#include "bolt_common.hpp" #include "bolt_testdata.hpp" #include "communication/bolt/v1/decoder/decoder.hpp" #include "query/backend/cpp/typed_value.hpp" constexpr const int SIZE = 131072; uint8_t data[SIZE]; /** * TestDecoderBuffer * This class provides a dummy Buffer used for testing the Decoder. * It's Read function is the necessary public interface for the Decoder. * It's Write and Clear methods are used for testing. Through the Write * method you can store data in the buffer, and throgh the Clear method * you can clear the buffer. The decoder uses the Read function to get * data from the buffer. */ class TestDecoderBuffer { public: bool Read(uint8_t *data, size_t len) { if (len > buffer_.size()) return false; memcpy(data, buffer_.data(), len); buffer_.erase(buffer_.begin(), buffer_.begin() + len); return true; } void Write(const uint8_t *data, size_t len) { for (size_t i = 0; i < len; ++i) buffer_.push_back(data[i]); } void Clear() { buffer_.clear(); } private: std::vector buffer_; }; using DecoderT = communication::bolt::Decoder; TEST(BoltDecoder, NullAndBool) { TestDecoderBuffer buffer; DecoderT decoder(buffer); TypedValue tv; // test null buffer.Write((const uint8_t *)"\xC0", 1); ASSERT_EQ(decoder.ReadTypedValue(&tv), true); ASSERT_EQ(tv.type(), TypedValue::Type::Null); // test true buffer.Write((const uint8_t *)"\xC3", 1); ASSERT_EQ(decoder.ReadTypedValue(&tv), true); ASSERT_EQ(tv.type(), TypedValue::Type::Bool); ASSERT_EQ(tv.Value(), true); // test false buffer.Write((const uint8_t *)"\xC2", 1); ASSERT_EQ(decoder.ReadTypedValue(&tv), true); ASSERT_EQ(tv.type(), TypedValue::Type::Bool); ASSERT_EQ(tv.Value(), false); } TEST(BoltDecoder, Int) { TestDecoderBuffer buffer; DecoderT decoder(buffer); TypedValue tv; // test invalid marker buffer.Clear(); buffer.Write((uint8_t *)"\xCD", 1); // 0xCD is reserved in the protocol ASSERT_EQ(decoder.ReadTypedValue(&tv), false); for (int i = 0; i < 28; ++i) { // test missing data buffer.Clear(); buffer.Write(int_encoded[i], int_encoded_len[i] - 1); ASSERT_EQ(decoder.ReadTypedValue(&tv), false); // test all ok buffer.Clear(); buffer.Write(int_encoded[i], int_encoded_len[i]); ASSERT_EQ(decoder.ReadTypedValue(&tv), true); ASSERT_EQ(tv.type(), TypedValue::Type::Int); ASSERT_EQ(tv.Value(), int_decoded[i]); } } TEST(BoltDecoder, Double) { TestDecoderBuffer buffer; DecoderT decoder(buffer); TypedValue tv; for (int i = 0; i < 4; ++i) { // test missing data buffer.Clear(); buffer.Write(double_encoded[i], 8); ASSERT_EQ(decoder.ReadTypedValue(&tv), false); // test all ok buffer.Clear(); buffer.Write(double_encoded[i], 9); ASSERT_EQ(decoder.ReadTypedValue(&tv), true); ASSERT_EQ(tv.type(), TypedValue::Type::Double); ASSERT_EQ(tv.Value(), double_decoded[i]); } } TEST(BoltDecoder, String) { TestDecoderBuffer buffer; DecoderT decoder(buffer); TypedValue tv; uint8_t headers[][6] = {"\x8F", "\xD0\x0F", "\xD1\x00\x0F", "\xD2\x00\x00\x00\x0F"}; int headers_len[] = {1, 2, 3, 5}; for (int i = 0; i < 4; ++i) { // test missing data in header buffer.Clear(); buffer.Write(headers[i], headers_len[i] - 1); ASSERT_EQ(decoder.ReadTypedValue(&tv), false); // test missing elements buffer.Clear(); buffer.Write(headers[i], headers_len[i]); buffer.Write(data, 14); ASSERT_EQ(decoder.ReadTypedValue(&tv), false); // test all ok buffer.Clear(); buffer.Write(headers[i], headers_len[i]); buffer.Write(data, 15); ASSERT_EQ(decoder.ReadTypedValue(&tv), true); ASSERT_EQ(tv.type(), TypedValue::Type::String); std::string &str = tv.Value(); for (int j = 0; j < 15; ++j) EXPECT_EQ((uint8_t)str[j], data[j]); } } TEST(BoltDecoder, List) { TestDecoderBuffer buffer; DecoderT decoder(buffer); TypedValue tv; uint8_t headers[][6] = {"\x9F", "\xD4\x0F", "\xD5\x00\x0F", "\xD6\x00\x00\x00\x0F"}; int headers_len[] = {1, 2, 3, 5}; for (int i = 0; i < 4; ++i) { // test missing data in header buffer.Clear(); buffer.Write(headers[i], headers_len[i] - 1); ASSERT_EQ(decoder.ReadTypedValue(&tv), false); // test missing elements buffer.Clear(); buffer.Write(headers[i], headers_len[i]); for (uint8_t j = 0; j < 14; ++j) buffer.Write(&j, 1); ASSERT_EQ(decoder.ReadTypedValue(&tv), false); // test all ok buffer.Clear(); buffer.Write(headers[i], headers_len[i]); for (uint8_t j = 0; j < 15; ++j) buffer.Write(&j, 1); ASSERT_EQ(decoder.ReadTypedValue(&tv), true); ASSERT_EQ(tv.type(), TypedValue::Type::List); std::vector &val = tv.Value>(); ASSERT_EQ(val.size(), 15); for (int j = 0; j < 15; ++j) EXPECT_EQ(val[j].Value(), j); } } TEST(BoltDecoder, Map) { TestDecoderBuffer buffer; DecoderT decoder(buffer); TypedValue tv; uint8_t headers[][6] = {"\xAF", "\xD8\x0F", "\xD9\x00\x0F", "\xDA\x00\x00\x00\x0F"}; int headers_len[] = {1, 2, 3, 5}; uint8_t index[] = "\x81\x61"; uint8_t wrong_index = 1; for (int i = 0; i < 4; ++i) { // test missing data in header buffer.Clear(); buffer.Write(headers[i], headers_len[i] - 1); ASSERT_EQ(decoder.ReadTypedValue(&tv), false); // test wrong index type buffer.Clear(); buffer.Write(headers[i], headers_len[i]); buffer.Write(&wrong_index, 1); buffer.Write(&wrong_index, 1); ASSERT_EQ(decoder.ReadTypedValue(&tv), false); // test missing element data buffer.Clear(); buffer.Write(headers[i], headers_len[i]); buffer.Write(index, 2); ASSERT_EQ(decoder.ReadTypedValue(&tv), false); // test missing elements buffer.Clear(); buffer.Write(headers[i], headers_len[i]); for (uint8_t j = 0; j < 14; ++j) { buffer.Write(index, 2); buffer.Write(&j, 1); } ASSERT_EQ(decoder.ReadTypedValue(&tv), false); // test elements with same index buffer.Clear(); buffer.Write(headers[i], headers_len[i]); for (uint8_t j = 0; j < 15; ++j) { buffer.Write(index, 2); buffer.Write(&j, 1); } ASSERT_EQ(decoder.ReadTypedValue(&tv), false); // test all ok buffer.Clear(); buffer.Write(headers[i], headers_len[i]); for (uint8_t j = 0; j < 15; ++j) { uint8_t tmp = 'a' + j; buffer.Write(index, 1); buffer.Write(&tmp, 1); buffer.Write(&j, 1); } ASSERT_EQ(decoder.ReadTypedValue(&tv), true); ASSERT_EQ(tv.type(), TypedValue::Type::Map); std::map &val = tv.Value>(); ASSERT_EQ(val.size(), 15); for (int j = 0; j < 15; ++j) { char tmp_chr = 'a' + j; TypedValue tmp_tv = val[std::string(1, tmp_chr)]; EXPECT_EQ(tmp_tv.type(), TypedValue::Type::Int); EXPECT_EQ(tmp_tv.Value(), j); } } } TEST(BoltDecoder, Vertex) { TestDecoderBuffer buffer; DecoderT decoder(buffer); communication::bolt::DecodedVertex dv; uint8_t header[] = "\xB3\x4E"; uint8_t wrong_header[] = "\x00\x00"; uint8_t test_int[] = "\x01"; uint8_t test_str[] = "\x81\x61"; uint8_t test_list[] = "\x91"; uint8_t test_map[] = "\xA1"; // test missing signature buffer.Clear(); buffer.Write(wrong_header, 1); ASSERT_EQ(decoder.ReadVertex(&dv), false); // test wrong marker buffer.Clear(); buffer.Write(wrong_header, 2); ASSERT_EQ(decoder.ReadVertex(&dv), false); // test wrong signature buffer.Clear(); buffer.Write(header, 1); buffer.Write(wrong_header, 1); ASSERT_EQ(decoder.ReadVertex(&dv), false); // test ID wrong type buffer.Clear(); buffer.Write(header, 2); buffer.Write(test_str, 2); ASSERT_EQ(decoder.ReadVertex(&dv), false); // test labels wrong outer type buffer.Clear(); buffer.Write(header, 2); buffer.Write(test_int, 1); buffer.Write(test_int, 1); ASSERT_EQ(decoder.ReadVertex(&dv), false); // test labels wrong inner type buffer.Clear(); buffer.Write(header, 2); buffer.Write(test_int, 1); buffer.Write(test_list, 1); buffer.Write(test_int, 1); ASSERT_EQ(decoder.ReadVertex(&dv), false); // test properties wrong outer type buffer.Clear(); buffer.Write(header, 2); buffer.Write(test_int, 1); buffer.Write(test_list, 1); buffer.Write(test_str, 2); ASSERT_EQ(decoder.ReadVertex(&dv), false); // test all ok buffer.Clear(); buffer.Write(header, 2); buffer.Write(test_int, 1); buffer.Write(test_list, 1); buffer.Write(test_str, 2); buffer.Write(test_map, 1); buffer.Write(test_str, 2); buffer.Write(test_int, 1); ASSERT_EQ(decoder.ReadVertex(&dv), true); ASSERT_EQ(dv.id, 1); ASSERT_EQ(dv.labels[0], std::string("a")); ASSERT_EQ(dv.properties[std::string("a")].Value(), 1); } TEST(BoltDecoder, Edge) { TestDecoderBuffer buffer; DecoderT decoder(buffer); communication::bolt::DecodedEdge de; uint8_t header[] = "\xB5\x52"; uint8_t wrong_header[] = "\x00\x00"; uint8_t test_int1[] = "\x01"; uint8_t test_int2[] = "\x02"; uint8_t test_int3[] = "\x03"; uint8_t test_str[] = "\x81\x61"; uint8_t test_map[] = "\xA1"; // test missing signature buffer.Clear(); buffer.Write(wrong_header, 1); ASSERT_EQ(decoder.ReadEdge(&de), false); // test wrong marker buffer.Clear(); buffer.Write(wrong_header, 2); ASSERT_EQ(decoder.ReadEdge(&de), false); // test wrong signature buffer.Clear(); buffer.Write(header, 1); buffer.Write(wrong_header, 1); ASSERT_EQ(decoder.ReadEdge(&de), false); // test ID wrong type buffer.Clear(); buffer.Write(header, 2); buffer.Write(test_str, 2); ASSERT_EQ(decoder.ReadEdge(&de), false); // test from_id wrong type buffer.Clear(); buffer.Write(header, 2); buffer.Write(test_int1, 1); buffer.Write(test_str, 2); ASSERT_EQ(decoder.ReadEdge(&de), false); // test to_id wrong type buffer.Clear(); buffer.Write(header, 2); buffer.Write(test_int1, 1); buffer.Write(test_int2, 1); buffer.Write(test_str, 2); ASSERT_EQ(decoder.ReadEdge(&de), false); // test type wrong type buffer.Clear(); buffer.Write(header, 2); buffer.Write(test_int1, 1); buffer.Write(test_int2, 1); buffer.Write(test_int3, 1); buffer.Write(test_int1, 1); ASSERT_EQ(decoder.ReadEdge(&de), false); // test properties wrong outer type buffer.Clear(); buffer.Write(header, 2); buffer.Write(test_int1, 1); buffer.Write(test_int2, 1); buffer.Write(test_int3, 1); buffer.Write(test_str, 2); buffer.Write(test_int1, 1); ASSERT_EQ(decoder.ReadEdge(&de), false); // test all ok buffer.Clear(); buffer.Write(header, 2); buffer.Write(test_int1, 1); buffer.Write(test_int2, 1); buffer.Write(test_int3, 1); buffer.Write(test_str, 2); buffer.Write(test_map, 1); buffer.Write(test_str, 2); buffer.Write(test_int1, 1); ASSERT_EQ(decoder.ReadEdge(&de), true); ASSERT_EQ(de.id, 1); ASSERT_EQ(de.from, 2); ASSERT_EQ(de.to, 3); ASSERT_EQ(de.type, std::string("a")); ASSERT_EQ(de.properties[std::string("a")].Value(), 1); } int main(int argc, char **argv) { InitializeData(data, SIZE); logging::init_sync(); logging::log->pipe(std::make_unique()); ::testing::InitGoogleTest(&argc, argv); return RUN_ALL_TESTS(); }