#pragma once #include #include #include #include "math.hpp" #include "kdnode.hpp" namespace kd { template using Nodes = std::vector*>; template KdNode* build(Nodes& nodes, byte axis = 0) { // if there are no elements left, we've completed building of this branch if(nodes.empty()) return nullptr; // comparison function to use for sorting the elements auto fsort = [axis](KdNode* a, KdNode* b) -> bool { return kd::math::axial_distance(a->coord, b->coord, axis) < 0; }; size_t median = nodes.size() / 2; // partial sort nodes vector to compute median and ensure that elements // less than median are positioned before the median so we can slice it // nicely // internal implementation is O(n) worst case // tl;dr http://en.wikipedia.org/wiki/Introselect std::nth_element(nodes.begin(), nodes.begin() + median, nodes.end(), fsort); // set axis for the node auto node = nodes.at(median); node->axis = axis; // slice the vector into two halves auto left = Nodes(nodes.begin(), nodes.begin() + median); auto right = Nodes(nodes.begin() + median + 1, nodes.end()); // recursively build left and right branches node->left = build(left, axis ^ 1); node->right = build(right, axis ^ 1); return node; } template KdNode* build(It first, It last) { Nodes kdnodes; std::transform(first, last, std::back_inserter(kdnodes), [&](const std::pair, U>& element) { auto key = element.first; auto data = element.second; return new KdNode(key, data); }); // build the tree from the kdnodes and return the root node return build(kdnodes); } }