// Copyright 2022 Memgraph Ltd. // // Use of this software is governed by the Business Source License // included in the file licenses/BSL.txt; by using this file, you agree to be bound by the terms of the Business Source // License, and you may not use this file except in compliance with the Business Source License. // // As of the Change Date specified in that file, in accordance with // the Business Source License, use of this software will be governed // by the Apache License, Version 2.0, included in the file // licenses/APL.txt. #include #include #include #include #include #include #include #include "coordinator/coordinator_client.hpp" #include "coordinator/coordinator_rsm.hpp" #include "coordinator/shard_map.hpp" #include "io/address.hpp" #include "io/local_transport/local_system.hpp" #include "io/local_transport/local_transport.hpp" #include "io/simulator/simulator.hpp" #include "io/simulator/simulator_config.hpp" #include "io/simulator/simulator_transport.hpp" #include "machine_manager/machine_config.hpp" #include "machine_manager/machine_manager.hpp" #include "query/v2/request_router.hpp" #include "query/v2/requests.hpp" #include "utils/variant_helpers.hpp" namespace memgraph::tests::simulation { using coordinator::Coordinator; using coordinator::CoordinatorClient; using coordinator::CoordinatorReadRequests; using coordinator::CoordinatorWriteRequests; using coordinator::CoordinatorWriteResponses; using coordinator::GetShardMapRequest; using coordinator::GetShardMapResponse; using coordinator::Hlc; using coordinator::HlcResponse; using coordinator::Shard; using coordinator::ShardMap; using io::Address; using io::Io; using io::local_transport::LocalSystem; using io::local_transport::LocalTransport; using io::rsm::RsmClient; using machine_manager::MachineConfig; using machine_manager::MachineManager; using msgs::ReadRequests; using msgs::ReadResponses; using msgs::WriteRequests; using msgs::WriteResponses; using storage::v3::LabelId; using storage::v3::SchemaProperty; using CompoundKey = std::pair; using ShardClient = RsmClient; struct CreateVertex { int first; int second; friend std::ostream &operator<<(std::ostream &in, const CreateVertex &add) { in << "CreateVertex { first: " << add.first << ", second: " << add.second << " }"; return in; } }; struct ScanAll { friend std::ostream &operator<<(std::ostream &in, const ScanAll &get) { in << "ScanAll {}"; return in; } }; MachineManager MkMm(LocalSystem &local_system, std::vector
coordinator_addresses, Address addr, ShardMap shard_map, size_t shard_worker_threads) { MachineConfig config{ .coordinator_addresses = std::move(coordinator_addresses), .is_storage = true, .is_coordinator = true, .listen_ip = addr.last_known_ip, .listen_port = addr.last_known_port, .shard_worker_threads = shard_worker_threads, }; Io io = local_system.Register(addr); Coordinator coordinator{shard_map}; return MachineManager{io, config, std::move(coordinator)}; } void RunMachine(MachineManager mm) { mm.Run(); } void WaitForShardsToInitialize(CoordinatorClient &coordinator_client) { // Call coordinator client's read method for GetShardMap and keep // reading it until the shard map contains proper replicas for // each shard in the label space. while (true) { GetShardMapRequest req{}; CoordinatorReadRequests read_req = req; auto read_res = coordinator_client.SendReadRequest(read_req); if (read_res.HasError()) { // timed out continue; } auto response_result = read_res.GetValue(); auto response = std::get(response_result); auto shard_map = response.shard_map; if (shard_map.ClusterInitialized()) { spdlog::info("cluster stabilized - beginning workload"); return; } } } ShardMap TestShardMap(int shards, int replication_factor, int gap_between_shards) { ShardMap sm{}; const auto label_name = std::string("test_label"); // register new properties const std::vector property_names = {"property_1", "property_2"}; const auto properties = sm.AllocatePropertyIds(property_names); const auto property_id_1 = properties.at("property_1"); const auto property_id_2 = properties.at("property_2"); const auto type_1 = memgraph::common::SchemaType::INT; const auto type_2 = memgraph::common::SchemaType::INT; // register new label space std::vector schema = { SchemaProperty{.property_id = property_id_1, .type = type_1}, SchemaProperty{.property_id = property_id_2, .type = type_2}, }; std::optional label_id = sm.InitializeNewLabel(label_name, schema, replication_factor, sm.shard_map_version); MG_ASSERT(label_id.has_value()); // split the shard at N split points for (int64_t i = 1; i < shards; ++i) { const auto key1 = memgraph::storage::v3::PropertyValue(i * gap_between_shards); const auto key2 = memgraph::storage::v3::PropertyValue(0); const auto split_point = {key1, key2}; const bool split_success = sm.SplitShard(sm.shard_map_version, label_id.value(), split_point); MG_ASSERT(split_success); } return sm; } void ExecuteOp(query::v2::RequestRouter &request_router, std::set &correctness_model, CreateVertex create_vertex) { const auto key1 = memgraph::storage::v3::PropertyValue(create_vertex.first); const auto key2 = memgraph::storage::v3::PropertyValue(create_vertex.second); std::vector primary_key = {msgs::Value(int64_t(create_vertex.first)), msgs::Value(int64_t(create_vertex.second))}; if (correctness_model.contains(std::make_pair(create_vertex.first, create_vertex.second))) { // TODO(tyler) remove this early-return when we have properly handled setting non-unique vertexes return; } auto label_id = request_router.NameToLabel("test_label"); msgs::NewVertex nv{.primary_key = primary_key}; nv.label_ids.push_back({label_id}); std::vector new_vertices; new_vertices.push_back(std::move(nv)); auto result = request_router.CreateVertices(std::move(new_vertices)); MG_ASSERT(result.size() == 1); MG_ASSERT(!result[0].error.has_value()); correctness_model.emplace(std::make_pair(create_vertex.first, create_vertex.second)); } void ExecuteOp(query::v2::RequestRouter &request_router, std::set &correctness_model, ScanAll scan_all) { query::v2::ExecutionState request{.label = "test_label"}; auto results = request_router.ScanVertices("test_label"); MG_ASSERT(results.size() == correctness_model.size()); for (const auto &vertex_accessor : results) { const auto properties = vertex_accessor.Properties(); const auto primary_key = vertex_accessor.Id().second; const CompoundKey model_key = std::make_pair(primary_key[0].int_v, primary_key[1].int_v); MG_ASSERT(correctness_model.contains(model_key)); } } void RunWorkload(int shards, int replication_factor, int create_ops, int scan_ops, int shard_worker_threads, int gap_between_shards) { spdlog::info("======================== NEW TEST ========================"); spdlog::info("shards: ", shards); spdlog::info("replication factor: ", replication_factor); spdlog::info("create ops: ", create_ops); spdlog::info("scan all ops: ", scan_ops); spdlog::info("shard worker threads: ", shard_worker_threads); spdlog::info("gap between shards: ", gap_between_shards); LocalSystem local_system; auto cli_addr = Address::TestAddress(1); auto machine_1_addr = cli_addr.ForkUniqueAddress(); Io cli_io = local_system.Register(cli_addr); Io cli_io_2 = local_system.Register(Address::TestAddress(2)); auto coordinator_addresses = std::vector{ machine_1_addr, }; auto time_before_shard_map_creation = cli_io_2.Now(); ShardMap initialization_sm = TestShardMap(shards, replication_factor, gap_between_shards); auto time_after_shard_map_creation = cli_io_2.Now(); auto mm_1 = MkMm(local_system, coordinator_addresses, machine_1_addr, initialization_sm, shard_worker_threads); Address coordinator_address = mm_1.CoordinatorAddress(); auto mm_thread_1 = std::jthread(RunMachine, std::move(mm_1)); CoordinatorClient coordinator_client(cli_io, coordinator_address, {coordinator_address}); auto time_before_shard_stabilization = cli_io_2.Now(); WaitForShardsToInitialize(coordinator_client); auto time_after_shard_stabilization = cli_io_2.Now(); query::v2::RequestRouter request_router(std::move(coordinator_client), std::move(cli_io)); request_router.StartTransaction(); auto correctness_model = std::set{}; auto time_before_creates = cli_io_2.Now(); for (int i = 0; i < create_ops; i++) { ExecuteOp(request_router, correctness_model, CreateVertex{.first = i, .second = i}); } auto time_after_creates = cli_io_2.Now(); for (int i = 0; i < scan_ops; i++) { ExecuteOp(request_router, correctness_model, ScanAll{}); } auto time_after_scan = cli_io_2.Now(); local_system.ShutDown(); auto latencies = cli_io_2.ResponseLatencies(); spdlog::info("response latencies: \n{}", latencies.SummaryTable()); spdlog::info("serial time break-down: (μs)"); spdlog::info("{: >20}: {: >10}", "split shard map", (time_after_shard_map_creation - time_before_shard_map_creation).count()); spdlog::info("{: >20}: {: >10}", "shard stabilization", (time_after_shard_stabilization - time_before_shard_stabilization).count()); spdlog::info("{: >20}: {: >10}", "create nodes", (time_after_creates - time_before_creates).count()); spdlog::info("{: >20}: {: >10}", "scan nodes", (time_after_scan - time_after_creates).count()); std::cout << fmt::format("{} {} {}\n", shards, shard_worker_threads, (time_after_scan - time_after_creates).count()); } TEST(MachineManager, ManyShards) { auto shards_attempts = {1, 64}; auto shard_worker_thread_attempts = {1, 32}; auto replication_factor = 1; auto create_ops = 128; auto scan_ops = 1; std::cout << "splits threads scan_all_microseconds\n"; for (const auto shards : shards_attempts) { auto gap_between_shards = create_ops / shards; for (const auto shard_worker_threads : shard_worker_thread_attempts) { RunWorkload(shards, replication_factor, create_ops, scan_ops, shard_worker_threads, gap_between_shards); } } } } // namespace memgraph::tests::simulation