# Copyright 2023 Memgraph Ltd. # # Use of this software is governed by the Business Source License # included in the file licenses/BSL.txt; by using this file, you agree to be bound by the terms of the Business Source # License, and you may not use this file except in compliance with the Business Source License. # # As of the Change Date specified in that file, in accordance with # the Business Source License, use of this software will be governed # by the Apache License, Version 2.0, included in the file # licenses/APL.txt. import mgp # isort: off from common.shared import BaseClass, InitializationGraphMutable, InitializationUnderlyingGraphMutable initialization_underlying_graph_mutable = InitializationUnderlyingGraphMutable() def cleanup_underlying(): initialization_underlying_graph_mutable.reset() def init_underlying_graph_is_mutable(ctx: mgp.ProcCtx, object: mgp.Any): initialization_underlying_graph_mutable.set() def underlying_graph_is_mutable(ctx: mgp.ProcCtx, object: mgp.Any) -> mgp.Record(mutable=bool, init_called=bool): if initialization_underlying_graph_mutable.get_to_return() > 0: initialization_underlying_graph_mutable.increment_returned(1) return mgp.Record( mutable=object.underlying_graph_is_mutable(), init_called=initialization_underlying_graph_mutable.get() ) return [] # Register batched mgp.add_batch_read_proc(underlying_graph_is_mutable, init_underlying_graph_is_mutable, cleanup_underlying) initialization_graph_mutable = InitializationGraphMutable() def init_graph_is_mutable(ctx: mgp.ProcCtx): initialization_graph_mutable.set() def graph_is_mutable(ctx: mgp.ProcCtx) -> mgp.Record(mutable=bool, init_called=bool): if initialization_graph_mutable.get_to_return() > 0: initialization_graph_mutable.increment_returned(1) return mgp.Record(mutable=ctx.graph.is_mutable(), init_called=initialization_graph_mutable.get()) return [] def cleanup_graph(): initialization_graph_mutable.reset() # Register batched mgp.add_batch_read_proc(graph_is_mutable, init_graph_is_mutable, cleanup_graph) class BatchingNums(BaseClass): def __init__(self, nums_to_return): super().__init__(nums_to_return) self._nums = [] self._i = 0 batching_nums = BatchingNums(10) def init_batching_nums(ctx: mgp.ProcCtx): batching_nums.set() batching_nums._nums = [i for i in range(1, 11)] batching_nums._i = 0 def batch_nums(ctx: mgp.ProcCtx) -> mgp.Record(num=int, init_called=bool, is_valid=bool): if batching_nums.get_to_return() > 0: batching_nums.increment_returned(1) batching_nums._i += 1 return mgp.Record( num=batching_nums._nums[batching_nums._i - 1], init_called=batching_nums.get(), is_valid=ctx.graph.is_valid(), ) return [] def cleanup_batching_nums(): batching_nums.reset() batching_nums._i = 0 # Register batched mgp.add_batch_read_proc(batch_nums, init_batching_nums, cleanup_batching_nums) class BatchingVertices(BaseClass): def __init__(self): super().__init__() self._vertices = [] self._i = 0 batching_vertices = BatchingVertices() def init_batching_vertices(ctx: mgp.ProcCtx): print("init called") print("graph is mutable", ctx.graph.is_mutable()) batching_vertices.set() batching_vertices._vertices = list(ctx.graph.vertices) batching_vertices._i = 0 batching_vertices._num_to_return = len(batching_vertices._vertices) def batch_vertices(ctx: mgp.ProcCtx) -> mgp.Record(vertex_id=int, init_called=bool): if batching_vertices.get_to_return() == 0: return [] batching_vertices.increment_returned(1) return mgp.Record(vertex=batching_vertices._vertices[batching_vertices._i].id, init_called=batching_vertices.get()) def cleanup_batching_vertices(): batching_vertices.reset() batching_vertices._vertices = [] batching_vertices._i = 0 batching_vertices._num_to_return = 0 # Register batched mgp.add_batch_read_proc(batch_vertices, init_batching_vertices, cleanup_batching_vertices)