// Copyright 2022 Memgraph Ltd. // // Use of this software is governed by the Business Source License // included in the file licenses/BSL.txt; by using this file, you agree to be bound by the terms of the Business Source // License, and you may not use this file except in compliance with the Business Source License. // // As of the Change Date specified in that file, in accordance with // the Business Source License, use of this software will be governed // by the Apache License, Version 2.0, included in the file // licenses/APL.txt. #include #include #include #include #include #include #include #include #include "coordinator/shard_map.hpp" #include "exceptions.hpp" #include "functions/awesome_memgraph_functions.hpp" #include "parser/opencypher/parser.hpp" #include "query/v2/accessors.hpp" #include "query/v2/bindings/eval.hpp" #include "query/v2/bindings/frame.hpp" #include "query/v2/context.hpp" #include "query/v2/frontend/ast/ast.hpp" #include "query/v2/requests.hpp" #include "query/v2/shard_request_manager.hpp" #include "storage/v3/property_value.hpp" #include "storage/v3/storage.hpp" #include "utils/exceptions.hpp" #include "utils/string.hpp" #include "query_v2_query_common.hpp" //#include "utils/temporal.hpp" using namespace memgraph::query::v2; using memgraph::query::v2::test_common::ToIntList; using testing::ElementsAre; using testing::UnorderedElementsAre; using memgraph::io::Time; using memgraph::io::TimedOut; using memgraph::io::simulator::Simulator; using memgraph::io::simulator::SimulatorConfig; using memgraph::io::simulator::SimulatorTransport; using memgraph::msgs::CreateExpandRequest; using memgraph::msgs::CreateExpandResponse; using memgraph::msgs::CreateVerticesRequest; using memgraph::msgs::CreateVerticesResponse; using memgraph::msgs::ExpandOneRequest; using memgraph::msgs::ExpandOneResponse; using memgraph::msgs::ExpandOneResultRow; using memgraph::msgs::NewExpand; using memgraph::msgs::NewVertex; using memgraph::msgs::ScanVerticesRequest; using memgraph::msgs::ScanVerticesResponse; using ShardMap = memgraph::coordinator::ShardMap; using LabelId = memgraph::storage::v3::LabelId; using PropertyId = memgraph::storage::v3::PropertyId; using memgraph::coordinator::Shards; using CompoundKey = memgraph::coordinator::PrimaryKey; using memgraph::expr::ExpressionRuntimeException; using memgraph::functions::FunctionRuntimeException; namespace { class MockedShardRequestManager : public memgraph::msgs::ShardRequestManagerInterface { public: using VertexAccessor = memgraph::query::v2::accessors::VertexAccessor; explicit MockedShardRequestManager(ShardMap shard_map) : shards_map_(std::move(shard_map)) { SetUpNameIdMappers(); } memgraph::storage::v3::EdgeTypeId NameToEdgeType(const std::string &name) const override { return shards_map_.GetEdgeTypeId(name).value(); } memgraph::storage::v3::PropertyId NameToProperty(const std::string &name) const override { return shards_map_.GetPropertyId(name).value(); } memgraph::storage::v3::LabelId NameToLabel(const std::string &name) const override { return shards_map_.GetLabelId(name).value(); } void StartTransaction() override {} void Commit() override {} std::vector Request( memgraph::msgs::ExecutionState &state) override { return {}; } std::vector Request(memgraph::msgs::ExecutionState &state, std::vector new_vertices) override { return {}; } std::vector Request(memgraph::msgs::ExecutionState &state, ExpandOneRequest request) override { return {}; } std::vector Request(memgraph::msgs::ExecutionState &state, std::vector new_edges) override { return {}; } const std::string &PropertyToName(memgraph::storage::v3::PropertyId id) const override { return properties_.IdToName(id.AsUint()); } const std::string &LabelToName(memgraph::storage::v3::LabelId id) const override { return labels_.IdToName(id.AsUint()); } const std::string &EdgeTypeToName(memgraph::storage::v3::EdgeTypeId id) const override { return edge_types_.IdToName(id.AsUint()); } bool HasProperty(const std::string &name) const override { return shards_map_.GetPropertyId(name).has_value(); } bool HasEdgeType(const std::string &name) const override { return shards_map_.GetEdgeTypeId(name).has_value(); } bool HasLabel(const std::string &name) const override { return shards_map_.GetLabelId(name).has_value(); } bool IsPrimaryLabel(LabelId label) const override { return true; } bool IsPrimaryKey(LabelId primary_label, PropertyId property) const override { return true; } private: void SetUpNameIdMappers() { std::unordered_map id_to_name; for (const auto &[name, id] : shards_map_.labels) { id_to_name.emplace(id.AsUint(), name); } labels_.StoreMapping(std::move(id_to_name)); id_to_name.clear(); for (const auto &[name, id] : shards_map_.properties) { id_to_name.emplace(id.AsUint(), name); } properties_.StoreMapping(std::move(id_to_name)); id_to_name.clear(); for (const auto &[name, id] : shards_map_.edge_types) { id_to_name.emplace(id.AsUint(), name); } edge_types_.StoreMapping(std::move(id_to_name)); } ShardMap shards_map_; memgraph::storage::v3::NameIdMapper properties_; memgraph::storage::v3::NameIdMapper edge_types_; memgraph::storage::v3::NameIdMapper labels_; }; ShardMap CreateDummyShardmap() { static const std::string label_name = std::string("label1"); ShardMap sm; // register new properties const std::vector property_names = {"prop", "property_2", "age", "height", "a", "b", "c"}; const auto properties = sm.AllocatePropertyIds(property_names); const auto property_id_1 = properties.at("prop"); const auto property_id_2 = properties.at("property_2"); const auto property_id_3 = properties.at("age"); const auto property_id_4 = properties.at("height"); const auto property_id_5 = properties.at("a"); const auto property_id_6 = properties.at("b"); const auto property_id_7 = properties.at("c"); const auto type_1 = memgraph::common::SchemaType::INT; using SchemaProperty = memgraph::coordinator::SchemaProperty; // register new label space std::vector schema = { SchemaProperty{.property_id = property_id_1, .type = type_1}, SchemaProperty{.property_id = property_id_2, .type = type_1}, SchemaProperty{.property_id = property_id_3, .type = type_1}, SchemaProperty{.property_id = property_id_4, .type = type_1}, SchemaProperty{.property_id = property_id_5, .type = type_1}, SchemaProperty{.property_id = property_id_6, .type = type_1}, SchemaProperty{.property_id = property_id_7, .type = type_1}, }; auto label_success = sm.InitializeNewLabel(label_name, schema, 1, sm.shard_map_version); MG_ASSERT(label_success); const LabelId label_id = sm.labels.at(label_name); auto &label_space = sm.label_spaces.at(label_id); Shards &shards_for_label = label_space.shards; shards_for_label.clear(); auto key1 = memgraph::storage::v3::PropertyValue(0); auto key2 = memgraph::storage::v3::PropertyValue(0); CompoundKey compound_key_1 = {key1, key2}; shards_for_label[compound_key_1] = {}; auto key3 = memgraph::storage::v3::PropertyValue(12); auto key4 = memgraph::storage::v3::PropertyValue(13); CompoundKey compound_key_2 = {key3, key4}; shards_for_label[compound_key_2] = {}; sm.AllocateEdgeTypeIds(std::vector{"edge_type"}); return sm; } class ExpressionEvaluatorTest : public ::testing::Test { public: ExpressionEvaluatorTest() {} protected: AstStorage storage; memgraph::utils::MonotonicBufferResource mem{1024}; EvaluationContext ctx{.memory = &mem, .timestamp = memgraph::query::v2::QueryTimestamp()}; SymbolTable symbol_table; Frame frame{128}; std::unique_ptr shard_manager = std::make_unique(CreateDummyShardmap()); ExpressionEvaluator eval{&frame, symbol_table, ctx, shard_manager.get(), memgraph::storage::v3::View::OLD}; Identifier *CreateIdentifierWithValue(std::string name, const TypedValue &value) { auto id = storage.Create(name, true); auto symbol = symbol_table.CreateSymbol(name, true); id->MapTo(symbol); frame[symbol] = value; return id; } template auto Eval(TExpression *expr) { ctx.properties = NamesToProperties(storage.properties_, shard_manager.get()); ctx.labels = NamesToLabels(storage.labels_, shard_manager.get()); auto value = expr->Accept(eval); EXPECT_EQ(value.GetMemoryResource(), &mem) << "ExpressionEvaluator must use the MemoryResource from " "EvaluationContext for allocations!"; return value; } }; TEST_F(ExpressionEvaluatorTest, OrOperator) { auto *op = storage.Create(storage.Create(true), storage.Create(false)); auto val1 = Eval(op); ASSERT_EQ(val1.ValueBool(), true); op = storage.Create(storage.Create(true), storage.Create(true)); auto val2 = Eval(op); ASSERT_EQ(val2.ValueBool(), true); } TEST_F(ExpressionEvaluatorTest, XorOperator) { auto *op = storage.Create(storage.Create(true), storage.Create(false)); auto val1 = Eval(op); ASSERT_EQ(val1.ValueBool(), true); op = storage.Create(storage.Create(true), storage.Create(true)); auto val2 = Eval(op); ASSERT_EQ(val2.ValueBool(), false); } TEST_F(ExpressionEvaluatorTest, AndOperator) { auto *op = storage.Create(storage.Create(true), storage.Create(true)); auto val1 = Eval(op); ASSERT_EQ(val1.ValueBool(), true); op = storage.Create(storage.Create(false), storage.Create(true)); auto val2 = Eval(op); ASSERT_EQ(val2.ValueBool(), false); } TEST_F(ExpressionEvaluatorTest, AndOperatorShortCircuit) { { auto *op = storage.Create(storage.Create(false), storage.Create(5)); auto value = Eval(op); EXPECT_EQ(value.ValueBool(), false); } { auto *op = storage.Create(storage.Create(5), storage.Create(false)); // We are evaluating left to right, so we don't short circuit here and // raise due to `5`. This differs from neo4j, where they evaluate both // sides and return `false` without checking for type of the first // expression. EXPECT_THROW(Eval(op), ExpressionRuntimeException); } } TEST_F(ExpressionEvaluatorTest, AndOperatorNull) { { // Null doesn't short circuit auto *op = storage.Create(storage.Create(TypedValue()), storage.Create(5)); EXPECT_THROW(Eval(op), ExpressionRuntimeException); } { auto *op = storage.Create(storage.Create(TypedValue()), storage.Create(true)); auto value = Eval(op); EXPECT_TRUE(value.IsNull()); } { auto *op = storage.Create(storage.Create(TypedValue()), storage.Create(false)); auto value = Eval(op); ASSERT_TRUE(value.IsBool()); EXPECT_EQ(value.ValueBool(), false); } } TEST_F(ExpressionEvaluatorTest, AdditionOperator) { auto *op = storage.Create(storage.Create(2), storage.Create(3)); auto value = Eval(op); ASSERT_EQ(value.ValueInt(), 5); } TEST_F(ExpressionEvaluatorTest, SubtractionOperator) { auto *op = storage.Create(storage.Create(2), storage.Create(3)); auto value = Eval(op); ASSERT_EQ(value.ValueInt(), -1); } TEST_F(ExpressionEvaluatorTest, MultiplicationOperator) { auto *op = storage.Create(storage.Create(2), storage.Create(3)); auto value = Eval(op); ASSERT_EQ(value.ValueInt(), 6); } TEST_F(ExpressionEvaluatorTest, DivisionOperator) { auto *op = storage.Create(storage.Create(50), storage.Create(10)); auto value = Eval(op); ASSERT_EQ(value.ValueInt(), 5); } TEST_F(ExpressionEvaluatorTest, ModOperator) { auto *op = storage.Create(storage.Create(65), storage.Create(10)); auto value = Eval(op); ASSERT_EQ(value.ValueInt(), 5); } TEST_F(ExpressionEvaluatorTest, EqualOperator) { auto *op = storage.Create(storage.Create(10), storage.Create(15)); auto val1 = Eval(op); ASSERT_EQ(val1.ValueBool(), false); op = storage.Create(storage.Create(15), storage.Create(15)); auto val2 = Eval(op); ASSERT_EQ(val2.ValueBool(), true); op = storage.Create(storage.Create(20), storage.Create(15)); auto val3 = Eval(op); ASSERT_EQ(val3.ValueBool(), false); } TEST_F(ExpressionEvaluatorTest, NotEqualOperator) { auto *op = storage.Create(storage.Create(10), storage.Create(15)); auto val1 = Eval(op); ASSERT_EQ(val1.ValueBool(), true); op = storage.Create(storage.Create(15), storage.Create(15)); auto val2 = Eval(op); ASSERT_EQ(val2.ValueBool(), false); op = storage.Create(storage.Create(20), storage.Create(15)); auto val3 = Eval(op); ASSERT_EQ(val3.ValueBool(), true); } TEST_F(ExpressionEvaluatorTest, LessOperator) { auto *op = storage.Create(storage.Create(10), storage.Create(15)); auto val1 = Eval(op); ASSERT_EQ(val1.ValueBool(), true); op = storage.Create(storage.Create(15), storage.Create(15)); auto val2 = Eval(op); ASSERT_EQ(val2.ValueBool(), false); op = storage.Create(storage.Create(20), storage.Create(15)); auto val3 = Eval(op); ASSERT_EQ(val3.ValueBool(), false); } TEST_F(ExpressionEvaluatorTest, GreaterOperator) { auto *op = storage.Create(storage.Create(10), storage.Create(15)); auto val1 = Eval(op); ASSERT_EQ(val1.ValueBool(), false); op = storage.Create(storage.Create(15), storage.Create(15)); auto val2 = Eval(op); ASSERT_EQ(val2.ValueBool(), false); op = storage.Create(storage.Create(20), storage.Create(15)); auto val3 = Eval(op); ASSERT_EQ(val3.ValueBool(), true); } TEST_F(ExpressionEvaluatorTest, LessEqualOperator) { auto *op = storage.Create(storage.Create(10), storage.Create(15)); auto val1 = Eval(op); ASSERT_EQ(val1.ValueBool(), true); op = storage.Create(storage.Create(15), storage.Create(15)); auto val2 = Eval(op); ASSERT_EQ(val2.ValueBool(), true); op = storage.Create(storage.Create(20), storage.Create(15)); auto val3 = Eval(op); ASSERT_EQ(val3.ValueBool(), false); } TEST_F(ExpressionEvaluatorTest, GreaterEqualOperator) { auto *op = storage.Create(storage.Create(10), storage.Create(15)); auto val1 = Eval(op); ASSERT_EQ(val1.ValueBool(), false); op = storage.Create(storage.Create(15), storage.Create(15)); auto val2 = Eval(op); ASSERT_EQ(val2.ValueBool(), true); op = storage.Create(storage.Create(20), storage.Create(15)); auto val3 = Eval(op); ASSERT_EQ(val3.ValueBool(), true); } TEST_F(ExpressionEvaluatorTest, InListOperator) { auto *list_literal = storage.Create(std::vector{ storage.Create(1), storage.Create(2), storage.Create("a")}); { // Element exists in list. auto *op = storage.Create(storage.Create(2), list_literal); auto value = Eval(op); EXPECT_EQ(value.ValueBool(), true); } { // Element doesn't exist in list. auto *op = storage.Create(storage.Create("x"), list_literal); auto value = Eval(op); EXPECT_EQ(value.ValueBool(), false); } { auto *list_literal = storage.Create( std::vector{storage.Create(TypedValue()), storage.Create(2), storage.Create("a")}); // Element doesn't exist in list with null element. auto *op = storage.Create(storage.Create("x"), list_literal); auto value = Eval(op); EXPECT_TRUE(value.IsNull()); } { // Null list. auto *op = storage.Create(storage.Create("x"), storage.Create(TypedValue())); auto value = Eval(op); EXPECT_TRUE(value.IsNull()); } { // Null literal. auto *op = storage.Create(storage.Create(TypedValue()), list_literal); auto value = Eval(op); EXPECT_TRUE(value.IsNull()); } { // Null literal, empty list. auto *op = storage.Create(storage.Create(TypedValue()), storage.Create(std::vector())); auto value = Eval(op); EXPECT_FALSE(value.ValueBool()); } } TEST_F(ExpressionEvaluatorTest, ListIndexing) { auto *list_literal = storage.Create( std::vector{storage.Create(1), storage.Create(2), storage.Create(3), storage.Create(4)}); { // Legal indexing. auto *op = storage.Create(list_literal, storage.Create(2)); auto value = Eval(op); EXPECT_EQ(value.ValueInt(), 3); } { // Out of bounds indexing. auto *op = storage.Create(list_literal, storage.Create(4)); auto value = Eval(op); EXPECT_TRUE(value.IsNull()); } { // Out of bounds indexing with negative bound. auto *op = storage.Create(list_literal, storage.Create(-100)); auto value = Eval(op); EXPECT_TRUE(value.IsNull()); } { // Legal indexing with negative index. auto *op = storage.Create(list_literal, storage.Create(-2)); auto value = Eval(op); EXPECT_EQ(value.ValueInt(), 3); } { // Indexing with one operator being null. auto *op = storage.Create(storage.Create(TypedValue()), storage.Create(-2)); auto value = Eval(op); EXPECT_TRUE(value.IsNull()); } { // Indexing with incompatible type. auto *op = storage.Create(list_literal, storage.Create("bla")); EXPECT_THROW(Eval(op), ExpressionRuntimeException); } } TEST_F(ExpressionEvaluatorTest, MapIndexing) { auto *map_literal = storage.Create( std::unordered_map{{storage.GetPropertyIx("a"), storage.Create(1)}, {storage.GetPropertyIx("b"), storage.Create(2)}, {storage.GetPropertyIx("c"), storage.Create(3)}}); { // Legal indexing. auto *op = storage.Create(map_literal, storage.Create("b")); auto value = Eval(op); EXPECT_EQ(value.ValueInt(), 2); } { // Legal indexing, non-existing key. auto *op = storage.Create(map_literal, storage.Create("z")); auto value = Eval(op); EXPECT_TRUE(value.IsNull()); } { // Wrong key type. auto *op = storage.Create(map_literal, storage.Create(42)); EXPECT_THROW(Eval(op), ExpressionRuntimeException); } { // Indexing with Null. auto *op = storage.Create(map_literal, storage.Create(TypedValue())); auto value = Eval(op); EXPECT_TRUE(value.IsNull()); } } using Vertex = memgraph::msgs::Vertex; using Edge = memgraph::msgs::Edge; using EdgeType = memgraph::msgs::EdgeType; using Value = memgraph::msgs::Value; using VertexId = memgraph::msgs::VertexId; using Label = memgraph::msgs::Label; memgraph::query::v2::accessors::VertexAccessor CreateVertex(std::vector> props, const memgraph::msgs::ShardRequestManagerInterface *manager, Label label = {}) { static size_t id = 0; return {Vertex{VertexId{label, id++}, {label}}, std::move(props), manager}; } memgraph::query::v2::accessors::EdgeAccessor CreateEdge(std::vector> props, const memgraph::msgs::ShardRequestManagerInterface *manager) { auto edge = Edge{.src = VertexId{{}, 0}, .dst = VertexId{{}, 0}, .properties = std::move(props), .type = EdgeType{manager->NameToEdgeType("edge_type")}}; return memgraph::query::v2::accessors::EdgeAccessor{std::move(edge), manager}; } TEST_F(ExpressionEvaluatorTest, VertexAndEdgeIndexing) { auto prop = shard_manager->NameToProperty("prop"); auto vertex = CreateVertex({{prop, Value(static_cast(42))}}, shard_manager.get()); auto edge = CreateEdge({{prop, Value(static_cast(43))}}, shard_manager.get()); auto *vertex_id = CreateIdentifierWithValue("v1", TypedValue(vertex)); auto *edge_id = CreateIdentifierWithValue("e11", TypedValue(edge)); { // Legal indexing. auto *op1 = storage.Create(vertex_id, storage.Create("prop")); auto value1 = Eval(op1); EXPECT_EQ(value1.ValueInt(), 42); auto *op2 = storage.Create(edge_id, storage.Create("prop")); auto value2 = Eval(op2); EXPECT_EQ(value2.ValueInt(), 43); } // TODO(kostasrim) Investigate // Shall we return null on missing properties? Or shall we throw bad optional access as we do now? { // Legal indexing, non-existing key. auto *op1 = storage.Create(vertex_id, storage.Create("blah")); auto value1 = Eval(op1); EXPECT_TRUE(value1.IsNull()); auto *op2 = storage.Create(edge_id, storage.Create("blah")); auto value2 = Eval(op2); EXPECT_TRUE(value2.IsNull()); } { // Wrong key type. auto *op1 = storage.Create(vertex_id, storage.Create(1)); EXPECT_THROW(Eval(op1), ExpressionRuntimeException); auto *op2 = storage.Create(edge_id, storage.Create(1)); EXPECT_THROW(Eval(op2), ExpressionRuntimeException); } { // Indexing with Null. auto *op1 = storage.Create(vertex_id, storage.Create(TypedValue{})); auto value1 = Eval(op1); EXPECT_TRUE(value1.IsNull()); auto *op2 = storage.Create(edge_id, storage.Create(TypedValue{})); auto value2 = Eval(op2); EXPECT_TRUE(value2.IsNull()); } } TEST_F(ExpressionEvaluatorTest, ListSlicingOperator) { auto *list_literal = storage.Create( std::vector{storage.Create(1), storage.Create(2), storage.Create(3), storage.Create(4)}); auto extract_ints = [](TypedValue list) { std::vector int_list; for (auto x : list.ValueList()) { int_list.push_back(x.ValueInt()); } return int_list; }; { // Legal slicing with both bounds defined. auto *op = storage.Create(list_literal, storage.Create(2), storage.Create(4)); auto value = Eval(op); EXPECT_THAT(extract_ints(value), ElementsAre(3, 4)); } { // Legal slicing with negative bound. auto *op = storage.Create(list_literal, storage.Create(2), storage.Create(-1)); auto value = Eval(op); EXPECT_THAT(extract_ints(value), ElementsAre(3)); } { // Lower bound larger than upper bound. auto *op = storage.Create(list_literal, storage.Create(2), storage.Create(-4)); auto value = Eval(op); EXPECT_THAT(extract_ints(value), ElementsAre()); } { // Bounds ouf or range. auto *op = storage.Create(list_literal, storage.Create(-100), storage.Create(10)); auto value = Eval(op); EXPECT_THAT(extract_ints(value), ElementsAre(1, 2, 3, 4)); } { // Lower bound undefined. auto *op = storage.Create(list_literal, nullptr, storage.Create(3)); auto value = Eval(op); EXPECT_THAT(extract_ints(value), ElementsAre(1, 2, 3)); } { // Upper bound undefined. auto *op = storage.Create(list_literal, storage.Create(-2), nullptr); auto value = Eval(op); EXPECT_THAT(extract_ints(value), ElementsAre(3, 4)); } { // Bound of illegal type and null value bound. auto *op = storage.Create(list_literal, storage.Create(TypedValue()), storage.Create("mirko")); EXPECT_THROW(Eval(op), ExpressionRuntimeException); } { // List of illegal type. auto *op = storage.Create(storage.Create("a"), storage.Create(-2), nullptr); EXPECT_THROW(Eval(op), ExpressionRuntimeException); } { // Null value list with undefined upper bound. auto *op = storage.Create(storage.Create(TypedValue()), storage.Create(-2), nullptr); auto value = Eval(op); EXPECT_TRUE(value.IsNull()); ; } { // Null value index. auto *op = storage.Create(list_literal, storage.Create(-2), storage.Create(TypedValue())); auto value = Eval(op); EXPECT_TRUE(value.IsNull()); ; } } TEST_F(ExpressionEvaluatorTest, IfOperator) { auto *then_expression = storage.Create(10); auto *else_expression = storage.Create(20); { auto *condition_true = storage.Create(storage.Create(2), storage.Create(2)); auto *op = storage.Create(condition_true, then_expression, else_expression); auto value = Eval(op); ASSERT_EQ(value.ValueInt(), 10); } { auto *condition_false = storage.Create(storage.Create(2), storage.Create(3)); auto *op = storage.Create(condition_false, then_expression, else_expression); auto value = Eval(op); ASSERT_EQ(value.ValueInt(), 20); } { auto *condition_exception = storage.Create(storage.Create(2), storage.Create(3)); auto *op = storage.Create(condition_exception, then_expression, else_expression); ASSERT_THROW(Eval(op), ExpressionRuntimeException); } } TEST_F(ExpressionEvaluatorTest, NotOperator) { auto *op = storage.Create(storage.Create(false)); auto value = Eval(op); ASSERT_EQ(value.ValueBool(), true); } TEST_F(ExpressionEvaluatorTest, UnaryPlusOperator) { auto *op = storage.Create(storage.Create(5)); auto value = Eval(op); ASSERT_EQ(value.ValueInt(), 5); } TEST_F(ExpressionEvaluatorTest, UnaryMinusOperator) { auto *op = storage.Create(storage.Create(5)); auto value = Eval(op); ASSERT_EQ(value.ValueInt(), -5); } TEST_F(ExpressionEvaluatorTest, IsNullOperator) { auto *op = storage.Create(storage.Create(1)); auto val1 = Eval(op); ASSERT_EQ(val1.ValueBool(), false); op = storage.Create(storage.Create(TypedValue())); auto val2 = Eval(op); ASSERT_EQ(val2.ValueBool(), true); } TEST_F(ExpressionEvaluatorTest, LabelsTest) { Label label{shard_manager->NameToLabel("label1")}; auto v1 = CreateVertex({}, shard_manager.get(), label); auto *identifier = storage.Create("n"); auto node_symbol = symbol_table.CreateSymbol("n", true); identifier->MapTo(node_symbol); frame[node_symbol] = TypedValue(v1); { auto *op = storage.Create(identifier, std::vector{LabelIx{"label1", label.id.AsInt()}}); auto value = Eval(op); EXPECT_EQ(value.ValueBool(), true); } { auto *op = storage.Create(identifier, std::vector{LabelIx{"label2", 10}}); auto value = Eval(op); EXPECT_EQ(value.ValueBool(), false); } { auto *op = storage.Create(identifier, std::vector{LabelIx{"label2", 10}}); frame[node_symbol] = TypedValue(); auto value = Eval(op); EXPECT_TRUE(value.IsNull()); } } TEST_F(ExpressionEvaluatorTest, Aggregation) { auto aggr = storage.Create(storage.Create(42), nullptr, Aggregation::Op::COUNT); auto aggr_sym = symbol_table.CreateSymbol("aggr", true); aggr->MapTo(aggr_sym); frame[aggr_sym] = TypedValue(1); auto value = Eval(aggr); EXPECT_EQ(value.ValueInt(), 1); } TEST_F(ExpressionEvaluatorTest, ListLiteral) { auto *list_literal = storage.Create(std::vector{storage.Create(1), storage.Create("bla"), storage.Create(true)}); TypedValue result = Eval(list_literal); ASSERT_TRUE(result.IsList()); auto &result_elems = result.ValueList(); ASSERT_EQ(3, result_elems.size()); EXPECT_TRUE(result_elems[0].IsInt()); EXPECT_TRUE(result_elems[1].IsString()); EXPECT_TRUE(result_elems[2].IsBool()); } TEST_F(ExpressionEvaluatorTest, ParameterLookup) { ctx.parameters.Add(0, memgraph::storage::v3::PropertyValue(42)); auto *param_lookup = storage.Create(0); auto value = Eval(param_lookup); ASSERT_TRUE(value.IsInt()); EXPECT_EQ(value.ValueInt(), 42); } TEST_F(ExpressionEvaluatorTest, FunctionAll1) { AstStorage storage; auto *ident_x = IDENT("x"); auto *all = ALL("x", LIST(LITERAL(1), LITERAL(1)), WHERE(EQ(ident_x, LITERAL(1)))); const auto x_sym = symbol_table.CreateSymbol("x", true); all->identifier_->MapTo(x_sym); ident_x->MapTo(x_sym); auto value = Eval(all); ASSERT_TRUE(value.IsBool()); EXPECT_TRUE(value.ValueBool()); } TEST_F(ExpressionEvaluatorTest, FunctionAll2) { AstStorage storage; auto *ident_x = IDENT("x"); auto *all = ALL("x", LIST(LITERAL(1), LITERAL(2)), WHERE(EQ(ident_x, LITERAL(1)))); const auto x_sym = symbol_table.CreateSymbol("x", true); all->identifier_->MapTo(x_sym); ident_x->MapTo(x_sym); auto value = Eval(all); ASSERT_TRUE(value.IsBool()); EXPECT_FALSE(value.ValueBool()); } TEST_F(ExpressionEvaluatorTest, FunctionAllNullList) { AstStorage storage; auto *all = ALL("x", LITERAL(TypedValue()), WHERE(LITERAL(true))); const auto x_sym = symbol_table.CreateSymbol("x", true); all->identifier_->MapTo(x_sym); auto value = Eval(all); EXPECT_TRUE(value.IsNull()); } TEST_F(ExpressionEvaluatorTest, FunctionAllNullElementInList1) { AstStorage storage; auto *ident_x = IDENT("x"); auto *all = ALL("x", LIST(LITERAL(1), LITERAL(TypedValue())), WHERE(EQ(ident_x, LITERAL(1)))); const auto x_sym = symbol_table.CreateSymbol("x", true); all->identifier_->MapTo(x_sym); ident_x->MapTo(x_sym); auto value = Eval(all); ASSERT_TRUE(value.IsBool()); EXPECT_FALSE(value.ValueBool()); } TEST_F(ExpressionEvaluatorTest, FunctionAllNullElementInList2) { AstStorage storage; auto *ident_x = IDENT("x"); auto *all = ALL("x", LIST(LITERAL(2), LITERAL(TypedValue())), WHERE(EQ(ident_x, LITERAL(1)))); const auto x_sym = symbol_table.CreateSymbol("x", true); all->identifier_->MapTo(x_sym); ident_x->MapTo(x_sym); auto value = Eval(all); ASSERT_TRUE(value.IsBool()); EXPECT_FALSE(value.ValueBool()); } TEST_F(ExpressionEvaluatorTest, FunctionAllWhereWrongType) { AstStorage storage; auto *all = ALL("x", LIST(LITERAL(1)), WHERE(LITERAL(2))); const auto x_sym = symbol_table.CreateSymbol("x", true); all->identifier_->MapTo(x_sym); EXPECT_THROW(Eval(all), ExpressionRuntimeException); } TEST_F(ExpressionEvaluatorTest, FunctionSingle1) { AstStorage storage; auto *ident_x = IDENT("x"); auto *single = SINGLE("x", LIST(LITERAL(1), LITERAL(2)), WHERE(EQ(ident_x, LITERAL(1)))); const auto x_sym = symbol_table.CreateSymbol("x", true); single->identifier_->MapTo(x_sym); ident_x->MapTo(x_sym); auto value = Eval(single); ASSERT_TRUE(value.IsBool()); EXPECT_TRUE(value.ValueBool()); } TEST_F(ExpressionEvaluatorTest, FunctionSingle2) { AstStorage storage; auto *ident_x = IDENT("x"); auto *single = SINGLE("x", LIST(LITERAL(1), LITERAL(2)), WHERE(GREATER(ident_x, LITERAL(0)))); const auto x_sym = symbol_table.CreateSymbol("x", true); single->identifier_->MapTo(x_sym); ident_x->MapTo(x_sym); auto value = Eval(single); ASSERT_TRUE(value.IsBool()); EXPECT_FALSE(value.ValueBool()); } TEST_F(ExpressionEvaluatorTest, FunctionSingleNullList) { AstStorage storage; auto *single = SINGLE("x", LITERAL(TypedValue()), WHERE(LITERAL(true))); const auto x_sym = symbol_table.CreateSymbol("x", true); single->identifier_->MapTo(x_sym); auto value = Eval(single); EXPECT_TRUE(value.IsNull()); } TEST_F(ExpressionEvaluatorTest, FunctionSingleNullElementInList1) { AstStorage storage; auto *ident_x = IDENT("x"); auto *single = SINGLE("x", LIST(LITERAL(1), LITERAL(TypedValue())), WHERE(EQ(ident_x, LITERAL(1)))); const auto x_sym = symbol_table.CreateSymbol("x", true); single->identifier_->MapTo(x_sym); ident_x->MapTo(x_sym); auto value = Eval(single); ASSERT_TRUE(value.IsBool()); EXPECT_TRUE(value.ValueBool()); } TEST_F(ExpressionEvaluatorTest, FunctionSingleNullElementInList2) { AstStorage storage; auto *ident_x = IDENT("x"); auto *single = SINGLE("x", LIST(LITERAL(2), LITERAL(TypedValue())), WHERE(EQ(ident_x, LITERAL(1)))); const auto x_sym = symbol_table.CreateSymbol("x", true); single->identifier_->MapTo(x_sym); ident_x->MapTo(x_sym); auto value = Eval(single); ASSERT_TRUE(value.IsBool()); EXPECT_FALSE(value.ValueBool()); } TEST_F(ExpressionEvaluatorTest, FunctionAny1) { AstStorage storage; auto *ident_x = IDENT("x"); auto *any = ANY("x", LIST(LITERAL(1), LITERAL(2)), WHERE(EQ(ident_x, LITERAL(1)))); const auto x_sym = symbol_table.CreateSymbol("x", true); any->identifier_->MapTo(x_sym); ident_x->MapTo(x_sym); auto value = Eval(any); ASSERT_TRUE(value.IsBool()); EXPECT_TRUE(value.ValueBool()); } TEST_F(ExpressionEvaluatorTest, FunctionAny2) { AstStorage storage; auto *ident_x = IDENT("x"); auto *any = ANY("x", LIST(LITERAL(1), LITERAL(2)), WHERE(EQ(ident_x, LITERAL(0)))); const auto x_sym = symbol_table.CreateSymbol("x", true); any->identifier_->MapTo(x_sym); ident_x->MapTo(x_sym); auto value = Eval(any); ASSERT_TRUE(value.IsBool()); EXPECT_FALSE(value.ValueBool()); } TEST_F(ExpressionEvaluatorTest, FunctionAnyNullList) { AstStorage storage; auto *any = ANY("x", LITERAL(TypedValue()), WHERE(LITERAL(true))); const auto x_sym = symbol_table.CreateSymbol("x", true); any->identifier_->MapTo(x_sym); auto value = Eval(any); EXPECT_TRUE(value.IsNull()); } TEST_F(ExpressionEvaluatorTest, FunctionAnyNullElementInList1) { AstStorage storage; auto *ident_x = IDENT("x"); auto *any = ANY("x", LIST(LITERAL(0), LITERAL(TypedValue())), WHERE(EQ(ident_x, LITERAL(0)))); const auto x_sym = symbol_table.CreateSymbol("x", true); any->identifier_->MapTo(x_sym); ident_x->MapTo(x_sym); auto value = Eval(any); EXPECT_TRUE(value.ValueBool()); } TEST_F(ExpressionEvaluatorTest, FunctionAnyNullElementInList2) { AstStorage storage; auto *ident_x = IDENT("x"); auto *any = ANY("x", LIST(LITERAL(1), LITERAL(TypedValue())), WHERE(EQ(ident_x, LITERAL(0)))); const auto x_sym = symbol_table.CreateSymbol("x", true); any->identifier_->MapTo(x_sym); ident_x->MapTo(x_sym); auto value = Eval(any); EXPECT_FALSE(value.ValueBool()); } TEST_F(ExpressionEvaluatorTest, FunctionAnyWhereWrongType) { AstStorage storage; auto *any = ANY("x", LIST(LITERAL(1)), WHERE(LITERAL(2))); const auto x_sym = symbol_table.CreateSymbol("x", true); any->identifier_->MapTo(x_sym); EXPECT_THROW(Eval(any), ExpressionRuntimeException); } TEST_F(ExpressionEvaluatorTest, FunctionNone1) { AstStorage storage; auto *ident_x = IDENT("x"); auto *none = NONE("x", LIST(LITERAL(1), LITERAL(2)), WHERE(EQ(ident_x, LITERAL(0)))); const auto x_sym = symbol_table.CreateSymbol("x", true); none->identifier_->MapTo(x_sym); ident_x->MapTo(x_sym); auto value = Eval(none); ASSERT_TRUE(value.IsBool()); EXPECT_TRUE(value.ValueBool()); } TEST_F(ExpressionEvaluatorTest, FunctionNone2) { AstStorage storage; auto *ident_x = IDENT("x"); auto *none = NONE("x", LIST(LITERAL(1), LITERAL(2)), WHERE(EQ(ident_x, LITERAL(1)))); const auto x_sym = symbol_table.CreateSymbol("x", true); none->identifier_->MapTo(x_sym); ident_x->MapTo(x_sym); auto value = Eval(none); ASSERT_TRUE(value.IsBool()); EXPECT_FALSE(value.ValueBool()); } TEST_F(ExpressionEvaluatorTest, FunctionNoneNullList) { AstStorage storage; auto *none = NONE("x", LITERAL(TypedValue()), WHERE(LITERAL(true))); const auto x_sym = symbol_table.CreateSymbol("x", true); none->identifier_->MapTo(x_sym); auto value = Eval(none); EXPECT_TRUE(value.IsNull()); } TEST_F(ExpressionEvaluatorTest, FunctionNoneNullElementInList1) { AstStorage storage; auto *ident_x = IDENT("x"); auto *any = NONE("x", LIST(LITERAL(1), LITERAL(TypedValue())), WHERE(EQ(ident_x, LITERAL(0)))); const auto x_sym = symbol_table.CreateSymbol("x", true); any->identifier_->MapTo(x_sym); ident_x->MapTo(x_sym); auto value = Eval(any); EXPECT_TRUE(value.ValueBool()); } TEST_F(ExpressionEvaluatorTest, FunctionNoneNullElementInList2) { AstStorage storage; auto *ident_x = IDENT("x"); auto *none = NONE("x", LIST(LITERAL(0), LITERAL(TypedValue())), WHERE(EQ(ident_x, LITERAL(0)))); const auto x_sym = symbol_table.CreateSymbol("x", true); none->identifier_->MapTo(x_sym); ident_x->MapTo(x_sym); auto value = Eval(none); EXPECT_FALSE(value.ValueBool()); } TEST_F(ExpressionEvaluatorTest, FunctionNoneWhereWrongType) { AstStorage storage; auto *none = NONE("x", LIST(LITERAL(1)), WHERE(LITERAL(2))); const auto x_sym = symbol_table.CreateSymbol("x", true); none->identifier_->MapTo(x_sym); EXPECT_THROW(Eval(none), ExpressionRuntimeException); } TEST_F(ExpressionEvaluatorTest, FunctionReduce) { AstStorage storage; auto *ident_sum = IDENT("sum"); auto *ident_x = IDENT("x"); auto *reduce = REDUCE("sum", LITERAL(0), "x", LIST(LITERAL(1), LITERAL(2)), ADD(ident_sum, ident_x)); const auto sum_sym = symbol_table.CreateSymbol("sum", true); reduce->accumulator_->MapTo(sum_sym); ident_sum->MapTo(sum_sym); const auto x_sym = symbol_table.CreateSymbol("x", true); reduce->identifier_->MapTo(x_sym); ident_x->MapTo(x_sym); auto value = Eval(reduce); ASSERT_TRUE(value.IsInt()); EXPECT_EQ(value.ValueInt(), 3); } TEST_F(ExpressionEvaluatorTest, FunctionExtract) { AstStorage storage; auto *ident_x = IDENT("x"); auto *extract = EXTRACT("x", LIST(LITERAL(1), LITERAL(2), LITERAL(TypedValue())), ADD(ident_x, LITERAL(1))); const auto x_sym = symbol_table.CreateSymbol("x", true); extract->identifier_->MapTo(x_sym); ident_x->MapTo(x_sym); auto value = Eval(extract); EXPECT_TRUE(value.IsList()); ; auto result = value.ValueList(); EXPECT_EQ(result[0].ValueInt(), 2); EXPECT_EQ(result[1].ValueInt(), 3); EXPECT_TRUE(result[2].IsNull()); } TEST_F(ExpressionEvaluatorTest, FunctionExtractNull) { AstStorage storage; auto *ident_x = IDENT("x"); auto *extract = EXTRACT("x", LITERAL(TypedValue()), ADD(ident_x, LITERAL(1))); const auto x_sym = symbol_table.CreateSymbol("x", true); extract->identifier_->MapTo(x_sym); ident_x->MapTo(x_sym); auto value = Eval(extract); EXPECT_TRUE(value.IsNull()); } TEST_F(ExpressionEvaluatorTest, FunctionExtractExceptions) { AstStorage storage; auto *ident_x = IDENT("x"); auto *extract = EXTRACT("x", LITERAL("bla"), ADD(ident_x, LITERAL(1))); const auto x_sym = symbol_table.CreateSymbol("x", true); extract->identifier_->MapTo(x_sym); ident_x->MapTo(x_sym); EXPECT_THROW(Eval(extract), ExpressionRuntimeException); } TEST_F(ExpressionEvaluatorTest, RegexMatchInvalidArguments) { EXPECT_TRUE(Eval(storage.Create(LITERAL(TypedValue()), LITERAL("regex"))).IsNull()); EXPECT_TRUE(Eval(storage.Create(LITERAL(3), LITERAL("regex"))).IsNull()); EXPECT_TRUE(Eval(storage.Create(LIST(LITERAL("string")), LITERAL("regex"))).IsNull()); EXPECT_TRUE(Eval(storage.Create(LITERAL("string"), LITERAL(TypedValue()))).IsNull()); EXPECT_THROW(Eval(storage.Create(LITERAL("string"), LITERAL(42))), ExpressionRuntimeException); EXPECT_THROW(Eval(storage.Create(LITERAL("string"), LIST(LITERAL("regex")))), ExpressionRuntimeException); } TEST_F(ExpressionEvaluatorTest, RegexMatchInvalidRegex) { EXPECT_THROW(Eval(storage.Create(LITERAL("text"), LITERAL("*ext"))), ExpressionRuntimeException); EXPECT_THROW(Eval(storage.Create(LITERAL("text"), LITERAL("[ext"))), ExpressionRuntimeException); } TEST_F(ExpressionEvaluatorTest, RegexMatch) { EXPECT_FALSE(Eval(storage.Create(LITERAL("text"), LITERAL(".*ex"))).ValueBool()); EXPECT_TRUE(Eval(storage.Create(LITERAL("text"), LITERAL(".*ext"))).ValueBool()); EXPECT_FALSE(Eval(storage.Create(LITERAL("text"), LITERAL("[ext]"))).ValueBool()); EXPECT_TRUE(Eval(storage.Create(LITERAL("text"), LITERAL(".+[ext]"))).ValueBool()); } class ExpressionEvaluatorPropertyLookup : public ExpressionEvaluatorTest { protected: std::pair prop_age = std::make_pair("age", shard_manager->NameToProperty("age")); std::pair prop_height = std::make_pair("height", shard_manager->NameToProperty("height")); Identifier *identifier = storage.Create("element"); Symbol symbol = symbol_table.CreateSymbol("element", true); void SetUp() { identifier->MapTo(symbol); } auto Value(std::pair property) { auto *op = storage.Create(identifier, storage.GetPropertyIx(property.first)); return Eval(op); } }; // TODO(kostasrim) These will fail because of memory resource not propagating correctly. This should be done as part of // polishing the allocators. // TEST_F(ExpressionEvaluatorPropertyLookup, Vertex) { // auto v1 = CreateVertex({{prop_age.second, memgraph::msgs::Value(static_cast(32))}}, shard_manager.get()); // frame[symbol] = TypedValue(v1); // EXPECT_EQ(Value(prop_age).ValueInt(), 10); // EXPECT_TRUE(Value(prop_height).IsNull()); // } // TEST_F(ExpressionEvaluatorPropertyLookup, Edge) {} TEST_F(ExpressionEvaluatorPropertyLookup, Null) { frame[symbol] = TypedValue(); EXPECT_TRUE(Value(prop_age).IsNull()); } TEST_F(ExpressionEvaluatorPropertyLookup, MapLiteral) { frame[symbol] = TypedValue(std::map{{prop_age.first, TypedValue(10)}}); EXPECT_EQ(Value(prop_age).ValueInt(), 10); EXPECT_TRUE(Value(prop_height).IsNull()); } class FunctionTest : public ExpressionEvaluatorTest { protected: std::vector ExpressionsFromTypedValues(const std::vector &tvs) { std::vector expressions; expressions.reserve(tvs.size()); for (size_t i = 0; i < tvs.size(); ++i) { auto *ident = storage.Create("arg_" + std::to_string(i), true); auto sym = symbol_table.CreateSymbol("arg_" + std::to_string(i), true); ident->MapTo(sym); frame[sym] = tvs[i]; expressions.push_back(ident); } return expressions; } TypedValue EvaluateFunctionWithExprs(const std::string &function_name, const std::vector &expressions) { auto *op = storage.Create(function_name, expressions); return Eval(op); } template TypedValue EvaluateFunction(const std::string &function_name, std::tuple args) { std::vector tv_args; tv_args.reserve(args.size()); for (auto &arg : args) tv_args.emplace_back(std::move(arg)); return EvaluateFunctionWithExprs(function_name, ExpressionsFromTypedValues(tv_args)); } template TypedValue EvaluateFunction(const std::string &function_name, TArgs &&...args) { return EvaluateFunctionWithExprs(function_name, ExpressionsFromTypedValues(std::vector{TypedValue(args)...})); } }; template static TypedValue MakeTypedValueList(TArgs &&...args) { return TypedValue(std::vector{TypedValue(args)...}); } TEST_F(FunctionTest, EndNode) { ASSERT_THROW(EvaluateFunction("ENDNODE"), FunctionRuntimeException); ASSERT_TRUE(EvaluateFunction("ENDNODE", TypedValue()).IsNull()); auto v1 = CreateVertex({}, shard_manager.get()); auto e = CreateEdge({}, shard_manager.get()); const auto expected = VertexId{{}, 0}; const auto res = EvaluateFunction("ENDNODE", e).ValueVertex().Id(); ASSERT_EQ(res, expected); ASSERT_THROW(EvaluateFunction("ENDNODE", 2), FunctionRuntimeException); } TEST_F(FunctionTest, Head) { ASSERT_THROW(EvaluateFunction("HEAD"), FunctionRuntimeException); ASSERT_TRUE(EvaluateFunction("HEAD", TypedValue()).IsNull()); auto argument = MakeTypedValueList(3, 4, 5); ASSERT_EQ(EvaluateFunction("HEAD", argument).ValueInt(), 3); argument.ValueList().clear(); ASSERT_TRUE(EvaluateFunction("HEAD", argument).IsNull()); ASSERT_THROW(EvaluateFunction("HEAD", 2), FunctionRuntimeException); } TEST_F(FunctionTest, Properties) { ASSERT_THROW(EvaluateFunction("PROPERTIES"), FunctionRuntimeException); ASSERT_TRUE(EvaluateFunction("PROPERTIES", TypedValue()).IsNull()); const auto height = shard_manager->NameToProperty("height"); const auto age = shard_manager->NameToProperty("age"); auto v1 = CreateVertex({{height, Value(static_cast(5))}, {age, Value(static_cast(10))}}, shard_manager.get()); auto e = CreateEdge({{height, Value(static_cast(3))}, {age, Value(static_cast(15))}}, shard_manager.get()); auto prop_values_to_int = [](TypedValue t) { std::unordered_map properties; for (auto property : t.ValueMap()) { properties[std::string(property.first)] = property.second.ValueInt(); } return properties; }; ASSERT_THAT(prop_values_to_int(EvaluateFunction("PROPERTIES", v1)), UnorderedElementsAre(testing::Pair("height", 5), testing::Pair("age", 10))); ASSERT_THAT(prop_values_to_int(EvaluateFunction("PROPERTIES", e)), UnorderedElementsAre(testing::Pair("height", 3), testing::Pair("age", 15))); ASSERT_THROW(EvaluateFunction("PROPERTIES", 2), FunctionRuntimeException); } TEST_F(FunctionTest, Last) { ASSERT_THROW(EvaluateFunction("LAST"), FunctionRuntimeException); ASSERT_TRUE(EvaluateFunction("LAST", TypedValue()).IsNull()); auto argument = MakeTypedValueList(3, 4, 5); ASSERT_EQ(EvaluateFunction("LAST", argument).ValueInt(), 5); argument.ValueList().clear(); ASSERT_TRUE(EvaluateFunction("LAST", argument).IsNull()); ASSERT_THROW(EvaluateFunction("LAST", 5), FunctionRuntimeException); } TEST_F(FunctionTest, Size) { ASSERT_THROW(EvaluateFunction("SIZE"), FunctionRuntimeException); ASSERT_TRUE(EvaluateFunction("SIZE", TypedValue()).IsNull()); auto argument = MakeTypedValueList(3, 4, 5); ASSERT_EQ(EvaluateFunction("SIZE", argument).ValueInt(), 3); ASSERT_EQ(EvaluateFunction("SIZE", "john").ValueInt(), 4); ASSERT_EQ(EvaluateFunction("SIZE", std::map{ {"a", TypedValue(5)}, {"b", TypedValue(true)}, {"c", TypedValue("123")}}) .ValueInt(), 3); ASSERT_THROW(EvaluateFunction("SIZE", 5), FunctionRuntimeException); // TODO(kostasrim) Add this when we enable paths on the accessors // auto v0 = dba.InsertVertex(); // memgraph::query::Path path(v0); // EXPECT_EQ(EvaluateFunction("SIZE", path).ValueInt(), 0); // auto v1 = dba.InsertVertex(); // auto edge = dba.InsertEdge(&v0, &v1, dba.NameToEdgeType("type")); // ASSERT_TRUE(edge.HasValue()); // path.Expand(*edge); // path.Expand(v1); // EXPECT_EQ(EvaluateFunction("SIZE", path).ValueInt(), 1); } TEST_F(FunctionTest, StartNode) { ASSERT_THROW(EvaluateFunction("STARTNODE"), FunctionRuntimeException); ASSERT_TRUE(EvaluateFunction("STARTNODE", TypedValue()).IsNull()); auto v1 = CreateVertex({}, shard_manager.get()); auto e = CreateEdge({}, shard_manager.get()); const auto expected = VertexId{{}, 0}; const auto res = EvaluateFunction("STARTNODE", e).ValueVertex().Id(); ASSERT_EQ(res, expected); ASSERT_THROW(EvaluateFunction("STARTNODE", 2), FunctionRuntimeException); } // TODO(kostasrim) Enable this test once we add degree to the accessors // TEST_F(FunctionTest, Degree) {} // TEST_F(FunctionTest, InDegree) {} // TEST_F(FunctionTest, OutDegree) {} TEST_F(FunctionTest, ToBoolean) { ASSERT_THROW(EvaluateFunction("TOBOOLEAN"), FunctionRuntimeException); ASSERT_TRUE(EvaluateFunction("TOBOOLEAN", TypedValue()).IsNull()); ASSERT_EQ(EvaluateFunction("TOBOOLEAN", 123).ValueBool(), true); ASSERT_EQ(EvaluateFunction("TOBOOLEAN", -213).ValueBool(), true); ASSERT_EQ(EvaluateFunction("TOBOOLEAN", 0).ValueBool(), false); ASSERT_EQ(EvaluateFunction("TOBOOLEAN", " trUE \n\t").ValueBool(), true); ASSERT_EQ(EvaluateFunction("TOBOOLEAN", "\n\tFalsE").ValueBool(), false); ASSERT_TRUE(EvaluateFunction("TOBOOLEAN", "\n\tFALSEA ").IsNull()); ASSERT_EQ(EvaluateFunction("TOBOOLEAN", true).ValueBool(), true); ASSERT_EQ(EvaluateFunction("TOBOOLEAN", false).ValueBool(), false); } TEST_F(FunctionTest, ToFloat) { ASSERT_THROW(EvaluateFunction("TOFLOAT"), FunctionRuntimeException); ASSERT_TRUE(EvaluateFunction("TOFLOAT", TypedValue()).IsNull()); ASSERT_EQ(EvaluateFunction("TOFLOAT", " -3.5 \n\t").ValueDouble(), -3.5); ASSERT_EQ(EvaluateFunction("TOFLOAT", "\n\t0.5e-1").ValueDouble(), 0.05); ASSERT_TRUE(EvaluateFunction("TOFLOAT", "\n\t3.4e-3X ").IsNull()); ASSERT_EQ(EvaluateFunction("TOFLOAT", -3.5).ValueDouble(), -3.5); ASSERT_EQ(EvaluateFunction("TOFLOAT", -3).ValueDouble(), -3.0); ASSERT_THROW(EvaluateFunction("TOFLOAT", true), FunctionRuntimeException); } TEST_F(FunctionTest, ToInteger) { ASSERT_THROW(EvaluateFunction("TOINTEGER"), FunctionRuntimeException); ASSERT_TRUE(EvaluateFunction("TOINTEGER", TypedValue()).IsNull()); ASSERT_EQ(EvaluateFunction("TOINTEGER", false).ValueInt(), 0); ASSERT_EQ(EvaluateFunction("TOINTEGER", true).ValueInt(), 1); ASSERT_EQ(EvaluateFunction("TOINTEGER", "\n\t3").ValueInt(), 3); ASSERT_EQ(EvaluateFunction("TOINTEGER", " -3.5 \n\t").ValueInt(), -3); ASSERT_TRUE(EvaluateFunction("TOINTEGER", "\n\t3X ").IsNull()); ASSERT_EQ(EvaluateFunction("TOINTEGER", -3.5).ValueInt(), -3); ASSERT_EQ(EvaluateFunction("TOINTEGER", 3.5).ValueInt(), 3); } TEST_F(FunctionTest, Type) { ASSERT_THROW(EvaluateFunction("TYPE"), FunctionRuntimeException); ASSERT_TRUE(EvaluateFunction("TYPE", TypedValue()).IsNull()); auto e = CreateEdge({}, shard_manager.get()); ASSERT_EQ(EvaluateFunction("TYPE", e).ValueString(), "edge_type"); ASSERT_THROW(EvaluateFunction("TYPE", 2), FunctionRuntimeException); } TEST_F(FunctionTest, ValueType) { ASSERT_THROW(EvaluateFunction("VALUETYPE"), FunctionRuntimeException); ASSERT_THROW(EvaluateFunction("VALUETYPE", TypedValue(), TypedValue()), FunctionRuntimeException); ASSERT_EQ(EvaluateFunction("VALUETYPE", TypedValue()).ValueString(), "NULL"); ASSERT_EQ(EvaluateFunction("VALUETYPE", TypedValue(true)).ValueString(), "BOOLEAN"); ASSERT_EQ(EvaluateFunction("VALUETYPE", TypedValue(1)).ValueString(), "INTEGER"); ASSERT_EQ(EvaluateFunction("VALUETYPE", TypedValue(1.1)).ValueString(), "FLOAT"); ASSERT_EQ(EvaluateFunction("VALUETYPE", TypedValue("test")).ValueString(), "STRING"); ASSERT_EQ( EvaluateFunction("VALUETYPE", TypedValue(std::vector{TypedValue(1), TypedValue(2)})).ValueString(), "LIST"); ASSERT_EQ(EvaluateFunction("VALUETYPE", TypedValue(std::map{{"test", TypedValue(1)}})) .ValueString(), "MAP"); auto v1 = CreateVertex({}, shard_manager.get()); ASSERT_EQ(EvaluateFunction("VALUETYPE", v1).ValueString(), "NODE"); auto e = CreateEdge({}, shard_manager.get()); ASSERT_EQ(EvaluateFunction("VALUETYPE", e).ValueString(), "RELATIONSHIP"); // TODO(kostasrim) Fix this when we add Path to accessors // Path p(v1, *e, v2); // ASSERT_EQ(EvaluateFunction("VALUETYPE", p).ValueString(), "PATH"); } TEST_F(FunctionTest, Labels) { ASSERT_THROW(EvaluateFunction("LABELS"), FunctionRuntimeException); ASSERT_TRUE(EvaluateFunction("LABELS", TypedValue()).IsNull()); Label label{shard_manager->NameToLabel("label1")}; auto v = CreateVertex({}, shard_manager.get(), std::move(label)); std::vector labels; auto _labels = EvaluateFunction("LABELS", v).ValueList(); labels.reserve(_labels.size()); for (auto label : _labels) { labels.emplace_back(label.ValueString()); } ASSERT_THAT(labels, UnorderedElementsAre("label1")); ASSERT_THROW(EvaluateFunction("LABELS", 2), FunctionRuntimeException); } // TODO(kostasrim) Enable this once we fix accessors Path // TEST_F(FunctionTest, NodesRelationships) {} TEST_F(FunctionTest, Range) { EXPECT_THROW(EvaluateFunction("RANGE"), FunctionRuntimeException); EXPECT_TRUE(EvaluateFunction("RANGE", 1, 2, TypedValue()).IsNull()); EXPECT_THROW(EvaluateFunction("RANGE", 1, TypedValue(), 1.3), FunctionRuntimeException); EXPECT_THROW(EvaluateFunction("RANGE", 1, 2, 0), FunctionRuntimeException); EXPECT_THAT(ToIntList(EvaluateFunction("RANGE", 1, 3)), ElementsAre(1, 2, 3)); EXPECT_THAT(ToIntList(EvaluateFunction("RANGE", -1, 5, 2)), ElementsAre(-1, 1, 3, 5)); EXPECT_THAT(ToIntList(EvaluateFunction("RANGE", 2, 10, 3)), ElementsAre(2, 5, 8)); EXPECT_THAT(ToIntList(EvaluateFunction("RANGE", 2, 2, 2)), ElementsAre(2)); EXPECT_THAT(ToIntList(EvaluateFunction("RANGE", 3, 0, 5)), ElementsAre()); EXPECT_THAT(ToIntList(EvaluateFunction("RANGE", 5, 1, -2)), ElementsAre(5, 3, 1)); EXPECT_THAT(ToIntList(EvaluateFunction("RANGE", 6, 1, -2)), ElementsAre(6, 4, 2)); EXPECT_THAT(ToIntList(EvaluateFunction("RANGE", 2, 2, -3)), ElementsAre(2)); EXPECT_THAT(ToIntList(EvaluateFunction("RANGE", -2, 4, -1)), ElementsAre()); } TEST_F(FunctionTest, Keys) { ASSERT_THROW(EvaluateFunction("KEYS"), FunctionRuntimeException); ASSERT_TRUE(EvaluateFunction("KEYS", TypedValue()).IsNull()); const auto height = shard_manager->NameToProperty("height"); const auto age = shard_manager->NameToProperty("age"); auto v1 = CreateVertex({{height, Value(static_cast(5))}, {age, Value(static_cast(10))}}, shard_manager.get()); auto edge = CreateEdge({{height, Value(static_cast(3))}, {age, Value(static_cast(15))}}, shard_manager.get()); auto prop_keys_to_string = [](TypedValue t) { std::vector keys; for (auto property : t.ValueList()) { keys.emplace_back(property.ValueString()); } return keys; }; ASSERT_THAT(prop_keys_to_string(EvaluateFunction("KEYS", v1)), UnorderedElementsAre("height", "age")); ASSERT_THAT(prop_keys_to_string(EvaluateFunction("KEYS", edge)), UnorderedElementsAre("height", "age")); ASSERT_THROW(EvaluateFunction("KEYS", 2), FunctionRuntimeException); } TEST_F(FunctionTest, Tail) { ASSERT_THROW(EvaluateFunction("TAIL"), FunctionRuntimeException); ASSERT_TRUE(EvaluateFunction("TAIL", TypedValue()).IsNull()); auto argument = MakeTypedValueList(); ASSERT_EQ(EvaluateFunction("TAIL", argument).ValueList().size(), 0U); argument = MakeTypedValueList(3, 4, true, "john"); auto list = EvaluateFunction("TAIL", argument).ValueList(); ASSERT_EQ(list.size(), 3U); ASSERT_EQ(list[0].ValueInt(), 4); ASSERT_EQ(list[1].ValueBool(), true); ASSERT_EQ(list[2].ValueString(), "john"); ASSERT_THROW(EvaluateFunction("TAIL", 2), FunctionRuntimeException); } TEST_F(FunctionTest, UniformSample) { ASSERT_THROW(EvaluateFunction("UNIFORMSAMPLE"), FunctionRuntimeException); ASSERT_TRUE(EvaluateFunction("UNIFORMSAMPLE", TypedValue(), TypedValue()).IsNull()); ASSERT_TRUE(EvaluateFunction("UNIFORMSAMPLE", TypedValue(), 1).IsNull()); ASSERT_TRUE(EvaluateFunction("UNIFORMSAMPLE", MakeTypedValueList(), TypedValue()).IsNull()); ASSERT_TRUE(EvaluateFunction("UNIFORMSAMPLE", MakeTypedValueList(), 1).IsNull()); ASSERT_THROW(EvaluateFunction("UNIFORMSAMPLE", MakeTypedValueList(1, 2, 3), -1), FunctionRuntimeException); ASSERT_EQ(EvaluateFunction("UNIFORMSAMPLE", MakeTypedValueList(1, 2, 3), 0).ValueList().size(), 0); ASSERT_EQ(EvaluateFunction("UNIFORMSAMPLE", MakeTypedValueList(1, 2, 3), 2).ValueList().size(), 2); ASSERT_EQ(EvaluateFunction("UNIFORMSAMPLE", MakeTypedValueList(1, 2, 3), 3).ValueList().size(), 3); ASSERT_EQ(EvaluateFunction("UNIFORMSAMPLE", MakeTypedValueList(1, 2, 3), 5).ValueList().size(), 5); } TEST_F(FunctionTest, Abs) { ASSERT_THROW(EvaluateFunction("ABS"), FunctionRuntimeException); ASSERT_TRUE(EvaluateFunction("ABS", TypedValue()).IsNull()); ASSERT_EQ(EvaluateFunction("ABS", -2).ValueInt(), 2); ASSERT_EQ(EvaluateFunction("ABS", -2.5).ValueDouble(), 2.5); ASSERT_THROW(EvaluateFunction("ABS", true), FunctionRuntimeException); } //// Test if log works. If it does then all functions wrapped with //// WRAP_CMATH_FLOAT_FUNCTION macro should work and are not gonna be tested for //// correctnes.. TEST_F(FunctionTest, Log) { ASSERT_THROW(EvaluateFunction("LOG"), FunctionRuntimeException); ASSERT_TRUE(EvaluateFunction("LOG", TypedValue()).IsNull()); ASSERT_DOUBLE_EQ(EvaluateFunction("LOG", 2).ValueDouble(), log(2)); ASSERT_DOUBLE_EQ(EvaluateFunction("LOG", 1.5).ValueDouble(), log(1.5)); // Not portable, but should work on most platforms. ASSERT_TRUE(std::isnan(EvaluateFunction("LOG", -1.5).ValueDouble())); ASSERT_THROW(EvaluateFunction("LOG", true), FunctionRuntimeException); } //// Function Round wraps round from cmath and will work if FunctionTest.Log test //// passes. This test is used to show behavior of round since it differs from //// neo4j's round. TEST_F(FunctionTest, Round) { ASSERT_THROW(EvaluateFunction("ROUND"), FunctionRuntimeException); ASSERT_TRUE(EvaluateFunction("ROUND", TypedValue()).IsNull()); ASSERT_EQ(EvaluateFunction("ROUND", -2).ValueDouble(), -2); ASSERT_EQ(EvaluateFunction("ROUND", -2.4).ValueDouble(), -2); ASSERT_EQ(EvaluateFunction("ROUND", -2.5).ValueDouble(), -3); ASSERT_EQ(EvaluateFunction("ROUND", -2.6).ValueDouble(), -3); ASSERT_EQ(EvaluateFunction("ROUND", 2.4).ValueDouble(), 2); ASSERT_EQ(EvaluateFunction("ROUND", 2.5).ValueDouble(), 3); ASSERT_EQ(EvaluateFunction("ROUND", 2.6).ValueDouble(), 3); ASSERT_THROW(EvaluateFunction("ROUND", true), FunctionRuntimeException); } // Check if wrapped functions are callable (check if everything was spelled // correctly...). Wrapper correctnes is checked in FunctionTest.Log function // test. TEST_F(FunctionTest, WrappedMathFunctions) { for (auto function_name : {"FLOOR", "CEIL", "ROUND", "EXP", "LOG", "LOG10", "SQRT", "ACOS", "ASIN", "ATAN", "COS", "SIN", "TAN"}) { EvaluateFunction(function_name, 0.5); } } TEST_F(FunctionTest, Atan2) { ASSERT_THROW(EvaluateFunction("ATAN2"), FunctionRuntimeException); ASSERT_TRUE(EvaluateFunction("ATAN2", TypedValue(), 1).IsNull()); ASSERT_TRUE(EvaluateFunction("ATAN2", 1, TypedValue()).IsNull()); ASSERT_DOUBLE_EQ(EvaluateFunction("ATAN2", 2, -1.0).ValueDouble(), atan2(2, -1)); ASSERT_THROW(EvaluateFunction("ATAN2", 3.0, true), FunctionRuntimeException); } TEST_F(FunctionTest, Sign) { ASSERT_THROW(EvaluateFunction("SIGN"), FunctionRuntimeException); ASSERT_TRUE(EvaluateFunction("SIGN", TypedValue()).IsNull()); ASSERT_EQ(EvaluateFunction("SIGN", -2).ValueInt(), -1); ASSERT_EQ(EvaluateFunction("SIGN", -0.2).ValueInt(), -1); ASSERT_EQ(EvaluateFunction("SIGN", 0.0).ValueInt(), 0); ASSERT_EQ(EvaluateFunction("SIGN", 2.5).ValueInt(), 1); ASSERT_THROW(EvaluateFunction("SIGN", true), FunctionRuntimeException); } TEST_F(FunctionTest, E) { ASSERT_THROW(EvaluateFunction("E", 1), FunctionRuntimeException); ASSERT_DOUBLE_EQ(EvaluateFunction("E").ValueDouble(), M_E); } TEST_F(FunctionTest, Pi) { ASSERT_THROW(EvaluateFunction("PI", 1), FunctionRuntimeException); ASSERT_DOUBLE_EQ(EvaluateFunction("PI").ValueDouble(), M_PI); } TEST_F(FunctionTest, Rand) { ASSERT_THROW(EvaluateFunction("RAND", 1), FunctionRuntimeException); ASSERT_GE(EvaluateFunction("RAND").ValueDouble(), 0.0); ASSERT_LT(EvaluateFunction("RAND").ValueDouble(), 1.0); } using memgraph::functions::kStartsWith; TEST_F(FunctionTest, StartsWith) { EXPECT_THROW(EvaluateFunction(kStartsWith), FunctionRuntimeException); EXPECT_TRUE(EvaluateFunction(kStartsWith, "a", TypedValue()).IsNull()); EXPECT_THROW(EvaluateFunction(kStartsWith, TypedValue(), 1.3), FunctionRuntimeException); EXPECT_TRUE(EvaluateFunction(kStartsWith, "abc", "abc").ValueBool()); EXPECT_TRUE(EvaluateFunction(kStartsWith, "abcdef", "abc").ValueBool()); EXPECT_FALSE(EvaluateFunction(kStartsWith, "abcdef", "aBc").ValueBool()); EXPECT_FALSE(EvaluateFunction(kStartsWith, "abc", "abcd").ValueBool()); } using memgraph::functions::kEndsWith; TEST_F(FunctionTest, EndsWith) { EXPECT_THROW(EvaluateFunction(kEndsWith), FunctionRuntimeException); EXPECT_TRUE(EvaluateFunction(kEndsWith, "a", TypedValue()).IsNull()); EXPECT_THROW(EvaluateFunction(kEndsWith, TypedValue(), 1.3), FunctionRuntimeException); EXPECT_TRUE(EvaluateFunction(kEndsWith, "abc", "abc").ValueBool()); EXPECT_TRUE(EvaluateFunction(kEndsWith, "abcdef", "def").ValueBool()); EXPECT_FALSE(EvaluateFunction(kEndsWith, "abcdef", "dEf").ValueBool()); EXPECT_FALSE(EvaluateFunction(kEndsWith, "bcd", "abcd").ValueBool()); } using memgraph::functions::kContains; TEST_F(FunctionTest, Contains) { EXPECT_THROW(EvaluateFunction(kContains), FunctionRuntimeException); EXPECT_TRUE(EvaluateFunction(kContains, "a", TypedValue()).IsNull()); EXPECT_THROW(EvaluateFunction(kContains, TypedValue(), 1.3), FunctionRuntimeException); EXPECT_TRUE(EvaluateFunction(kContains, "abc", "abc").ValueBool()); EXPECT_TRUE(EvaluateFunction(kContains, "abcde", "bcd").ValueBool()); EXPECT_FALSE(EvaluateFunction(kContains, "cde", "abcdef").ValueBool()); EXPECT_FALSE(EvaluateFunction(kContains, "abcdef", "dEf").ValueBool()); } TEST_F(FunctionTest, Assert) { // Invalid calls. ASSERT_THROW(EvaluateFunction("ASSERT"), FunctionRuntimeException); ASSERT_THROW(EvaluateFunction("ASSERT", false, false), FunctionRuntimeException); ASSERT_THROW(EvaluateFunction("ASSERT", "string", false), FunctionRuntimeException); ASSERT_THROW(EvaluateFunction("ASSERT", false, "reason", true), FunctionRuntimeException); // Valid calls, assertion fails. ASSERT_THROW(EvaluateFunction("ASSERT", false), FunctionRuntimeException); ASSERT_THROW(EvaluateFunction("ASSERT", false, "message"), FunctionRuntimeException); try { EvaluateFunction("ASSERT", false, "bbgba"); } catch (FunctionRuntimeException &e) { ASSERT_TRUE(std::string(e.what()).find("bbgba") != std::string::npos); } // Valid calls, assertion passes. ASSERT_TRUE(EvaluateFunction("ASSERT", true).ValueBool()); ASSERT_TRUE(EvaluateFunction("ASSERT", true, "message").ValueBool()); } TEST_F(FunctionTest, Counter) { EXPECT_THROW(EvaluateFunction("COUNTER"), FunctionRuntimeException); EXPECT_THROW(EvaluateFunction("COUNTER", "a"), FunctionRuntimeException); EXPECT_THROW(EvaluateFunction("COUNTER", "a", "b"), FunctionRuntimeException); EXPECT_THROW(EvaluateFunction("COUNTER", "a", "b", "c"), FunctionRuntimeException); EXPECT_EQ(EvaluateFunction("COUNTER", "c1", 0).ValueInt(), 0); EXPECT_EQ(EvaluateFunction("COUNTER", "c1", 0).ValueInt(), 1); EXPECT_EQ(EvaluateFunction("COUNTER", "c2", 0).ValueInt(), 0); EXPECT_EQ(EvaluateFunction("COUNTER", "c1", 0).ValueInt(), 2); EXPECT_EQ(EvaluateFunction("COUNTER", "c2", 0).ValueInt(), 1); EXPECT_EQ(EvaluateFunction("COUNTER", "c3", -1).ValueInt(), -1); EXPECT_EQ(EvaluateFunction("COUNTER", "c3", -1).ValueInt(), 0); EXPECT_EQ(EvaluateFunction("COUNTER", "c3", -1).ValueInt(), 1); EXPECT_EQ(EvaluateFunction("COUNTER", "c4", 0, 5).ValueInt(), 0); EXPECT_EQ(EvaluateFunction("COUNTER", "c4", 0, 5).ValueInt(), 5); EXPECT_EQ(EvaluateFunction("COUNTER", "c4", 0, 5).ValueInt(), 10); EXPECT_EQ(EvaluateFunction("COUNTER", "c5", 0, -5).ValueInt(), 0); EXPECT_EQ(EvaluateFunction("COUNTER", "c5", 0, -5).ValueInt(), -5); EXPECT_EQ(EvaluateFunction("COUNTER", "c5", 0, -5).ValueInt(), -10); EXPECT_THROW(EvaluateFunction("COUNTER", "c6", 0, 0), FunctionRuntimeException); } // TODO(kostasrim) Add this once we fix accessors CypherId() functions // TEST_F(FunctionTest, Id) { // auto v = CreateVertex({}, shard_manager.get()); // auto e = CreateEdge({}, shard_manager.get()); // EXPECT_TRUE(EvaluateFunction("ID", TypedValue()).IsNull()); // EXPECT_EQ(EvaluateFunction("ID", v).ValueInt(), 0); // EXPECT_EQ(EvaluateFunction("ID", e).ValueInt(), 0); // EXPECT_THROW(EvaluateFunction("ID"), FunctionRuntimeException); // EXPECT_THROW(EvaluateFunction("ID", 0), FunctionRuntimeException); // EXPECT_THROW(EvaluateFunction("ID", v, e), FunctionRuntimeException); //} TEST_F(FunctionTest, ToStringNull) { EXPECT_TRUE(EvaluateFunction("TOSTRING", TypedValue()).IsNull()); } TEST_F(FunctionTest, ToStringString) { EXPECT_EQ(EvaluateFunction("TOSTRING", "").ValueString(), ""); EXPECT_EQ(EvaluateFunction("TOSTRING", "this is a string").ValueString(), "this is a string"); } TEST_F(FunctionTest, ToStringInteger) { EXPECT_EQ(EvaluateFunction("TOSTRING", -23321312).ValueString(), "-23321312"); EXPECT_EQ(EvaluateFunction("TOSTRING", 0).ValueString(), "0"); EXPECT_EQ(EvaluateFunction("TOSTRING", 42).ValueString(), "42"); } TEST_F(FunctionTest, ToStringDouble) { EXPECT_EQ(EvaluateFunction("TOSTRING", -42.42).ValueString(), "-42.420000"); EXPECT_EQ(EvaluateFunction("TOSTRING", 0.0).ValueString(), "0.000000"); EXPECT_EQ(EvaluateFunction("TOSTRING", 238910.2313217).ValueString(), "238910.231322"); } TEST_F(FunctionTest, ToStringBool) { EXPECT_EQ(EvaluateFunction("TOSTRING", true).ValueString(), "true"); EXPECT_EQ(EvaluateFunction("TOSTRING", false).ValueString(), "false"); } TEST_F(FunctionTest, ToStringExceptions) { EXPECT_THROW(EvaluateFunction("TOSTRING", 1, 2, 3), FunctionRuntimeException); } TEST_F(FunctionTest, Left) { EXPECT_THROW(EvaluateFunction("LEFT"), FunctionRuntimeException); EXPECT_TRUE(EvaluateFunction("LEFT", TypedValue(), TypedValue()).IsNull()); EXPECT_TRUE(EvaluateFunction("LEFT", TypedValue(), 10).IsNull()); EXPECT_THROW(EvaluateFunction("LEFT", TypedValue(), -10), FunctionRuntimeException); EXPECT_EQ(EvaluateFunction("LEFT", "memgraph", 0).ValueString(), ""); EXPECT_EQ(EvaluateFunction("LEFT", "memgraph", 3).ValueString(), "mem"); EXPECT_EQ(EvaluateFunction("LEFT", "memgraph", 1000).ValueString(), "memgraph"); EXPECT_THROW(EvaluateFunction("LEFT", "memgraph", -10), FunctionRuntimeException); EXPECT_THROW(EvaluateFunction("LEFT", "memgraph", "graph"), FunctionRuntimeException); EXPECT_THROW(EvaluateFunction("LEFT", 132, 10), FunctionRuntimeException); } TEST_F(FunctionTest, Right) { EXPECT_THROW(EvaluateFunction("RIGHT"), FunctionRuntimeException); EXPECT_TRUE(EvaluateFunction("RIGHT", TypedValue(), TypedValue()).IsNull()); EXPECT_TRUE(EvaluateFunction("RIGHT", TypedValue(), 10).IsNull()); EXPECT_THROW(EvaluateFunction("RIGHT", TypedValue(), -10), FunctionRuntimeException); EXPECT_EQ(EvaluateFunction("RIGHT", "memgraph", 0).ValueString(), ""); EXPECT_EQ(EvaluateFunction("RIGHT", "memgraph", 3).ValueString(), "aph"); EXPECT_EQ(EvaluateFunction("RIGHT", "memgraph", 1000).ValueString(), "memgraph"); EXPECT_THROW(EvaluateFunction("RIGHT", "memgraph", -10), FunctionRuntimeException); EXPECT_THROW(EvaluateFunction("RIGHT", "memgraph", "graph"), FunctionRuntimeException); EXPECT_THROW(EvaluateFunction("RIGHT", 132, 10), FunctionRuntimeException); } TEST_F(FunctionTest, Trimming) { EXPECT_TRUE(EvaluateFunction("LTRIM", TypedValue()).IsNull()); EXPECT_TRUE(EvaluateFunction("RTRIM", TypedValue()).IsNull()); EXPECT_TRUE(EvaluateFunction("TRIM", TypedValue()).IsNull()); EXPECT_EQ(EvaluateFunction("LTRIM", " abc ").ValueString(), "abc "); EXPECT_EQ(EvaluateFunction("RTRIM", " abc ").ValueString(), " abc"); EXPECT_EQ(EvaluateFunction("TRIM", "abc").ValueString(), "abc"); EXPECT_THROW(EvaluateFunction("LTRIM", "x", "y"), FunctionRuntimeException); EXPECT_THROW(EvaluateFunction("RTRIM", "x", "y"), FunctionRuntimeException); EXPECT_THROW(EvaluateFunction("TRIM", "x", "y"), FunctionRuntimeException); } TEST_F(FunctionTest, Reverse) { EXPECT_TRUE(EvaluateFunction("REVERSE", TypedValue()).IsNull()); EXPECT_EQ(EvaluateFunction("REVERSE", "abc").ValueString(), "cba"); EXPECT_THROW(EvaluateFunction("REVERSE", "x", "y"), FunctionRuntimeException); } TEST_F(FunctionTest, Replace) { EXPECT_THROW(EvaluateFunction("REPLACE"), FunctionRuntimeException); EXPECT_TRUE(EvaluateFunction("REPLACE", TypedValue(), "l", "w").IsNull()); EXPECT_TRUE(EvaluateFunction("REPLACE", "hello", TypedValue(), "w").IsNull()); EXPECT_TRUE(EvaluateFunction("REPLACE", "hello", "l", TypedValue()).IsNull()); EXPECT_EQ(EvaluateFunction("REPLACE", "hello", "l", "w").ValueString(), "hewwo"); EXPECT_THROW(EvaluateFunction("REPLACE", 1, "l", "w"), FunctionRuntimeException); EXPECT_THROW(EvaluateFunction("REPLACE", "hello", 1, "w"), FunctionRuntimeException); EXPECT_THROW(EvaluateFunction("REPLACE", "hello", "l", 1), FunctionRuntimeException); } TEST_F(FunctionTest, Split) { EXPECT_THROW(EvaluateFunction("SPLIT"), FunctionRuntimeException); EXPECT_THROW(EvaluateFunction("SPLIT", "one,two", 1), FunctionRuntimeException); EXPECT_THROW(EvaluateFunction("SPLIT", 1, "one,two"), FunctionRuntimeException); EXPECT_TRUE(EvaluateFunction("SPLIT", TypedValue(), TypedValue()).IsNull()); EXPECT_TRUE(EvaluateFunction("SPLIT", "one,two", TypedValue()).IsNull()); EXPECT_TRUE(EvaluateFunction("SPLIT", TypedValue(), ",").IsNull()); auto result = EvaluateFunction("SPLIT", "one,two", ","); EXPECT_TRUE(result.IsList()); EXPECT_EQ(result.ValueList()[0].ValueString(), "one"); EXPECT_EQ(result.ValueList()[1].ValueString(), "two"); } TEST_F(FunctionTest, Substring) { EXPECT_THROW(EvaluateFunction("SUBSTRING"), FunctionRuntimeException); EXPECT_TRUE(EvaluateFunction("SUBSTRING", TypedValue(), 0, 10).IsNull()); EXPECT_THROW(EvaluateFunction("SUBSTRING", TypedValue(), TypedValue()), FunctionRuntimeException); EXPECT_THROW(EvaluateFunction("SUBSTRING", TypedValue(), -10), FunctionRuntimeException); EXPECT_THROW(EvaluateFunction("SUBSTRING", TypedValue(), 0, TypedValue()), FunctionRuntimeException); EXPECT_THROW(EvaluateFunction("SUBSTRING", TypedValue(), 0, -10), FunctionRuntimeException); EXPECT_EQ(EvaluateFunction("SUBSTRING", "hello", 2).ValueString(), "llo"); EXPECT_EQ(EvaluateFunction("SUBSTRING", "hello", 10).ValueString(), ""); EXPECT_EQ(EvaluateFunction("SUBSTRING", "hello", 2, 0).ValueString(), ""); EXPECT_EQ(EvaluateFunction("SUBSTRING", "hello", 1, 3).ValueString(), "ell"); EXPECT_EQ(EvaluateFunction("SUBSTRING", "hello", 1, 4).ValueString(), "ello"); EXPECT_EQ(EvaluateFunction("SUBSTRING", "hello", 1, 10).ValueString(), "ello"); } TEST_F(FunctionTest, ToLower) { EXPECT_THROW(EvaluateFunction("TOLOWER"), FunctionRuntimeException); EXPECT_TRUE(EvaluateFunction("TOLOWER", TypedValue()).IsNull()); EXPECT_EQ(EvaluateFunction("TOLOWER", "Ab__C").ValueString(), "ab__c"); } TEST_F(FunctionTest, ToUpper) { EXPECT_THROW(EvaluateFunction("TOUPPER"), FunctionRuntimeException); EXPECT_TRUE(EvaluateFunction("TOUPPER", TypedValue()).IsNull()); EXPECT_EQ(EvaluateFunction("TOUPPER", "Ab__C").ValueString(), "AB__C"); } TEST_F(FunctionTest, ToByteString) { EXPECT_THROW(EvaluateFunction("TOBYTESTRING"), FunctionRuntimeException); EXPECT_THROW(EvaluateFunction("TOBYTESTRING", 42), FunctionRuntimeException); EXPECT_THROW(EvaluateFunction("TOBYTESTRING", TypedValue()), FunctionRuntimeException); EXPECT_THROW(EvaluateFunction("TOBYTESTRING", "", 42), FunctionRuntimeException); EXPECT_THROW(EvaluateFunction("TOBYTESTRING", "ff"), FunctionRuntimeException); EXPECT_THROW(EvaluateFunction("TOBYTESTRING", "00"), FunctionRuntimeException); EXPECT_THROW(EvaluateFunction("TOBYTESTRING", "0xG"), FunctionRuntimeException); EXPECT_EQ(EvaluateFunction("TOBYTESTRING", "").ValueString(), ""); EXPECT_EQ(EvaluateFunction("TOBYTESTRING", "0x").ValueString(), ""); EXPECT_EQ(EvaluateFunction("TOBYTESTRING", "0X").ValueString(), ""); EXPECT_EQ(EvaluateFunction("TOBYTESTRING", "0x0123456789aAbBcCdDeEfF").ValueString(), "\x01\x23\x45\x67\x89\xAA\xBB\xCC\xDD\xEE\xFF"); EXPECT_EQ(EvaluateFunction("TOBYTESTRING", "0x042").ValueString().size(), 2); EXPECT_EQ(EvaluateFunction("TOBYTESTRING", "0x042").ValueString(), memgraph::utils::pmr::string("\x00\x42", 2, memgraph::utils::NewDeleteResource())); } TEST_F(FunctionTest, FromByteString) { EXPECT_THROW(EvaluateFunction("FROMBYTESTRING"), FunctionRuntimeException); EXPECT_THROW(EvaluateFunction("FROMBYTESTRING", 42), FunctionRuntimeException); EXPECT_THROW(EvaluateFunction("FROMBYTESTRING", TypedValue()), FunctionRuntimeException); EXPECT_EQ(EvaluateFunction("FROMBYTESTRING", "").ValueString(), ""); auto bytestring = EvaluateFunction("TOBYTESTRING", "0x123456789aAbBcCdDeEfF"); EXPECT_EQ(EvaluateFunction("FROMBYTESTRING", bytestring).ValueString(), "0x0123456789aabbccddeeff"); EXPECT_EQ(EvaluateFunction("FROMBYTESTRING", std::string("\x00\x42", 2)).ValueString(), "0x0042"); } // TODO(kostasrim) Add temporal type tests. } // namespace