Bound::Type::INCLUSIVE), std::make_pair(GREATER(lit_42, n_prop), Bound::Type::EXCLUSIVE), std::make_pair(GREATER_EQ(lit_42, n_prop), Bound::Type::INCLUSIVE)}; for (const auto &rel_op : upper_bound_rel_op) { check_planned_range(rel_op.first, std::experimental::nullopt, Bound(lit_42, rel_op.second)); } } { // Test relation operators which form a lower bound for range. std::vector> lower_bound_rel_op{ std::make_pair(LESS(lit_42, n_prop), Bound::Type::EXCLUSIVE), std::make_pair(LESS_EQ(lit_42, n_prop), Bound::Type::INCLUSIVE), std::make_pair(GREATER(n_prop, lit_42), Bound::Type::EXCLUSIVE), std::make_pair(GREATER_EQ(n_prop, lit_42), Bound::Type::INCLUSIVE)}; for (const auto &rel_op : lower_bound_rel_op) { check_planned_range(rel_op.first, Bound(lit_42, rel_op.second), std::experimental::nullopt); } } } TYPED_TEST(TestPlanner, UnableToUsePropertyIndex) { // Test MATCH (n: label) WHERE n.property = n.property RETURN n database::SingleNode db; database::GraphDbAccessor dba(db); auto label = dba.Label("label"); auto property = dba.Property("property"); dba.BuildIndex(label, property); { AstTreeStorage storage; QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("n", label))), WHERE(EQ(PROPERTY_LOOKUP("n", property), PROPERTY_LOOKUP("n", property))), RETURN("n"))); auto symbol_table = MakeSymbolTable(*storage.query()); auto planner = MakePlanner(db, storage, symbol_table); // We can only get ScanAllByLabelIndex, because we are comparing properties // with those on the same node. CheckPlan(planner.plan(), symbol_table, ExpectScanAllByLabel(), ExpectFilter(), ExpectProduce()); } } TYPED_TEST(TestPlanner, SecondPropertyIndex) { // Test MATCH (n :label), (m :label) WHERE m.property = n.property RETURN n database::SingleNode db; database::GraphDbAccessor dba(db); auto label = dba.Label("label"); auto property = PROPERTY_PAIR("property"); dba.BuildIndex(label, dba.Property("property")); { AstTreeStorage storage; auto n_prop = PROPERTY_LOOKUP("n", property); auto m_prop = PROPERTY_LOOKUP("m", property); QUERY(SINGLE_QUERY( MATCH(PATTERN(NODE("n", label)), PATTERN(NODE("m", label))), WHERE(EQ(m_prop, n_prop)), RETURN("n"))); auto symbol_table = MakeSymbolTable(*storage.query()); auto planner = MakePlanner(db, storage, symbol_table); CheckPlan( planner.plan(), symbol_table, ExpectScanAllByLabel(), // Note: We are scanning for m, therefore property should equal n_prop. ExpectScanAllByLabelPropertyValue(label, property, n_prop), ExpectProduce()); } } TYPED_TEST(TestPlanner, ReturnSumGroupByAll) { // Test RETURN sum([1,2,3]), all(x in [1] where x = 1) AstTreeStorage storage; auto sum = SUM(LIST(LITERAL(1), LITERAL(2), LITERAL(3))); auto *all = ALL("x", LIST(LITERAL(1)), WHERE(EQ(IDENT("x"), LITERAL(1)))); QUERY(SINGLE_QUERY(RETURN(sum, AS("sum"), all, AS("all")))); auto aggr = ExpectAggregate({sum}, {all}); CheckPlan(storage, aggr, ExpectProduce()); } TYPED_TEST(TestPlanner, MatchExpandVariable) { // Test MATCH (n) -[r *..3]-> (m) RETURN r AstTreeStorage storage; auto edge = EDGE_VARIABLE("r"); edge->upper_bound_ = LITERAL(3); QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("n"), edge, NODE("m"))), RETURN("r"))); CheckPlan(storage, ExpectScanAll(), ExpectExpandVariable(), ExpectProduce()); } TYPED_TEST(TestPlanner, MatchExpandVariableNoBounds) { // Test MATCH (n) -[r *]-> (m) RETURN r AstTreeStorage storage; auto edge = EDGE_VARIABLE("r"); QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("n"), edge, NODE("m"))), RETURN("r"))); CheckPlan(storage, ExpectScanAll(), ExpectExpandVariable(), ExpectProduce()); } TYPED_TEST(TestPlanner, MatchExpandVariableInlinedFilter) { // Test MATCH (n) -[r :type * {prop: 42}]-> (m) RETURN r database::SingleNode db; database::GraphDbAccessor dba(db); auto type = dba.EdgeType("type"); auto prop = PROPERTY_PAIR("prop"); AstTreeStorage storage; auto edge = EDGE_VARIABLE("r", Direction::BOTH, {type}); edge->properties_[prop] = LITERAL(42); QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("n"), edge, NODE("m"))), RETURN("r"))); CheckPlan( storage, ExpectScanAll(), ExpectExpandVariable(), // Filter is both inlined and post-expand ExpectFilter(), ExpectProduce()); } TYPED_TEST(TestPlanner, MatchExpandVariableNotInlinedFilter) { // Test MATCH (n) -[r :type * {prop: m.prop}]-> (m) RETURN r database::SingleNode db; database::GraphDbAccessor dba(db); auto type = dba.EdgeType("type"); auto prop = PROPERTY_PAIR("prop"); AstTreeStorage storage; auto edge = EDGE_VARIABLE("r", Direction::BOTH, {type}); edge->properties_[prop] = EQ(PROPERTY_LOOKUP("m", prop), LITERAL(42)); QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("n"), edge, NODE("m"))), RETURN("r"))); CheckPlan(storage, ExpectScanAll(), ExpectExpandVariable(), ExpectFilter(), ExpectProduce()); } TYPED_TEST(TestPlanner, UnwindMatchVariable) { // Test UNWIND [1,2,3] AS depth MATCH (n) -[r*d]-> (m) RETURN r AstTreeStorage storage; auto edge = EDGE_VARIABLE("r", Direction::OUT); edge->lower_bound_ = IDENT("d"); edge->upper_bound_ = IDENT("d"); QUERY(SINGLE_QUERY(UNWIND(LIST(LITERAL(1), LITERAL(2), LITERAL(3)), AS("d")), MATCH(PATTERN(NODE("n"), edge, NODE("m"))), RETURN("r"))); CheckPlan(storage, ExpectUnwind(), ExpectScanAll(), ExpectExpandVariable(), ExpectProduce()); } TYPED_TEST(TestPlanner, MatchBreadthFirst) { // Test MATCH (n) -[r:type *..10 (r, n|n)]-> (m) RETURN r database::SingleNode db; database::GraphDbAccessor dba(db); auto edge_type = dba.EdgeType("type"); AstTreeStorage storage; auto *bfs = storage.Create( IDENT("r"), query::EdgeAtom::Type::BREADTH_FIRST, Direction::OUT, std::vector{edge_type}); bfs->filter_lambda_.inner_edge = IDENT("r"); bfs->filter_lambda_.inner_node = IDENT("n"); bfs->filter_lambda_.expression = IDENT("n"); bfs->upper_bound_ = LITERAL(10); QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("n"), bfs, NODE("m"))), RETURN("r"))); CheckPlan(storage, ExpectScanAll(), ExpectExpandBreadthFirst(), ExpectProduce()); } TYPED_TEST(TestPlanner, MatchDoubleScanToExpandExisting) { // Test MATCH (n) -[r]- (m :label) RETURN r database::SingleNode db; database::GraphDbAccessor dba(db); auto label = dba.Label("label"); AstTreeStorage storage; QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("n"), EDGE("r"), NODE("m", label))), RETURN("r"))); auto symbol_table = MakeSymbolTable(*storage.query()); auto planner = MakePlanner(db, storage, symbol_table); // We expect 2x ScanAll and then Expand, since we are guessing that is // faster (due to low label index vertex count). CheckPlan(planner.plan(), symbol_table, ExpectScanAll(), ExpectScanAllByLabel(), ExpectExpand(), ExpectProduce()); } TYPED_TEST(TestPlanner, MatchScanToExpand) { // Test MATCH (n) -[r]- (m :label {property: 1}) RETURN r database::SingleNode db; auto label = database::GraphDbAccessor(db).Label("label"); auto property = database::GraphDbAccessor(db).Property("property"); database::GraphDbAccessor(db).BuildIndex(label, property); database::GraphDbAccessor dba(db); // Fill vertices to the max. for (int64_t i = 0; i < FLAGS_query_vertex_count_to_expand_existing; ++i) { auto vertex = dba.InsertVertex(); vertex.PropsSet(property, 1); vertex.add_label(label); } // Add one more above the max. auto vertex = dba.InsertVertex(); vertex.add_label(label); vertex.PropsSet(property, 1); dba.Commit(); { AstTreeStorage storage; auto node_m = NODE("m", label); node_m->properties_[std::make_pair("property", property)] = LITERAL(1); QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("n"), EDGE("r"), node_m)), RETURN("r"))); auto symbol_table = MakeSymbolTable(*storage.query()); auto planner = MakePlanner(db, storage, symbol_table); // We expect 1x ScanAllByLabel and then Expand, since we are guessing that // is faster (due to high label index vertex count). CheckPlan(planner.plan(), symbol_table, ExpectScanAll(), ExpectExpand(), ExpectFilter(), ExpectProduce()); } } TYPED_TEST(TestPlanner, MatchWhereAndSplit) { // Test MATCH (n) -[r]- (m) WHERE n.prop AND r.prop RETURN m database::SingleNode db; database::GraphDbAccessor dba(db); auto prop = PROPERTY_PAIR("prop"); AstTreeStorage storage; QUERY(SINGLE_QUERY( MATCH(PATTERN(NODE("n"), EDGE("r"), NODE("m"))), WHERE(AND(PROPERTY_LOOKUP("n", prop), PROPERTY_LOOKUP("r", prop))), RETURN("m"))); // We expect `n.prop` filter right after scanning `n`. CheckPlan(storage, ExpectScanAll(), ExpectFilter(), ExpectExpand(), ExpectFilter(), ExpectProduce()); } TYPED_TEST(TestPlanner, ReturnAsteriskOmitsLambdaSymbols) { // Test MATCH (n) -[r* (ie, in | true)]- (m) RETURN * database::SingleNode db; AstTreeStorage storage; auto edge = EDGE_VARIABLE("r", Direction::BOTH); edge->filter_lambda_.inner_edge = IDENT("ie"); edge->filter_lambda_.inner_node = IDENT("in"); edge->filter_lambda_.expression = LITERAL(true); auto ret = storage.Create(); ret->body_.all_identifiers = true; QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("n"), edge, NODE("m"))), ret)); auto symbol_table = MakeSymbolTable(*storage.query()); auto planner = MakePlanner(db, storage, symbol_table); auto *produce = dynamic_cast(&planner.plan()); ASSERT_TRUE(produce); std::vector outputs; for (const auto &output_symbol : produce->OutputSymbols(symbol_table)) { outputs.emplace_back(output_symbol.name()); } // We expect `*` expanded to `n`, `r` and `m`. EXPECT_EQ(outputs.size(), 3); for (const auto &name : {"n", "r", "m"}) { EXPECT_TRUE(utils::Contains(outputs, name)); } } TYPED_TEST(TestPlanner, DistributedAvg) { // Test MATCH (n) RETURN AVG(n.prop) AS res AstTreeStorage storage; database::Master db; database::GraphDbAccessor dba(db); auto prop = dba.Property("prop"); QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("n"))), RETURN(AVG(PROPERTY_LOOKUP("n", prop)), AS("res")))); auto distributed_plan = MakeDistributedPlan(storage); auto &symbol_table = distributed_plan.symbol_table; auto worker_sum = SUM(PROPERTY_LOOKUP("n", prop)); auto worker_count = COUNT(PROPERTY_LOOKUP("n", prop)); { ASSERT_TRUE(distributed_plan.worker_plan); auto worker_aggr_op = std::dynamic_pointer_cast(distributed_plan.worker_plan); ASSERT_TRUE(worker_aggr_op); ASSERT_EQ(worker_aggr_op->aggregations().size(), 2U); symbol_table[*worker_sum] = worker_aggr_op->aggregations()[0].output_sym; symbol_table[*worker_count] = worker_aggr_op->aggregations()[1].output_sym; } auto worker_aggr = ExpectAggregate({worker_sum, worker_count}, {}); auto merge_sum = SUM(IDENT("worker_sum")); auto merge_count = SUM(IDENT("worker_count")); auto master_aggr = ExpectMasterAggregate({merge_sum, merge_count}, {}); ExpectPullRemote pull( {symbol_table.at(*worker_sum), symbol_table.at(*worker_count)}); ExpectedDistributedPlan expected{ MakeCheckers(ExpectScanAll(), worker_aggr, pull, master_aggr, ExpectProduce(), ExpectProduce()), MakeCheckers(ExpectScanAll(), worker_aggr)}; CheckDistributedPlan(distributed_plan, expected); } TYPED_TEST(TestPlanner, DistributedCollectList) { // Test MATCH (n) RETURN COLLECT(n.prop) AS res AstTreeStorage storage; database::Master db; database::GraphDbAccessor dba(db); auto prop = dba.Property("prop"); auto node_n = NODE("n"); auto collect = COLLECT_LIST(PROPERTY_LOOKUP("n", prop)); QUERY(SINGLE_QUERY(MATCH(PATTERN(node_n)), RETURN(collect, AS("res")))); auto distributed_plan = MakeDistributedPlan(storage); auto &symbol_table = distributed_plan.symbol_table; auto aggr = ExpectAggregate({collect}, {}); ExpectPullRemote pull({symbol_table.at(*node_n->identifier_)}); ExpectedDistributedPlan expected{ MakeCheckers(ExpectScanAll(), pull, aggr, ExpectProduce()), MakeCheckers(ExpectScanAll())}; CheckDistributedPlan(distributed_plan, expected); } TYPED_TEST(TestPlanner, DistributedMatchCreateReturn) { // Test MATCH (n) CREATE (m) RETURN m AstTreeStorage storage; auto *ident_m = IDENT("m"); QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("n"))), CREATE(PATTERN(NODE("m"))), RETURN(ident_m, AS("m")))); auto symbol_table = MakeSymbolTable(*storage.query()); auto acc = ExpectAccumulate({symbol_table.at(*ident_m)}); database::Master db; auto planner = MakePlanner(db, storage, symbol_table); ExpectedDistributedPlan expected{ MakeCheckers(ExpectScanAll(), ExpectCreateNode(), acc, ExpectSynchronize({symbol_table.at(*ident_m)}), ExpectProduce()), MakeCheckers(ExpectScanAll(), ExpectCreateNode(), acc)}; CheckDistributedPlan(planner.plan(), symbol_table, expected); } } // namespace