#pragma once #include "gtest/gtest.h" #include "query/context.hpp" #include "query/frontend/ast/ast.hpp" #include "query/interpret/frame.hpp" #include "query/plan/operator.hpp" #include "query_common.hpp" namespace query { void PrintTo(const query::EdgeAtom::Direction &dir, std::ostream *os) { switch (dir) { case query::EdgeAtom::Direction::IN: *os << "IN"; break; case query::EdgeAtom::Direction::OUT: *os << "OUT"; break; case query::EdgeAtom::Direction::BOTH: *os << "BOTH"; break; } } } // namespace query #ifdef MG_SINGLE_NODE using VertexAddress = mvcc::VersionList *; using EdgeAddress = mvcc::VersionList *; #endif #ifdef MG_SINGLE_NODE_HA using VertexAddress = mvcc::VersionList *; using EdgeAddress = mvcc::VersionList *; #endif const auto kVertexCount = 6; // Maps vertices to workers const std::vector kVertexLocations = {0, 1, 1, 0, 2, 2}; // Edge list in form of (from, to, edge_type). const std::vector> kEdges = { {0, 1, "a"}, {1, 2, "b"}, {2, 4, "b"}, {2, 5, "a"}, {4, 1, "a"}, {4, 5, "a"}, {5, 3, "b"}, {5, 4, "a"}, {5, 5, "b"}}; // Filters input edge list by edge type and direction and returns a list of // pairs representing valid directed edges. std::vector> GetEdgeList( const std::vector> &edges, query::EdgeAtom::Direction dir, const std::vector &edge_types) { std::vector> ret; for (const auto &e : edges) { if (edge_types.empty() || utils::Contains(edge_types, std::get<2>(e))) ret.emplace_back(std::get<0>(e), std::get<1>(e)); } switch (dir) { case query::EdgeAtom::Direction::OUT: break; case query::EdgeAtom::Direction::IN: for (auto &e : ret) std::swap(e.first, e.second); break; case query::EdgeAtom::Direction::BOTH: auto ret_copy = ret; for (const auto &e : ret_copy) { ret.emplace_back(e.second, e.first); } break; } return ret; } // Floyd-Warshall algorithm. Given a graph, returns its distance matrix. If // there is no path between two vertices, corresponding matrix entry will be // -1. std::vector> FloydWarshall( int num_vertices, const std::vector> &edges) { int inf = std::numeric_limits::max(); std::vector> dist(num_vertices, std::vector(num_vertices, inf)); for (const auto &e : edges) dist[e.first][e.second] = 1; for (int i = 0; i < num_vertices; ++i) dist[i][i] = 0; for (int k = 0; k < num_vertices; ++k) { for (int i = 0; i < num_vertices; ++i) { for (int j = 0; j < num_vertices; ++j) { if (dist[i][k] == inf || dist[k][j] == inf) continue; dist[i][j] = std::min(dist[i][j], dist[i][k] + dist[k][j]); } } } for (int i = 0; i < num_vertices; ++i) for (int j = 0; j < num_vertices; ++j) if (dist[i][j] == inf) dist[i][j] = -1; return dist; } class Yield : public query::plan::LogicalOperator { public: Yield(const std::shared_ptr &input, const std::vector &modified_symbols, const std::vector> &values) : input_(input ? input : std::make_shared()), modified_symbols_(modified_symbols), values_(values) {} query::plan::UniqueCursorPtr MakeCursor( utils::MemoryResource *mem) const override { return query::plan::MakeUniqueCursorPtr( mem, this, input_->MakeCursor(mem)); } std::vector ModifiedSymbols( const query::SymbolTable &) const override { return modified_symbols_; } bool HasSingleInput() const override { return true; } std::shared_ptr input() const override { return input_; } void set_input(std::shared_ptr input) override { input_ = input; } bool Accept(query::plan::HierarchicalLogicalOperatorVisitor &) override { LOG(FATAL) << "Please go away, visitor!"; } std::unique_ptr Clone( query::AstStorage *storage) const override { LOG(FATAL) << "Don't clone Yield operator!"; } std::shared_ptr input_; std::vector modified_symbols_; std::vector> values_; class YieldCursor : public query::plan::Cursor { public: YieldCursor(const Yield *self, query::plan::UniqueCursorPtr input_cursor) : self_(self), input_cursor_(std::move(input_cursor)), pull_index_(self_->values_.size()) {} bool Pull(query::Frame &frame, query::ExecutionContext &context) override { if (pull_index_ == self_->values_.size()) { if (!input_cursor_->Pull(frame, context)) return false; pull_index_ = 0; } for (size_t i = 0; i < self_->values_[pull_index_].size(); ++i) { frame[self_->modified_symbols_[i]] = self_->values_[pull_index_][i]; } pull_index_++; return true; } void Reset() override { input_cursor_->Reset(); pull_index_ = self_->values_.size(); } void Shutdown() override {} private: const Yield *self_; query::plan::UniqueCursorPtr input_cursor_; size_t pull_index_; }; }; std::vector> PullResults( query::plan::LogicalOperator *last_op, query::ExecutionContext *context, std::vector output_symbols) { auto cursor = last_op->MakeCursor(utils::NewDeleteResource()); std::vector> output; { query::Frame frame(context->symbol_table.max_position()); while (cursor->Pull(frame, *context)) { output.emplace_back(); for (const auto &symbol : output_symbols) { output.back().push_back(frame[symbol]); } } } return output; } /* Various types of lambdas. * NONE - No filter lambda used. * USE_FRAME - Block a single edge or vertex. Tests if frame is sent over * the network properly in distributed BFS. * USE_FRAME_NULL - Block a single node or vertex, but lambda returns null * instead of false. * USE_CTX - Block a vertex by checking if its ID is equal to a * parameter. Tests if evaluation context is sent over the * network properly in distributed BFS. * ERROR - Lambda that evaluates to an integer instead of null or * boolean.In distributed BFS, it will fail on worker other * than master, to test if errors are propagated correctly. */ enum class FilterLambdaType { NONE, USE_FRAME, USE_FRAME_NULL, USE_CTX, ERROR }; // Common interface for single-node and distributed Memgraph. class Database { public: virtual std::unique_ptr Access() = 0; virtual void AdvanceCommand(tx::TransactionId tx_id) = 0; virtual std::unique_ptr MakeBfsOperator( query::Symbol source_sym, query::Symbol sink_sym, query::Symbol edge_sym, query::EdgeAtom::Direction direction, const std::vector &edge_types, const std::shared_ptr &input, bool existing_node, query::Expression *lower_bound, query::Expression *upper_bound, const query::plan::ExpansionLambda &filter_lambda) = 0; virtual std::pair, std::vector> BuildGraph(database::GraphDbAccessor *dba, const std::vector &vertex_locations, const std::vector> &edges) = 0; virtual ~Database() {} }; // Returns an operator that yields vertices given by their address. We will also // include query::TypedValue() to account for the optional match case. std::unique_ptr YieldVertices( database::GraphDbAccessor *dba, std::vector vertices, query::Symbol symbol, std::shared_ptr input_op) { std::vector> frames; frames.push_back(std::vector{query::TypedValue()}); for (const auto &vertex : vertices) { frames.emplace_back(std::vector{ query::TypedValue(VertexAccessor(vertex, *dba))}); } return std::make_unique(input_op, std::vector{symbol}, frames); } // Returns an operator that yields edges and vertices given by their address. std::unique_ptr YieldEntities( database::GraphDbAccessor *dba, std::vector vertices, std::vector edges, query::Symbol symbol, std::shared_ptr input_op) { std::vector> frames; for (const auto &vertex : vertices) { frames.emplace_back(std::vector{ query::TypedValue(VertexAccessor(vertex, *dba))}); } for (const auto &edge : edges) { frames.emplace_back(std::vector{ query::TypedValue(EdgeAccessor(edge, *dba))}); } return std::make_unique(input_op, std::vector{symbol}, frames); } template auto GetProp(const RecordAccessor &rec, std::string prop, database::GraphDbAccessor *dba) { return rec.PropsAt(dba->Property(prop)); } // Checks if the given path is actually a path from source to sink and if all // of its edges exist in the given edge list. template void CheckPath(database::GraphDbAccessor *dba, const VertexAccessor &source, const VertexAccessor &sink, const std::vector &path, const std::vector> &edges) { VertexAccessor curr = source; for (const auto &edge_tv : path) { ASSERT_TRUE(edge_tv.IsEdge()); auto edge = edge_tv.ValueEdge(); ASSERT_TRUE(edge.from() == curr || edge.to() == curr); VertexAccessor next = edge.from_is(curr) ? edge.to() : edge.from(); int from = GetProp(curr, "id", dba).ValueInt(); int to = GetProp(next, "id", dba).ValueInt(); ASSERT_TRUE(utils::Contains(edges, std::make_pair(from, to))); curr = next; } ASSERT_EQ(curr, sink); } // Given a list of BFS results of form (from, to, path, blocked entity), // checks if all paths are valid and returns the distance matrix. std::vector> CheckPathsAndExtractDistances( database::GraphDbAccessor *dba, const std::vector> edges, const std::vector> &results) { std::vector> distances(kVertexCount, std::vector(kVertexCount, -1)); for (size_t i = 0; i < kVertexCount; ++i) distances[i][i] = 0; for (const auto &row : results) { auto source = GetProp(row[0].ValueVertex(), "id", dba).ValueInt(); auto sink = GetProp(row[1].ValueVertex(), "id", dba).ValueInt(); distances[source][sink] = row[2].ValueList().size(); CheckPath(dba, row[0].ValueVertex(), row[1].ValueVertex(), row[2].ValueList(), edges); } return distances; } void BfsTest(Database *db, int lower_bound, int upper_bound, query::EdgeAtom::Direction direction, std::vector edge_types, bool known_sink, FilterLambdaType filter_lambda_type) { auto dba_ptr = db->Access(); auto &dba = *dba_ptr; query::AstStorage storage; query::ExecutionContext context{dba_ptr.get()}; query::Symbol blocked_sym = context.symbol_table.CreateSymbol("blocked", true); query::Symbol source_sym = context.symbol_table.CreateSymbol("source", true); query::Symbol sink_sym = context.symbol_table.CreateSymbol("sink", true); query::Symbol edges_sym = context.symbol_table.CreateSymbol("edges", true); query::Symbol inner_node_sym = context.symbol_table.CreateSymbol("inner_node", true); query::Symbol inner_edge_sym = context.symbol_table.CreateSymbol("inner_edge", true); query::Identifier *blocked = IDENT("blocked")->MapTo(blocked_sym); query::Identifier *inner_node = IDENT("inner_node")->MapTo(inner_node_sym); query::Identifier *inner_edge = IDENT("inner_edge")->MapTo(inner_edge_sym); std::vector vertices; std::vector edges; std::tie(vertices, edges) = db->BuildGraph(dba_ptr.get(), kVertexLocations, kEdges); db->AdvanceCommand(dba_ptr->transaction_id()); std::shared_ptr input_op; query::Expression *filter_expr; // First build a filter lambda and an operator yielding blocked entities. switch (filter_lambda_type) { case FilterLambdaType::NONE: // No filter lambda, nothing is ever blocked. input_op = std::make_shared( nullptr, std::vector{blocked_sym}, std::vector>{ {query::TypedValue()}}); filter_expr = nullptr; break; case FilterLambdaType::USE_FRAME: // We block each entity in the graph and run BFS. input_op = YieldEntities(dba_ptr.get(), vertices, edges, blocked_sym, nullptr); filter_expr = AND(NEQ(inner_node, blocked), NEQ(inner_edge, blocked)); break; case FilterLambdaType::USE_FRAME_NULL: // We block each entity in the graph and run BFS. input_op = YieldEntities(dba_ptr.get(), vertices, edges, blocked_sym, nullptr); filter_expr = IF(AND(NEQ(inner_node, blocked), NEQ(inner_edge, blocked)), LITERAL(true), LITERAL(PropertyValue::Null)); break; case FilterLambdaType::USE_CTX: // We only block vertex #5 and run BFS. input_op = std::make_shared( nullptr, std::vector{blocked_sym}, std::vector>{ {query::TypedValue(VertexAccessor(vertices[5], *dba_ptr))}}); filter_expr = NEQ(PROPERTY_LOOKUP(inner_node, PROPERTY_PAIR("id")), PARAMETER_LOOKUP(0)); context.evaluation_context.parameters.Add(0, 5); break; case FilterLambdaType::ERROR: // Evaluate to 42 for vertex #5 which is on worker 1. filter_expr = IF(EQ(PROPERTY_LOOKUP(inner_node, PROPERTY_PAIR("id")), LITERAL(5)), LITERAL(42), LITERAL(true)); } // We run BFS once from each vertex for each blocked entity. input_op = YieldVertices(dba_ptr.get(), vertices, source_sym, input_op); // If the sink is known, we run BFS for all posible combinations of source, // sink and blocked entity. if (known_sink) { input_op = YieldVertices(dba_ptr.get(), vertices, sink_sym, input_op); } std::vector storage_edge_types; for (const auto &t : edge_types) { storage_edge_types.push_back(dba_ptr->EdgeType(t)); } input_op = db->MakeBfsOperator( source_sym, sink_sym, edges_sym, direction, storage_edge_types, input_op, known_sink, lower_bound == -1 ? nullptr : LITERAL(lower_bound), upper_bound == -1 ? nullptr : LITERAL(upper_bound), query::plan::ExpansionLambda{inner_edge_sym, inner_node_sym, filter_expr}); context.evaluation_context.properties = query::NamesToProperties(storage.properties_, &dba); context.evaluation_context.labels = query::NamesToLabels(storage.labels_, &dba); std::vector> results; // An exception should be thrown on one of the pulls. if (filter_lambda_type == FilterLambdaType::ERROR) { EXPECT_THROW(PullResults(input_op.get(), &context, std::vector{ source_sym, sink_sym, edges_sym, blocked_sym}), query::QueryRuntimeException); return; } results = PullResults( input_op.get(), &context, std::vector{source_sym, sink_sym, edges_sym, blocked_sym}); // Group results based on blocked entity and compare them to results // obtained by running Floyd-Warshall. for (size_t i = 0; i < results.size();) { int j = i; auto blocked = results[j][3]; while (j < results.size() && query::TypedValue::BoolEqual{}(results[j][3], blocked)) ++j; SCOPED_TRACE(fmt::format("blocked entity = {}", blocked)); // When an edge is blocked, it is blocked in both directions so we remove // it before modifying edge list to account for direction and edge types; auto edges = kEdges; if (blocked.IsEdge()) { int from = GetProp(blocked.ValueEdge(), "from", dba_ptr.get()).ValueInt(); int to = GetProp(blocked.ValueEdge(), "to", dba_ptr.get()).ValueInt(); edges.erase(std::remove_if(edges.begin(), edges.end(), [from, to](const auto &e) { return std::get<0>(e) == from && std::get<1>(e) == to; }), edges.end()); } // Now add edges in opposite direction if necessary. auto edges_blocked = GetEdgeList(edges, direction, edge_types); // When a vertex is blocked, we remove all edges that lead into it. if (blocked.IsVertex()) { int id = GetProp(blocked.ValueVertex(), "id", dba_ptr.get()).ValueInt(); edges_blocked.erase( std::remove_if(edges_blocked.begin(), edges_blocked.end(), [id](const auto &e) { return e.second == id; }), edges_blocked.end()); } auto correct_with_bounds = FloydWarshall(kVertexCount, edges_blocked); if (lower_bound == -1) lower_bound = 0; if (upper_bound == -1) upper_bound = kVertexCount; // Remove paths whose length doesn't satisfy given length bounds. for (int a = 0; a < kVertexCount; ++a) { for (int b = 0; b < kVertexCount; ++b) { if (a != b && (correct_with_bounds[a][b] < lower_bound || correct_with_bounds[a][b] > upper_bound)) correct_with_bounds[a][b] = -1; } } int num_results = 0; for (int a = 0; a < kVertexCount; ++a) for (int b = 0; b < kVertexCount; ++b) if (a != b && correct_with_bounds[a][b] != -1) { ++num_results; } // There should be exactly 1 successful pull for each existing path. EXPECT_EQ(j - i, num_results); auto distances = CheckPathsAndExtractDistances( dba_ptr.get(), edges_blocked, std::vector>(results.begin() + i, results.begin() + j)); // The distances should also match. EXPECT_EQ(distances, correct_with_bounds); i = j; } dba_ptr->Abort(); }