#include #include #include #include "gtest/gtest.h" #include "database/dbms.hpp" #include "query/frontend/ast/ast.hpp" #include "query/frontend/semantic/symbol_generator.hpp" #include "query/frontend/semantic/symbol_table.hpp" #include "query/plan/operator.hpp" #include "query/plan/planner.hpp" #include "query_common.hpp" using namespace query::plan; using query::AstTreeStorage; using query::Symbol; using query::SymbolTable; using query::SymbolGenerator; using Direction = query::EdgeAtom::Direction; using Bound = ScanAllByLabelPropertyRange::Bound; namespace { class BaseOpChecker { public: virtual ~BaseOpChecker() {} virtual void CheckOp(LogicalOperator &, const SymbolTable &) = 0; }; class PlanChecker : public HierarchicalLogicalOperatorVisitor { public: using HierarchicalLogicalOperatorVisitor::PreVisit; using HierarchicalLogicalOperatorVisitor::Visit; using HierarchicalLogicalOperatorVisitor::PostVisit; PlanChecker(const std::list &checkers, const SymbolTable &symbol_table) : checkers_(checkers), symbol_table_(symbol_table) {} #define PRE_VISIT(TOp) \ bool PreVisit(TOp &op) override { \ CheckOp(op); \ return true; \ } PRE_VISIT(CreateNode); PRE_VISIT(CreateExpand); PRE_VISIT(Delete); PRE_VISIT(ScanAll); PRE_VISIT(ScanAllByLabel); PRE_VISIT(ScanAllByLabelPropertyValue); PRE_VISIT(ScanAllByLabelPropertyRange); PRE_VISIT(Expand); PRE_VISIT(ExpandVariable); PRE_VISIT(ExpandBreadthFirst); PRE_VISIT(Filter); PRE_VISIT(Produce); PRE_VISIT(SetProperty); PRE_VISIT(SetProperties); PRE_VISIT(SetLabels); PRE_VISIT(RemoveProperty); PRE_VISIT(RemoveLabels); PRE_VISIT(ExpandUniquenessFilter); PRE_VISIT(ExpandUniquenessFilter); PRE_VISIT(Accumulate); PRE_VISIT(Aggregate); PRE_VISIT(Skip); PRE_VISIT(Limit); PRE_VISIT(OrderBy); bool PreVisit(Merge &op) override { CheckOp(op); op.input()->Accept(*this); return false; } bool PreVisit(Optional &op) override { CheckOp(op); op.input()->Accept(*this); return false; } PRE_VISIT(Unwind); PRE_VISIT(Distinct); bool Visit(Once &op) override { // Ignore checking Once, it is implicitly at the end. return true; } bool Visit(CreateIndex &op) override { CheckOp(op); return true; } #undef PRE_VISIT std::list checkers_; private: void CheckOp(LogicalOperator &op) { ASSERT_FALSE(checkers_.empty()); checkers_.back()->CheckOp(op, symbol_table_); checkers_.pop_back(); } const SymbolTable &symbol_table_; }; template class OpChecker : public BaseOpChecker { public: void CheckOp(LogicalOperator &op, const SymbolTable &symbol_table) override { auto *expected_op = dynamic_cast(&op); ASSERT_TRUE(expected_op); ExpectOp(*expected_op, symbol_table); } virtual void ExpectOp(TOp &op, const SymbolTable &) {} }; using ExpectCreateNode = OpChecker; using ExpectCreateExpand = OpChecker; using ExpectDelete = OpChecker; using ExpectScanAll = OpChecker; using ExpectScanAllByLabel = OpChecker; using ExpectExpand = OpChecker; using ExpectExpandVariable = OpChecker; using ExpectExpandBreadthFirst = OpChecker; using ExpectFilter = OpChecker; using ExpectProduce = OpChecker; using ExpectSetProperty = OpChecker; using ExpectSetProperties = OpChecker; using ExpectSetLabels = OpChecker; using ExpectRemoveProperty = OpChecker; using ExpectRemoveLabels = OpChecker; template using ExpectExpandUniquenessFilter = OpChecker>; using ExpectSkip = OpChecker; using ExpectLimit = OpChecker; using ExpectOrderBy = OpChecker; using ExpectUnwind = OpChecker; using ExpectDistinct = OpChecker; class ExpectAccumulate : public OpChecker { public: ExpectAccumulate(const std::unordered_set &symbols) : symbols_(symbols) {} void ExpectOp(Accumulate &op, const SymbolTable &symbol_table) override { std::unordered_set got_symbols(op.symbols().begin(), op.symbols().end()); EXPECT_EQ(symbols_, got_symbols); } private: const std::unordered_set symbols_; }; class ExpectAggregate : public OpChecker { public: ExpectAggregate(const std::vector &aggregations, const std::unordered_set &group_by) : aggregations_(aggregations), group_by_(group_by) {} void ExpectOp(Aggregate &op, const SymbolTable &symbol_table) override { auto aggr_it = aggregations_.begin(); for (const auto &aggr_elem : op.aggregations()) { ASSERT_NE(aggr_it, aggregations_.end()); auto aggr = *aggr_it++; auto expected = std::make_tuple(aggr->expression_, aggr->op_, symbol_table.at(*aggr)); EXPECT_EQ(expected, aggr_elem); } EXPECT_EQ(aggr_it, aggregations_.end()); auto got_group_by = std::unordered_set( op.group_by().begin(), op.group_by().end()); EXPECT_EQ(group_by_, got_group_by); } private: const std::vector aggregations_; const std::unordered_set group_by_; }; class ExpectMerge : public OpChecker { public: ExpectMerge(const std::list &on_match, const std::list &on_create) : on_match_(on_match), on_create_(on_create) {} void ExpectOp(Merge &merge, const SymbolTable &symbol_table) override { PlanChecker check_match(on_match_, symbol_table); merge.merge_match()->Accept(check_match); PlanChecker check_create(on_create_, symbol_table); merge.merge_create()->Accept(check_create); } private: const std::list &on_match_; const std::list &on_create_; }; class ExpectOptional : public OpChecker { public: ExpectOptional(const std::list &optional) : optional_(optional) {} void ExpectOp(Optional &optional, const SymbolTable &symbol_table) override { PlanChecker check_optional(optional_, symbol_table); optional.optional()->Accept(check_optional); } private: const std::list &optional_; }; class ExpectScanAllByLabelPropertyValue : public OpChecker { public: ExpectScanAllByLabelPropertyValue(GraphDbTypes::Label label, GraphDbTypes::Property property, query::Expression *expression) : label_(label), property_(property), expression_(expression) {} void ExpectOp(ScanAllByLabelPropertyValue &scan_all, const SymbolTable &) override { EXPECT_EQ(scan_all.label(), label_); EXPECT_EQ(scan_all.property(), property_); EXPECT_EQ(scan_all.expression(), expression_); } private: GraphDbTypes::Label label_; GraphDbTypes::Property property_; query::Expression *expression_; }; class ExpectScanAllByLabelPropertyRange : public OpChecker { public: ExpectScanAllByLabelPropertyRange( GraphDbTypes::Label label, GraphDbTypes::Property property, std::experimental::optional lower_bound, std::experimental::optional upper_bound) : label_(label), property_(property), lower_bound_(lower_bound), upper_bound_(upper_bound) {} void ExpectOp(ScanAllByLabelPropertyRange &scan_all, const SymbolTable &) override { EXPECT_EQ(scan_all.label(), label_); EXPECT_EQ(scan_all.property(), property_); if (lower_bound_) { ASSERT_TRUE(scan_all.lower_bound()); EXPECT_EQ(scan_all.lower_bound()->value(), lower_bound_->value()); EXPECT_EQ(scan_all.lower_bound()->type(), lower_bound_->type()); } if (upper_bound_) { ASSERT_TRUE(scan_all.upper_bound()); EXPECT_EQ(scan_all.upper_bound()->value(), upper_bound_->value()); EXPECT_EQ(scan_all.upper_bound()->type(), upper_bound_->type()); } } private: GraphDbTypes::Label label_; GraphDbTypes::Property property_; std::experimental::optional lower_bound_; std::experimental::optional upper_bound_; }; class ExpectCreateIndex : public OpChecker { public: ExpectCreateIndex(GraphDbTypes::Label label, GraphDbTypes::Property property) : label_(label), property_(property) {} void ExpectOp(CreateIndex &create_index, const SymbolTable &) override { EXPECT_EQ(create_index.label(), label_); EXPECT_EQ(create_index.property(), property_); } private: GraphDbTypes::Label label_; GraphDbTypes::Property property_; }; auto MakeSymbolTable(query::Query &query) { SymbolTable symbol_table; SymbolGenerator symbol_generator(symbol_table); query.Accept(symbol_generator); return symbol_table; } template auto CheckPlan(LogicalOperator &plan, const SymbolTable &symbol_table, TChecker... checker) { std::list checkers{&checker...}; PlanChecker plan_checker(checkers, symbol_table); plan.Accept(plan_checker); EXPECT_TRUE(plan_checker.checkers_.empty()); } template auto CheckPlan(AstTreeStorage &storage, TChecker... checker) { auto symbol_table = MakeSymbolTable(*storage.query()); Dbms dbms; auto plan = MakeLogicalPlan(storage, symbol_table, *dbms.active()); CheckPlan(*plan, symbol_table, checker...); } TEST(TestLogicalPlanner, MatchNodeReturn) { // Test MATCH (n) RETURN n AstTreeStorage storage; QUERY(MATCH(PATTERN(NODE("n"))), RETURN("n")); CheckPlan(storage, ExpectScanAll(), ExpectProduce()); } TEST(TestLogicalPlanner, CreateNodeReturn) { // Test CREATE (n) RETURN n AS n AstTreeStorage storage; auto ident_n = IDENT("n"); auto query = QUERY(CREATE(PATTERN(NODE("n"))), RETURN(ident_n, AS("n"))); auto symbol_table = MakeSymbolTable(*query); auto acc = ExpectAccumulate({symbol_table.at(*ident_n)}); Dbms dbms; auto plan = MakeLogicalPlan(storage, symbol_table, *dbms.active()); CheckPlan(*plan, symbol_table, ExpectCreateNode(), acc, ExpectProduce()); } TEST(TestLogicalPlanner, CreateExpand) { // Test CREATE (n) -[r :rel1]-> (m) AstTreeStorage storage; Dbms dbms; auto dba = dbms.active(); auto relationship = dba->edge_type("relationship"); QUERY(CREATE( PATTERN(NODE("n"), EDGE("r", relationship, Direction::OUT), NODE("m")))); CheckPlan(storage, ExpectCreateNode(), ExpectCreateExpand()); } TEST(TestLogicalPlanner, CreateMultipleNode) { // Test CREATE (n), (m) AstTreeStorage storage; QUERY(CREATE(PATTERN(NODE("n")), PATTERN(NODE("m")))); CheckPlan(storage, ExpectCreateNode(), ExpectCreateNode()); } TEST(TestLogicalPlanner, CreateNodeExpandNode) { // Test CREATE (n) -[r :rel]-> (m), (l) AstTreeStorage storage; Dbms dbms; auto dba = dbms.active(); auto relationship = dba->edge_type("rel"); QUERY(CREATE( PATTERN(NODE("n"), EDGE("r", relationship, Direction::OUT), NODE("m")), PATTERN(NODE("l")))); CheckPlan(storage, ExpectCreateNode(), ExpectCreateExpand(), ExpectCreateNode()); } TEST(TestLogicalPlanner, MatchCreateExpand) { // Test MATCH (n) CREATE (n) -[r :rel1]-> (m) AstTreeStorage storage; Dbms dbms; auto dba = dbms.active(); auto relationship = dba->edge_type("relationship"); QUERY(MATCH(PATTERN(NODE("n"))), CREATE(PATTERN(NODE("n"), EDGE("r", relationship, Direction::OUT), NODE("m")))); CheckPlan(storage, ExpectScanAll(), ExpectCreateExpand()); } TEST(TestLogicalPlanner, MatchLabeledNodes) { // Test MATCH (n :label) RETURN n AstTreeStorage storage; Dbms dbms; auto dba = dbms.active(); auto label = dba->label("label"); QUERY(MATCH(PATTERN(NODE("n", label))), RETURN("n")); CheckPlan(storage, ExpectScanAllByLabel(), ExpectFilter(), ExpectProduce()); } TEST(TestLogicalPlanner, MatchPathReturn) { // Test MATCH (n) -[r :relationship]- (m) RETURN n AstTreeStorage storage; Dbms dbms; auto dba = dbms.active(); auto relationship = dba->edge_type("relationship"); QUERY(MATCH(PATTERN(NODE("n"), EDGE("r", relationship), NODE("m"))), RETURN("n")); CheckPlan(storage, ExpectScanAll(), ExpectExpand(), ExpectFilter(), ExpectProduce()); } TEST(TestLogicalPlanner, MatchWhereReturn) { // Test MATCH (n) WHERE n.property < 42 RETURN n AstTreeStorage storage; Dbms dbms; auto dba = dbms.active(); auto property = dba->property("property"); QUERY(MATCH(PATTERN(NODE("n"))), WHERE(LESS(PROPERTY_LOOKUP("n", property), LITERAL(42))), RETURN("n")); CheckPlan(storage, ExpectScanAll(), ExpectFilter(), ExpectProduce()); } TEST(TestLogicalPlanner, MatchDelete) { // Test MATCH (n) DELETE n AstTreeStorage storage; QUERY(MATCH(PATTERN(NODE("n"))), DELETE(IDENT("n"))); CheckPlan(storage, ExpectScanAll(), ExpectDelete()); } TEST(TestLogicalPlanner, MatchNodeSet) { // Test MATCH (n) SET n.prop = 42, n = n, n :label AstTreeStorage storage; Dbms dbms; auto dba = dbms.active(); auto prop = dba->property("prop"); auto label = dba->label("label"); QUERY(MATCH(PATTERN(NODE("n"))), SET(PROPERTY_LOOKUP("n", prop), LITERAL(42)), SET("n", IDENT("n")), SET("n", {label})); CheckPlan(storage, ExpectScanAll(), ExpectSetProperty(), ExpectSetProperties(), ExpectSetLabels()); } TEST(TestLogicalPlanner, MatchRemove) { // Test MATCH (n) REMOVE n.prop REMOVE n :label AstTreeStorage storage; Dbms dbms; auto dba = dbms.active(); auto prop = dba->property("prop"); auto label = dba->label("label"); QUERY(MATCH(PATTERN(NODE("n"))), REMOVE(PROPERTY_LOOKUP("n", prop)), REMOVE("n", {label})); CheckPlan(storage, ExpectScanAll(), ExpectRemoveProperty(), ExpectRemoveLabels()); } TEST(TestLogicalPlanner, MatchMultiPattern) { // Test MATCH (n) -[r]- (m), (j) -[e]- (i) RETURN n AstTreeStorage storage; QUERY(MATCH(PATTERN(NODE("n"), EDGE("r"), NODE("m")), PATTERN(NODE("j"), EDGE("e"), NODE("i"))), RETURN("n")); // We expect the expansions after the first to have a uniqueness filter in a // single MATCH clause. CheckPlan(storage, ExpectScanAll(), ExpectExpand(), ExpectScanAll(), ExpectExpand(), ExpectExpandUniquenessFilter(), ExpectProduce()); } TEST(TestLogicalPlanner, MatchMultiPatternSameStart) { // Test MATCH (n), (n) -[e]- (m) RETURN n AstTreeStorage storage; QUERY(MATCH(PATTERN(NODE("n")), PATTERN(NODE("n"), EDGE("e"), NODE("m"))), RETURN("n")); // We expect the second pattern to generate only an Expand, since another // ScanAll would be redundant. CheckPlan(storage, ExpectScanAll(), ExpectExpand(), ExpectProduce()); } TEST(TestLogicalPlanner, MatchMultiPatternSameExpandStart) { // Test MATCH (n) -[r]- (m), (m) -[e]- (l) RETURN n AstTreeStorage storage; QUERY(MATCH(PATTERN(NODE("n"), EDGE("r"), NODE("m")), PATTERN(NODE("m"), EDGE("e"), NODE("l"))), RETURN("n")); // We expect the second pattern to generate only an Expand. Another // ScanAll would be redundant, as it would generate the nodes obtained from // expansion. Additionally, a uniqueness filter is expected. CheckPlan(storage, ExpectScanAll(), ExpectExpand(), ExpectExpand(), ExpectExpandUniquenessFilter(), ExpectProduce()); } TEST(TestLogicalPlanner, MultiMatch) { // Test MATCH (n) -[r]- (m) MATCH (j) -[e]- (i) -[f]- (h) RETURN n AstTreeStorage storage; QUERY(MATCH(PATTERN(NODE("n"), EDGE("r"), NODE("m"))), MATCH(PATTERN(NODE("j"), EDGE("e"), NODE("i"), EDGE("f"), NODE("h"))), RETURN("n")); // Multiple MATCH clauses form a Cartesian product, so the uniqueness should // not cross MATCH boundaries. CheckPlan(storage, ExpectScanAll(), ExpectExpand(), ExpectScanAll(), ExpectExpand(), ExpectExpand(), ExpectExpandUniquenessFilter(), ExpectProduce()); } TEST(TestLogicalPlanner, MultiMatchSameStart) { // Test MATCH (n) MATCH (n) -[r]- (m) RETURN n AstTreeStorage storage; QUERY(MATCH(PATTERN(NODE("n"))), MATCH(PATTERN(NODE("n"), EDGE("r"), NODE("m"))), RETURN("n")); // Similar to MatchMultiPatternSameStart, we expect only Expand from second // MATCH clause. CheckPlan(storage, ExpectScanAll(), ExpectExpand(), ExpectProduce()); } TEST(TestLogicalPlanner, MatchExistingEdge) { // Test MATCH (n) -[r]- (m) -[r]- (j) RETURN n AstTreeStorage storage; QUERY(MATCH(PATTERN(NODE("n"), EDGE("r"), NODE("m"), EDGE("r"), NODE("j"))), RETURN("n")); // There is no ExpandUniquenessFilter for referencing the same edge. CheckPlan(storage, ExpectScanAll(), ExpectExpand(), ExpectExpand(), ExpectProduce()); } TEST(TestLogicalPlanner, MultiMatchExistingEdgeOtherEdge) { // Test MATCH (n) -[r]- (m) MATCH (m) -[r]- (j) -[e]- (l) RETURN n AstTreeStorage storage; QUERY(MATCH(PATTERN(NODE("n"), EDGE("r"), NODE("m"))), MATCH(PATTERN(NODE("m"), EDGE("r"), NODE("j"), EDGE("e"), NODE("l"))), RETURN("n")); // We need ExpandUniquenessFilter for edge `e` against `r` in second MATCH. CheckPlan(storage, ExpectScanAll(), ExpectExpand(), ExpectExpand(), ExpectExpand(), ExpectExpandUniquenessFilter(), ExpectProduce()); } TEST(TestLogicalPlanner, MatchWithReturn) { // Test MATCH (old) WITH old AS new RETURN new AstTreeStorage storage; QUERY(MATCH(PATTERN(NODE("old"))), WITH("old", AS("new")), RETURN("new")); // No accumulation since we only do reads. CheckPlan(storage, ExpectScanAll(), ExpectProduce(), ExpectProduce()); } TEST(TestLogicalPlanner, MatchWithWhereReturn) { // Test MATCH (old) WITH old AS new WHERE new.prop < 42 RETURN new Dbms dbms; auto dba = dbms.active(); auto prop = dba->property("prop"); AstTreeStorage storage; QUERY(MATCH(PATTERN(NODE("old"))), WITH("old", AS("new")), WHERE(LESS(PROPERTY_LOOKUP("new", prop), LITERAL(42))), RETURN("new")); // No accumulation since we only do reads. CheckPlan(storage, ExpectScanAll(), ExpectProduce(), ExpectFilter(), ExpectProduce()); } TEST(TestLogicalPlanner, CreateMultiExpand) { // Test CREATE (n) -[r :r]-> (m), (n) - [p :p]-> (l) Dbms dbms; auto dba = dbms.active(); auto r = dba->edge_type("r"); auto p = dba->edge_type("p"); AstTreeStorage storage; QUERY(CREATE(PATTERN(NODE("n"), EDGE("r", r, Direction::OUT), NODE("m")), PATTERN(NODE("n"), EDGE("p", p, Direction::OUT), NODE("l")))); CheckPlan(storage, ExpectCreateNode(), ExpectCreateExpand(), ExpectCreateExpand()); } TEST(TestLogicalPlanner, MatchWithSumWhereReturn) { // Test MATCH (n) WITH SUM(n.prop) + 42 AS sum WHERE sum < 42 // RETURN sum AS result Dbms dbms; auto dba = dbms.active(); auto prop = dba->property("prop"); AstTreeStorage storage; auto sum = SUM(PROPERTY_LOOKUP("n", prop)); auto literal = LITERAL(42); QUERY(MATCH(PATTERN(NODE("n"))), WITH(ADD(sum, literal), AS("sum")), WHERE(LESS(IDENT("sum"), LITERAL(42))), RETURN("sum", AS("result"))); auto aggr = ExpectAggregate({sum}, {literal}); CheckPlan(storage, ExpectScanAll(), aggr, ExpectProduce(), ExpectFilter(), ExpectProduce()); } TEST(TestLogicalPlanner, MatchReturnSum) { // Test MATCH (n) RETURN SUM(n.prop1) AS sum, n.prop2 AS group Dbms dbms; auto dba = dbms.active(); auto prop1 = dba->property("prop1"); auto prop2 = dba->property("prop2"); AstTreeStorage storage; auto sum = SUM(PROPERTY_LOOKUP("n", prop1)); auto n_prop2 = PROPERTY_LOOKUP("n", prop2); QUERY(MATCH(PATTERN(NODE("n"))), RETURN(sum, AS("sum"), n_prop2, AS("group"))); auto aggr = ExpectAggregate({sum}, {n_prop2}); CheckPlan(storage, ExpectScanAll(), aggr, ExpectProduce()); } TEST(TestLogicalPlanner, CreateWithSum) { // Test CREATE (n) WITH SUM(n.prop) AS sum Dbms dbms; auto dba = dbms.active(); auto prop = dba->property("prop"); AstTreeStorage storage; auto n_prop = PROPERTY_LOOKUP("n", prop); auto sum = SUM(n_prop); auto query = QUERY(CREATE(PATTERN(NODE("n"))), WITH(sum, AS("sum"))); auto symbol_table = MakeSymbolTable(*query); auto acc = ExpectAccumulate({symbol_table.at(*n_prop->expression_)}); auto aggr = ExpectAggregate({sum}, {}); auto plan = MakeLogicalPlan(storage, symbol_table, *dba); // We expect both the accumulation and aggregation because the part before // WITH updates the database. CheckPlan(*plan, symbol_table, ExpectCreateNode(), acc, aggr, ExpectProduce()); } TEST(TestLogicalPlanner, MatchWithCreate) { // Test MATCH (n) WITH n AS a CREATE (a) -[r :r]-> (b) Dbms dbms; auto dba = dbms.active(); auto r_type = dba->edge_type("r"); AstTreeStorage storage; QUERY( MATCH(PATTERN(NODE("n"))), WITH("n", AS("a")), CREATE(PATTERN(NODE("a"), EDGE("r", r_type, Direction::OUT), NODE("b")))); CheckPlan(storage, ExpectScanAll(), ExpectProduce(), ExpectCreateExpand()); } TEST(TestLogicalPlanner, MatchReturnSkipLimit) { // Test MATCH (n) RETURN n SKIP 2 LIMIT 1 AstTreeStorage storage; QUERY(MATCH(PATTERN(NODE("n"))), RETURN("n", SKIP(LITERAL(2)), LIMIT(LITERAL(1)))); CheckPlan(storage, ExpectScanAll(), ExpectProduce(), ExpectSkip(), ExpectLimit()); } TEST(TestLogicalPlanner, CreateWithSkipReturnLimit) { // Test CREATE (n) WITH n AS m SKIP 2 RETURN m LIMIT 1 AstTreeStorage storage; auto ident_n = IDENT("n"); auto query = QUERY(CREATE(PATTERN(NODE("n"))), WITH(ident_n, AS("m"), SKIP(LITERAL(2))), RETURN("m", LIMIT(LITERAL(1)))); auto symbol_table = MakeSymbolTable(*query); auto acc = ExpectAccumulate({symbol_table.at(*ident_n)}); Dbms dbms; auto plan = MakeLogicalPlan(storage, symbol_table, *dbms.active()); // Since we have a write query, we need to have Accumulate. This is a bit // different than Neo4j 3.0, which optimizes WITH followed by RETURN as a // single RETURN clause and then moves Skip and Limit before Accumulate. This // causes different behaviour. A newer version of Neo4j does the same thing as // us here (but who knows if they change it again). CheckPlan(*plan, symbol_table, ExpectCreateNode(), acc, ExpectProduce(), ExpectSkip(), ExpectProduce(), ExpectLimit()); } TEST(TestLogicalPlanner, CreateReturnSumSkipLimit) { // Test CREATE (n) RETURN SUM(n.prop) AS s SKIP 2 LIMIT 1 Dbms dbms; auto dba = dbms.active(); auto prop = dba->property("prop"); AstTreeStorage storage; auto n_prop = PROPERTY_LOOKUP("n", prop); auto sum = SUM(n_prop); auto query = QUERY(CREATE(PATTERN(NODE("n"))), RETURN(sum, AS("s"), SKIP(LITERAL(2)), LIMIT(LITERAL(1)))); auto symbol_table = MakeSymbolTable(*query); auto acc = ExpectAccumulate({symbol_table.at(*n_prop->expression_)}); auto aggr = ExpectAggregate({sum}, {}); auto plan = MakeLogicalPlan(storage, symbol_table, *dba); CheckPlan(*plan, symbol_table, ExpectCreateNode(), acc, aggr, ExpectProduce(), ExpectSkip(), ExpectLimit()); } TEST(TestLogicalPlanner, MatchReturnOrderBy) { // Test MATCH (n) RETURN n ORDER BY n.prop Dbms dbms; auto dba = dbms.active(); auto prop = dba->property("prop"); AstTreeStorage storage; auto ret = RETURN("n", ORDER_BY(PROPERTY_LOOKUP("n", prop))); QUERY(MATCH(PATTERN(NODE("n"))), ret); CheckPlan(storage, ExpectScanAll(), ExpectProduce(), ExpectOrderBy()); } TEST(TestLogicalPlanner, CreateWithOrderByWhere) { // Test CREATE (n) -[r :r]-> (m) // WITH n AS new ORDER BY new.prop, r.prop WHERE m.prop < 42 Dbms dbms; auto dba = dbms.active(); auto prop = dba->property("prop"); auto r_type = dba->edge_type("r"); AstTreeStorage storage; auto ident_n = IDENT("n"); auto new_prop = PROPERTY_LOOKUP("new", prop); auto r_prop = PROPERTY_LOOKUP("r", prop); auto m_prop = PROPERTY_LOOKUP("m", prop); auto query = QUERY( CREATE(PATTERN(NODE("n"), EDGE("r", r_type, Direction::OUT), NODE("m"))), WITH(ident_n, AS("new"), ORDER_BY(new_prop, r_prop)), WHERE(LESS(m_prop, LITERAL(42)))); auto symbol_table = MakeSymbolTable(*query); // Since this is a write query, we expect to accumulate to old used symbols. auto acc = ExpectAccumulate({ symbol_table.at(*ident_n), // `n` in WITH symbol_table.at(*r_prop->expression_), // `r` in ORDER BY symbol_table.at(*m_prop->expression_), // `m` in WHERE }); auto plan = MakeLogicalPlan(storage, symbol_table, *dba); CheckPlan(*plan, symbol_table, ExpectCreateNode(), ExpectCreateExpand(), acc, ExpectProduce(), ExpectFilter(), ExpectOrderBy()); } TEST(TestLogicalPlanner, ReturnAddSumCountOrderBy) { // Test RETURN SUM(1) + COUNT(2) AS result ORDER BY result AstTreeStorage storage; auto sum = SUM(LITERAL(1)); auto count = COUNT(LITERAL(2)); QUERY(RETURN(ADD(sum, count), AS("result"), ORDER_BY(IDENT("result")))); auto aggr = ExpectAggregate({sum, count}, {}); CheckPlan(storage, aggr, ExpectProduce(), ExpectOrderBy()); } TEST(TestLogicalPlanner, MatchMerge) { // Test MATCH (n) MERGE (n) -[r :r]- (m) // ON MATCH SET n.prop = 42 ON CREATE SET m = n // RETURN n AS n Dbms dbms; auto dba = dbms.active(); auto r_type = dba->edge_type("r"); auto prop = dba->property("prop"); AstTreeStorage storage; auto ident_n = IDENT("n"); auto query = QUERY(MATCH(PATTERN(NODE("n"))), MERGE(PATTERN(NODE("n"), EDGE("r", r_type), NODE("m")), ON_MATCH(SET(PROPERTY_LOOKUP("n", prop), LITERAL(42))), ON_CREATE(SET("m", IDENT("n")))), RETURN(ident_n, AS("n"))); std::list on_match{new ExpectExpand(), new ExpectFilter(), new ExpectSetProperty()}; std::list on_create{new ExpectCreateExpand(), new ExpectSetProperties()}; auto symbol_table = MakeSymbolTable(*query); // We expect Accumulate after Merge, because it is considered as a write. auto acc = ExpectAccumulate({symbol_table.at(*ident_n)}); auto plan = MakeLogicalPlan(storage, symbol_table, *dba); CheckPlan(*plan, symbol_table, ExpectScanAll(), ExpectMerge(on_match, on_create), acc, ExpectProduce()); for (auto &op : on_match) delete op; on_match.clear(); for (auto &op : on_create) delete op; on_create.clear(); } TEST(TestLogicalPlanner, MatchOptionalMatchWhereReturn) { // Test MATCH (n) OPTIONAL MATCH (n) -[r]- (m) WHERE m.prop < 42 RETURN r Dbms dbms; auto dba = dbms.active(); auto prop = dba->property("prop"); AstTreeStorage storage; QUERY(MATCH(PATTERN(NODE("n"))), OPTIONAL_MATCH(PATTERN(NODE("n"), EDGE("r"), NODE("m"))), WHERE(LESS(PROPERTY_LOOKUP("m", prop), LITERAL(42))), RETURN("r")); std::list optional{new ExpectScanAll(), new ExpectExpand(), new ExpectFilter()}; CheckPlan(storage, ExpectScanAll(), ExpectOptional(optional), ExpectProduce()); } TEST(TestLogicalPlanner, MatchUnwindReturn) { // Test MATCH (n) UNWIND [1,2,3] AS x RETURN n, x AstTreeStorage storage; QUERY(MATCH(PATTERN(NODE("n"))), UNWIND(LIST(LITERAL(1), LITERAL(2), LITERAL(3)), AS("x")), RETURN("n", "x")); CheckPlan(storage, ExpectScanAll(), ExpectUnwind(), ExpectProduce()); } TEST(TestLogicalPlanner, ReturnDistinctOrderBySkipLimit) { // Test RETURN DISTINCT 1 ORDER BY 1 SKIP 1 LIMIT 1 AstTreeStorage storage; QUERY(RETURN_DISTINCT(LITERAL(1), AS("1"), ORDER_BY(LITERAL(1)), SKIP(LITERAL(1)), LIMIT(LITERAL(1)))); CheckPlan(storage, ExpectProduce(), ExpectDistinct(), ExpectOrderBy(), ExpectSkip(), ExpectLimit()); } TEST(TestLogicalPlanner, CreateWithDistinctSumWhereReturn) { // Test CREATE (n) WITH DISTINCT SUM(n.prop) AS s WHERE s < 42 RETURN s Dbms dbms; auto dba = dbms.active(); auto prop = dba->property("prop"); AstTreeStorage storage; auto node_n = NODE("n"); auto sum = SUM(PROPERTY_LOOKUP("n", prop)); auto query = QUERY(CREATE(PATTERN(node_n)), WITH_DISTINCT(sum, AS("s")), WHERE(LESS(IDENT("s"), LITERAL(42))), RETURN("s")); auto symbol_table = MakeSymbolTable(*query); auto acc = ExpectAccumulate({symbol_table.at(*node_n->identifier_)}); auto aggr = ExpectAggregate({sum}, {}); auto plan = MakeLogicalPlan(storage, symbol_table, *dba); CheckPlan(*plan, symbol_table, ExpectCreateNode(), acc, aggr, ExpectProduce(), ExpectFilter(), ExpectDistinct(), ExpectProduce()); } TEST(TestLogicalPlanner, MatchCrossReferenceVariable) { // Test MATCH (n {prop: m.prop}), (m {prop: n.prop}) RETURN n Dbms dbms; auto dba = dbms.active(); auto prop = dba->property("prop"); AstTreeStorage storage; auto node_n = NODE("n"); auto m_prop = PROPERTY_LOOKUP("m", prop); node_n->properties_[prop] = m_prop; auto node_m = NODE("m"); auto n_prop = PROPERTY_LOOKUP("n", prop); node_m->properties_[prop] = n_prop; QUERY(MATCH(PATTERN(node_n), PATTERN(node_m)), RETURN("n")); // We expect both ScanAll to come before filters (2 are joined into one), // because they need to populate the symbol values. CheckPlan(storage, ExpectScanAll(), ExpectScanAll(), ExpectFilter(), ExpectProduce()); } TEST(TestLogicalPlanner, MatchWhereBeforeExpand) { // Test MATCH (n) -[r]- (m) WHERE n.prop < 42 RETURN n Dbms dbms; auto dba = dbms.active(); auto prop = dba->property("prop"); AstTreeStorage storage; QUERY(MATCH(PATTERN(NODE("n"), EDGE("r"), NODE("m"))), WHERE(LESS(PROPERTY_LOOKUP("n", prop), LITERAL(42))), RETURN("n")); // We expect Fitler to come immediately after ScanAll, since it only uses `n`. CheckPlan(storage, ExpectScanAll(), ExpectFilter(), ExpectExpand(), ExpectProduce()); } TEST(TestLogicalPlanner, MultiMatchWhere) { // Test MATCH (n) -[r]- (m) MATCH (l) WHERE n.prop < 42 RETURN n Dbms dbms; auto dba = dbms.active(); auto prop = dba->property("prop"); AstTreeStorage storage; QUERY(MATCH(PATTERN(NODE("n"), EDGE("r"), NODE("m"))), MATCH(PATTERN(NODE("l"))), WHERE(LESS(PROPERTY_LOOKUP("n", prop), LITERAL(42))), RETURN("n")); // Even though WHERE is in the second MATCH clause, we expect Filter to come // before second ScanAll, since it only uses the value from first ScanAll. CheckPlan(storage, ExpectScanAll(), ExpectFilter(), ExpectExpand(), ExpectScanAll(), ExpectProduce()); } TEST(TestLogicalPlanner, MatchOptionalMatchWhere) { // Test MATCH (n) -[r]- (m) OPTIONAL MATCH (l) WHERE n.prop < 42 RETURN n Dbms dbms; auto dba = dbms.active(); auto prop = dba->property("prop"); AstTreeStorage storage; QUERY(MATCH(PATTERN(NODE("n"), EDGE("r"), NODE("m"))), OPTIONAL_MATCH(PATTERN(NODE("l"))), WHERE(LESS(PROPERTY_LOOKUP("n", prop), LITERAL(42))), RETURN("n")); // Even though WHERE is in the second MATCH clause, and it uses the value from // first ScanAll, it must remain part of the Optional. It should come before // optional ScanAll. std::list optional{new ExpectFilter(), new ExpectScanAll()}; CheckPlan(storage, ExpectScanAll(), ExpectExpand(), ExpectOptional(optional), ExpectProduce()); } TEST(TestLogicalPlanner, MatchReturnAsterisk) { // Test MATCH (n) -[e]- (m) RETURN *, m.prop Dbms dbms; auto dba = dbms.active(); auto prop = dba->property("prop"); AstTreeStorage storage; auto ret = RETURN(PROPERTY_LOOKUP("m", prop), AS("m.prop")); ret->body_.all_identifiers = true; auto query = QUERY(MATCH(PATTERN(NODE("n"), EDGE("e"), NODE("m"))), ret); auto symbol_table = MakeSymbolTable(*query); auto plan = MakeLogicalPlan(storage, symbol_table, *dba); CheckPlan(*plan, symbol_table, ExpectScanAll(), ExpectExpand(), ExpectProduce()); std::vector output_names; for (const auto &output_symbol : plan->OutputSymbols(symbol_table)) { output_names.emplace_back(output_symbol.name()); } std::vector expected_names{"e", "m", "n", "m.prop"}; EXPECT_EQ(output_names, expected_names); } TEST(TestLogicalPlanner, MatchReturnAsteriskSum) { // Test MATCH (n) RETURN *, SUM(n.prop) AS s Dbms dbms; auto dba = dbms.active(); auto prop = dba->property("prop"); AstTreeStorage storage; auto sum = SUM(PROPERTY_LOOKUP("n", prop)); auto ret = RETURN(sum, AS("s")); ret->body_.all_identifiers = true; auto query = QUERY(MATCH(PATTERN(NODE("n"))), ret); auto symbol_table = MakeSymbolTable(*query); auto plan = MakeLogicalPlan(storage, symbol_table, *dba); auto *produce = dynamic_cast(plan.get()); ASSERT_TRUE(produce); const auto &named_expressions = produce->named_expressions(); ASSERT_EQ(named_expressions.size(), 2); auto *expanded_ident = dynamic_cast(named_expressions[0]->expression_); ASSERT_TRUE(expanded_ident); auto aggr = ExpectAggregate({sum}, {expanded_ident}); CheckPlan(*plan, symbol_table, ExpectScanAll(), aggr, ExpectProduce()); std::vector output_names; for (const auto &output_symbol : plan->OutputSymbols(symbol_table)) { output_names.emplace_back(output_symbol.name()); } std::vector expected_names{"n", "s"}; EXPECT_EQ(output_names, expected_names); } TEST(TestLogicalPlanner, UnwindMergeNodeProperty) { // Test UNWIND [1] AS i MERGE (n {prop: i}) Dbms dbms; auto dba = dbms.active(); auto prop = dba->property("prop"); AstTreeStorage storage; auto node_n = NODE("n"); node_n->properties_[prop] = IDENT("i"); QUERY(UNWIND(LIST(LITERAL(1)), AS("i")), MERGE(PATTERN(node_n))); std::list on_match{new ExpectScanAll(), new ExpectFilter()}; std::list on_create{new ExpectCreateNode()}; CheckPlan(storage, ExpectUnwind(), ExpectMerge(on_match, on_create)); for (auto &op : on_match) delete op; for (auto &op : on_create) delete op; } TEST(TestLogicalPlanner, MultipleOptionalMatchReturn) { // Test OPTIONAL MATCH (n) OPTIONAL MATCH (m) RETURN n AstTreeStorage storage; QUERY(OPTIONAL_MATCH(PATTERN(NODE("n"))), OPTIONAL_MATCH(PATTERN(NODE("m"))), RETURN("n")); std::list optional{new ExpectScanAll()}; CheckPlan(storage, ExpectOptional(optional), ExpectOptional(optional), ExpectProduce()); } TEST(TestLogicalPlanner, FunctionAggregationReturn) { // Test RETURN sqrt(SUM(2)) AS result, 42 AS group_by AstTreeStorage storage; auto sum = SUM(LITERAL(2)); auto group_by_literal = LITERAL(42); QUERY( RETURN(FN("sqrt", sum), AS("result"), group_by_literal, AS("group_by"))); auto aggr = ExpectAggregate({sum}, {group_by_literal}); CheckPlan(storage, aggr, ExpectProduce()); } TEST(TestLogicalPlanner, FunctionWithoutArguments) { // Test RETURN pi() AS pi AstTreeStorage storage; QUERY(RETURN(FN("pi"), AS("pi"))); CheckPlan(storage, ExpectProduce()); } TEST(TestLogicalPlanner, ListLiteralAggregationReturn) { // Test RETURN [SUM(2)] AS result, 42 AS group_by AstTreeStorage storage; auto sum = SUM(LITERAL(2)); auto group_by_literal = LITERAL(42); QUERY(RETURN(LIST(sum), AS("result"), group_by_literal, AS("group_by"))); auto aggr = ExpectAggregate({sum}, {group_by_literal}); CheckPlan(storage, aggr, ExpectProduce()); } TEST(TestLogicalPlanner, EmptyListIndexAggregation) { // Test RETURN [][SUM(2)] AS result, 42 AS group_by AstTreeStorage storage; auto sum = SUM(LITERAL(2)); auto empty_list = LIST(); auto group_by_literal = LITERAL(42); QUERY(RETURN(storage.Create(empty_list, sum), AS("result"), group_by_literal, AS("group_by"))); // We expect to group by '42' and the empty list, because it is a // sub-expression of a binary operator which contains an aggregation. This is // similar to grouping by '1' in `RETURN 1 + SUM(2)`. auto aggr = ExpectAggregate({sum}, {empty_list, group_by_literal}); CheckPlan(storage, aggr, ExpectProduce()); } TEST(TestLogicalPlanner, ListSliceAggregationReturn) { // Test RETURN [1, 2][0..SUM(2)] AS result, 42 AS group_by AstTreeStorage storage; auto sum = SUM(LITERAL(2)); auto list = LIST(LITERAL(1), LITERAL(2)); auto group_by_literal = LITERAL(42); QUERY(RETURN(SLICE(list, LITERAL(0), sum), AS("result"), group_by_literal, AS("group_by"))); // Similarly to EmptyListIndexAggregation test, we expect grouping by list and // '42', because slicing is an operator. auto aggr = ExpectAggregate({sum}, {list, group_by_literal}); CheckPlan(storage, aggr, ExpectProduce()); } TEST(TestLogicalPlanner, CreateIndex) { // Test CREATE INDEX ON :label(property) Dbms dbms; auto dba = dbms.active(); auto label = dba->label("label"); auto property = dba->property("property"); AstTreeStorage storage; QUERY(CREATE_INDEX_ON(label, property)); CheckPlan(storage, ExpectCreateIndex(label, property)); } TEST(TestLogicalPlanner, AtomIndexedLabelProperty) { // Test MATCH (n :label {property: 42, not_indexed: 0}) RETURN n AstTreeStorage storage; Dbms dbms; auto dba = dbms.active(); auto label = dba->label("label"); auto property = dba->property("property"); auto not_indexed = dba->property("not_indexed"); auto vertex = dba->insert_vertex(); vertex.add_label(label); vertex.PropsSet(property, 42); dba->commit(); dba = dbms.active(); dba->BuildIndex(label, property); dba = dbms.active(); auto node = NODE("n", label); auto lit_42 = LITERAL(42); node->properties_[property] = lit_42; node->properties_[not_indexed] = LITERAL(0); QUERY(MATCH(PATTERN(node)), RETURN("n")); auto symbol_table = MakeSymbolTable(*storage.query()); auto plan = MakeLogicalPlan(storage, symbol_table, *dba); CheckPlan(*plan, symbol_table, ExpectScanAllByLabelPropertyValue(label, property, lit_42), ExpectFilter(), ExpectProduce()); } TEST(TestLogicalPlanner, AtomPropertyWhereLabelIndexing) { // Test MATCH (n {property: 42}) WHERE n.not_indexed AND n:label RETURN n AstTreeStorage storage; Dbms dbms; auto dba = dbms.active(); auto label = dba->label("label"); auto property = dba->property("property"); auto not_indexed = dba->property("not_indexed"); dba->BuildIndex(label, property); dba = dbms.active(); auto node = NODE("n"); auto lit_42 = LITERAL(42); node->properties_[property] = lit_42; QUERY(MATCH(PATTERN(node)), WHERE(AND(PROPERTY_LOOKUP("n", not_indexed), storage.Create( IDENT("n"), std::vector{label}))), RETURN("n")); auto symbol_table = MakeSymbolTable(*storage.query()); auto plan = MakeLogicalPlan(storage, symbol_table, *dba); CheckPlan(*plan, symbol_table, ExpectScanAllByLabelPropertyValue(label, property, lit_42), ExpectFilter(), ExpectProduce()); } TEST(TestLogicalPlanner, WhereIndexedLabelProperty) { // Test MATCH (n :label) WHERE n.property = 42 RETURN n AstTreeStorage storage; Dbms dbms; auto dba = dbms.active(); auto label = dba->label("label"); auto property = dba->property("property"); dba->BuildIndex(label, property); dba = dbms.active(); auto lit_42 = LITERAL(42); QUERY(MATCH(PATTERN(NODE("n", label))), WHERE(EQ(PROPERTY_LOOKUP("n", property), lit_42)), RETURN("n")); auto symbol_table = MakeSymbolTable(*storage.query()); auto plan = MakeLogicalPlan(storage, symbol_table, *dba); CheckPlan(*plan, symbol_table, ExpectScanAllByLabelPropertyValue(label, property, lit_42), ExpectFilter(), ExpectProduce()); } TEST(TestLogicalPlanner, BestPropertyIndexed) { // Test MATCH (n :label) WHERE n.property = 1 AND n.better = 42 RETURN n AstTreeStorage storage; Dbms dbms; auto dba = dbms.active(); auto label = dba->label("label"); auto property = dba->property("property"); dba->BuildIndex(label, property); dba = dbms.active(); // Add a vertex with :label+property combination, so that the best // :label+better remains empty and thus better choice. auto vertex = dba->insert_vertex(); vertex.add_label(label); vertex.PropsSet(property, 1); dba->commit(); dba = dbms.active(); ASSERT_EQ(dba->vertices_count(label, property), 1); auto better = dba->property("better"); dba->BuildIndex(label, better); dba = dbms.active(); ASSERT_EQ(dba->vertices_count(label, better), 0); auto lit_42 = LITERAL(42); QUERY(MATCH(PATTERN(NODE("n", label))), WHERE(AND(EQ(PROPERTY_LOOKUP("n", property), LITERAL(1)), EQ(PROPERTY_LOOKUP("n", better), lit_42))), RETURN("n")); auto symbol_table = MakeSymbolTable(*storage.query()); auto plan = MakeLogicalPlan(storage, symbol_table, *dba); CheckPlan(*plan, symbol_table, ExpectScanAllByLabelPropertyValue(label, better, lit_42), ExpectFilter(), ExpectProduce()); } TEST(TestLogicalPlanner, MultiPropertyIndexScan) { // Test MATCH (n :label1), (m :label2) WHERE n.prop1 = 1 AND m.prop2 = 2 // RETURN n, m Dbms dbms; auto dba = dbms.active(); auto label1 = dba->label("label1"); auto label2 = dba->label("label2"); auto prop1 = dba->property("prop1"); auto prop2 = dba->property("prop2"); dba->BuildIndex(label1, prop1); dba = dbms.active(); dba->BuildIndex(label2, prop2); dba = dbms.active(); AstTreeStorage storage; auto lit_1 = LITERAL(1); auto lit_2 = LITERAL(2); QUERY(MATCH(PATTERN(NODE("n", label1)), PATTERN(NODE("m", label2))), WHERE(AND(EQ(PROPERTY_LOOKUP("n", prop1), lit_1), EQ(PROPERTY_LOOKUP("m", prop2), lit_2))), RETURN("n", "m")); auto symbol_table = MakeSymbolTable(*storage.query()); auto plan = MakeLogicalPlan(storage, symbol_table, *dba); CheckPlan(*plan, symbol_table, ExpectScanAllByLabelPropertyValue(label1, prop1, lit_1), ExpectFilter(), ExpectScanAllByLabelPropertyValue(label2, prop2, lit_2), ExpectFilter(), ExpectProduce()); } TEST(TestLogicalPlanner, WhereIndexedLabelPropertyRange) { // Test MATCH (n :label) WHERE n.property REL_OP 42 RETURN n // REL_OP is one of: `<`, `<=`, `>`, `>=` Dbms dbms; auto dba = dbms.active(); auto label = dba->label("label"); auto property = dba->property("property"); dba->BuildIndex(label, property); dba = dbms.active(); AstTreeStorage storage; auto lit_42 = LITERAL(42); auto n_prop = PROPERTY_LOOKUP("n", property); auto check_planned_range = [&label, &property, &dba]( const auto &rel_expr, auto lower_bound, auto upper_bound) { // Shadow the first storage, so that the query is created in this one. AstTreeStorage storage; QUERY(MATCH(PATTERN(NODE("n", label))), WHERE(rel_expr), RETURN("n")); auto symbol_table = MakeSymbolTable(*storage.query()); auto plan = MakeLogicalPlan(storage, symbol_table, *dba); CheckPlan(*plan, symbol_table, ExpectScanAllByLabelPropertyRange(label, property, lower_bound, upper_bound), ExpectFilter(), ExpectProduce()); }; { // Test relation operators which form an upper bound for range. std::vector> upper_bound_rel_op{ std::make_pair(LESS(n_prop, lit_42), Bound::Type::EXCLUSIVE), std::make_pair(LESS_EQ(n_prop, lit_42), Bound::Type::INCLUSIVE), std::make_pair(GREATER(lit_42, n_prop), Bound::Type::EXCLUSIVE), std::make_pair(GREATER_EQ(lit_42, n_prop), Bound::Type::INCLUSIVE)}; for (const auto &rel_op : upper_bound_rel_op) { check_planned_range(rel_op.first, std::experimental::nullopt, Bound(lit_42, rel_op.second)); } } { // Test relation operators which form a lower bound for range. std::vector> lower_bound_rel_op{ std::make_pair(LESS(lit_42, n_prop), Bound::Type::EXCLUSIVE), std::make_pair(LESS_EQ(lit_42, n_prop), Bound::Type::INCLUSIVE), std::make_pair(GREATER(n_prop, lit_42), Bound::Type::EXCLUSIVE), std::make_pair(GREATER_EQ(n_prop, lit_42), Bound::Type::INCLUSIVE)}; for (const auto &rel_op : lower_bound_rel_op) { check_planned_range(rel_op.first, Bound(lit_42, rel_op.second), std::experimental::nullopt); } } } TEST(TestLogicalPlanner, UnableToUsePropertyIndex) { // Test MATCH (n: label) WHERE n.property = n.property RETURN n Dbms dbms; auto dba = dbms.active(); auto label = dba->label("label"); auto property = dba->property("property"); dba->BuildIndex(label, property); dba = dbms.active(); AstTreeStorage storage; QUERY( MATCH(PATTERN(NODE("n", label))), WHERE(EQ(PROPERTY_LOOKUP("n", property), PROPERTY_LOOKUP("n", property))), RETURN("n")); auto symbol_table = MakeSymbolTable(*storage.query()); auto plan = MakeLogicalPlan(storage, symbol_table, *dba); // We can only get ScanAllByLabelIndex, because we are comparing properties // with those on the same node. CheckPlan(*plan, symbol_table, ExpectScanAllByLabel(), ExpectFilter(), ExpectProduce()); } TEST(TestLogicalPlanner, ReturnSumGroupByAll) { // Test RETURN sum([1,2,3]), all(x in [1] where x = 1) AstTreeStorage storage; auto sum = SUM(LIST(LITERAL(1), LITERAL(2), LITERAL(3))); auto *all = ALL("x", LIST(LITERAL(1)), WHERE(EQ(IDENT("x"), LITERAL(1)))); QUERY(RETURN(sum, AS("sum"), all, AS("all"))); auto aggr = ExpectAggregate({sum}, {all}); CheckPlan(storage, aggr, ExpectProduce()); } TEST(TestLogicalPlanner, MatchExpandVariable) { // Test MATCH (n) -[r *..3]-> (m) RETURN r AstTreeStorage storage; auto edge = EDGE("r"); edge->has_range_ = true; edge->upper_bound_ = LITERAL(3); QUERY(MATCH(PATTERN(NODE("n"), edge, NODE("m"))), RETURN("r")); CheckPlan(storage, ExpectScanAll(), ExpectExpandVariable(), ExpectProduce()); } TEST(TestLogicalPlanner, MatchExpandVariableNoBounds) { // Test MATCH (n) -[r *]-> (m) RETURN r AstTreeStorage storage; auto edge = EDGE("r"); edge->has_range_ = true; QUERY(MATCH(PATTERN(NODE("n"), edge, NODE("m"))), RETURN("r")); CheckPlan(storage, ExpectScanAll(), ExpectExpandVariable(), ExpectProduce()); } TEST(TestLogicalPlanner, MatchExpandVariableFiltered) { // Test MATCH (n) -[r :type * {prop: 42}]-> (m) RETURN r Dbms dbms; auto dba = dbms.active(); auto type = dba->edge_type("type"); auto prop = dba->property("prop"); AstTreeStorage storage; auto edge = EDGE("r", type); edge->has_range_ = true; edge->properties_[prop] = LITERAL(42); QUERY(MATCH(PATTERN(NODE("n"), edge, NODE("m"))), RETURN("r")); CheckPlan(storage, ExpectScanAll(), ExpectExpandVariable(), ExpectFilter(), ExpectProduce()); } TEST(TestLogicalPlanner, UnwindMatchVariable) { // Test UNWIND [1,2,3] AS depth MATCH (n) -[r*d]-> (m) RETURN r AstTreeStorage storage; auto edge = EDGE("r", Direction::OUT); edge->has_range_ = true; edge->lower_bound_ = IDENT("d"); edge->upper_bound_ = IDENT("d"); QUERY(UNWIND(LIST(LITERAL(1), LITERAL(2), LITERAL(3)), AS("d")), MATCH(PATTERN(NODE("n"), edge, NODE("m"))), RETURN("r")); CheckPlan(storage, ExpectUnwind(), ExpectScanAll(), ExpectExpandVariable(), ExpectProduce()); } TEST(TestLogicalPlanner, MatchBreadthFirst) { // Test MATCH (n) -bfs[r](r, n|n, 10)-> (m) RETURN r AstTreeStorage storage; auto *bfs = storage.Create( IDENT("r"), Direction::OUT, IDENT("r"), IDENT("n"), IDENT("n"), LITERAL(10)); QUERY(MATCH(PATTERN(NODE("n"), bfs, NODE("m"))), RETURN("r")); CheckPlan(storage, ExpectScanAll(), ExpectExpandBreadthFirst(), ExpectProduce()); } } // namespace