#include #include #include "boost/archive/binary_iarchive.hpp" #include "boost/archive/binary_oarchive.hpp" #include "gtest/gtest.h" #include "query/frontend/ast/ast.hpp" #include "query/frontend/semantic/symbol_generator.hpp" #include "query/frontend/semantic/symbol_table.hpp" #include "query_common.hpp" using namespace query; class TestSymbolGenerator : public ::testing::Test { protected: database::SingleNode db; database::GraphDbAccessor dba{db}; SymbolTable symbol_table; SymbolGenerator symbol_generator{symbol_table}; AstStorage storage; }; TEST_F(TestSymbolGenerator, MatchNodeReturn) { // MATCH (node_atom_1) RETURN node_atom_1 auto query_ast = QUERY( SINGLE_QUERY(MATCH(PATTERN(NODE("node_atom_1"))), RETURN("node_atom_1"))); query_ast->Accept(symbol_generator); // symbols for pattern, node_atom_1 and named_expr in return EXPECT_EQ(symbol_table.max_position(), 3); auto match = dynamic_cast(query_ast->single_query_->clauses_[0]); auto pattern = match->patterns_[0]; auto pattern_sym = symbol_table[*pattern->identifier_]; EXPECT_EQ(pattern_sym.type(), Symbol::Type::Path); EXPECT_FALSE(pattern_sym.user_declared()); auto node_atom = dynamic_cast(pattern->atoms_[0]); auto node_sym = symbol_table[*node_atom->identifier_]; EXPECT_EQ(node_sym.name(), "node_atom_1"); EXPECT_EQ(node_sym.type(), Symbol::Type::Vertex); auto ret = dynamic_cast(query_ast->single_query_->clauses_[1]); auto named_expr = ret->body_.named_expressions[0]; auto column_sym = symbol_table[*named_expr]; EXPECT_EQ(node_sym.name(), column_sym.name()); EXPECT_NE(node_sym, column_sym); auto ret_sym = symbol_table[*named_expr->expression_]; EXPECT_EQ(node_sym, ret_sym); } TEST_F(TestSymbolGenerator, MatchNamedPattern) { // MATCH p = (node_atom_1) RETURN node_atom_1 auto query_ast = QUERY(SINGLE_QUERY( MATCH(NAMED_PATTERN("p", NODE("node_atom_1"))), RETURN("p"))); query_ast->Accept(symbol_generator); // symbols for p, node_atom_1 and named_expr in return EXPECT_EQ(symbol_table.max_position(), 3); auto match = dynamic_cast(query_ast->single_query_->clauses_[0]); auto pattern = match->patterns_[0]; auto pattern_sym = symbol_table[*pattern->identifier_]; EXPECT_EQ(pattern_sym.type(), Symbol::Type::Path); EXPECT_EQ(pattern_sym.name(), "p"); EXPECT_TRUE(pattern_sym.user_declared()); } TEST_F(TestSymbolGenerator, MatchUnboundMultiReturn) { // AST using variable in return bound by naming the previous return // expression. This is treated as an unbound variable. // MATCH (node_atom_1) RETURN node_atom_1 AS n, n auto query_ast = QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("node_atom_1"))), RETURN("node_atom_1", AS("n"), "n"))); EXPECT_THROW(query_ast->Accept(symbol_generator), UnboundVariableError); } TEST_F(TestSymbolGenerator, MatchNodeUnboundReturn) { // AST with unbound variable in return: MATCH (n) RETURN x auto query_ast = QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("n"))), RETURN("x"))); EXPECT_THROW(query_ast->Accept(symbol_generator), UnboundVariableError); } TEST_F(TestSymbolGenerator, CreatePropertyUnbound) { // AST with unbound variable in create: CREATE ({prop: x}) auto node = NODE("anon"); node->properties_[PROPERTY_PAIR("prop")] = IDENT("x"); auto query_ast = QUERY(SINGLE_QUERY(CREATE(PATTERN(node)))); EXPECT_THROW(query_ast->Accept(symbol_generator), UnboundVariableError); } TEST_F(TestSymbolGenerator, CreateNodeReturn) { // Simple AST returning a created node: CREATE (n) RETURN n auto query_ast = QUERY(SINGLE_QUERY(CREATE(PATTERN(NODE("n"))), RETURN("n"))); query_ast->Accept(symbol_generator); // symbols for pattern, `n` and named_expr EXPECT_EQ(symbol_table.max_position(), 3); auto create = dynamic_cast(query_ast->single_query_->clauses_[0]); auto pattern = create->patterns_[0]; auto node_atom = dynamic_cast(pattern->atoms_[0]); auto node_sym = symbol_table[*node_atom->identifier_]; EXPECT_EQ(node_sym.name(), "n"); EXPECT_EQ(node_sym.type(), Symbol::Type::Vertex); auto ret = dynamic_cast(query_ast->single_query_->clauses_[1]); auto named_expr = ret->body_.named_expressions[0]; auto column_sym = symbol_table[*named_expr]; EXPECT_EQ(node_sym.name(), column_sym.name()); EXPECT_NE(node_sym, column_sym); auto ret_sym = symbol_table[*named_expr->expression_]; EXPECT_EQ(node_sym, ret_sym); } TEST_F(TestSymbolGenerator, CreateRedeclareNode) { // AST with redeclaring a variable when creating nodes: CREATE (n), (n) auto query_ast = QUERY(SINGLE_QUERY(CREATE(PATTERN(NODE("n")), PATTERN(NODE("n"))))); EXPECT_THROW(query_ast->Accept(symbol_generator), RedeclareVariableError); } TEST_F(TestSymbolGenerator, MultiCreateRedeclareNode) { // AST with redeclaring a variable when creating nodes with multiple creates: // CREATE (n) CREATE (n) auto query_ast = QUERY( SINGLE_QUERY(CREATE(PATTERN(NODE("n"))), CREATE(PATTERN(NODE("n"))))); EXPECT_THROW(query_ast->Accept(symbol_generator), RedeclareVariableError); } TEST_F(TestSymbolGenerator, MatchCreateRedeclareNode) { // AST with redeclaring a match node variable in create: MATCH (n) CREATE (n) auto query_ast = QUERY( SINGLE_QUERY(MATCH(PATTERN(NODE("n"))), CREATE(PATTERN(NODE("n"))))); EXPECT_THROW(query_ast->Accept(symbol_generator), RedeclareVariableError); } TEST_F(TestSymbolGenerator, MatchCreateRedeclareEdge) { // AST with redeclaring a match edge variable in create: // MATCH (n) -[r]- (m) CREATE (n) -[r :relationship]-> (l) auto relationship = dba.EdgeType("relationship"); auto query = QUERY(SINGLE_QUERY( MATCH(PATTERN(NODE("n"), EDGE("r"), NODE("m"))), CREATE(PATTERN(NODE("n"), EDGE("r", EdgeAtom::Direction::OUT, {relationship}), NODE("l"))))); EXPECT_THROW(query->Accept(symbol_generator), RedeclareVariableError); } TEST_F(TestSymbolGenerator, MatchTypeMismatch) { // Using an edge variable as a node causes a type mismatch. // MATCH (n) -[r]-> (r) auto query = QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("n"), EDGE("r"), NODE("r"))))); EXPECT_THROW(query->Accept(symbol_generator), TypeMismatchError); } TEST_F(TestSymbolGenerator, MatchCreateTypeMismatch) { // Using an edge variable as a node causes a type mismatch. // MATCH (n1) -[r1]- (n2) CREATE (r1) -[r2]-> (n2) auto query = QUERY(SINGLE_QUERY( MATCH(PATTERN(NODE("n1"), EDGE("r1"), NODE("n2"))), CREATE(PATTERN(NODE("r1"), EDGE("r2", EdgeAtom::Direction::OUT), NODE("n2"))))); EXPECT_THROW(query->Accept(symbol_generator), TypeMismatchError); } TEST_F(TestSymbolGenerator, CreateMultipleEdgeType) { // Multiple edge relationship are not allowed when creating edges. // CREATE (n) -[r :rel1 | :rel2]-> (m) auto rel1 = dba.EdgeType("rel1"); auto rel2 = dba.EdgeType("rel2"); auto edge = EDGE("r", EdgeAtom::Direction::OUT, {rel1}); edge->edge_types_.emplace_back(rel2); auto query = QUERY(SINGLE_QUERY(CREATE(PATTERN(NODE("n"), edge, NODE("m"))))); EXPECT_THROW(query->Accept(symbol_generator), SemanticException); } TEST_F(TestSymbolGenerator, CreateBidirectionalEdge) { // Bidirectional relationships are not allowed when creating edges. // CREATE (n) -[r :rel1]- (m) auto rel1 = dba.EdgeType("rel1"); auto query = QUERY(SINGLE_QUERY(CREATE(PATTERN( NODE("n"), EDGE("r", EdgeAtom::Direction::BOTH, {rel1}), NODE("m"))))); EXPECT_THROW(query->Accept(symbol_generator), SemanticException); } TEST_F(TestSymbolGenerator, MatchWhereUnbound) { // Test MATCH (n) WHERE missing < 42 RETURN n auto query = QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("n"))), WHERE(LESS(IDENT("missing"), LITERAL(42))), RETURN("n"))); EXPECT_THROW(query->Accept(symbol_generator), UnboundVariableError); } TEST_F(TestSymbolGenerator, CreateDelete) { // Test CREATE (n) DELETE n auto node = NODE("n"); auto ident = IDENT("n"); auto query = QUERY(SINGLE_QUERY(CREATE(PATTERN(node)), DELETE(ident))); query->Accept(symbol_generator); // symbols for pattern and `n` EXPECT_EQ(symbol_table.max_position(), 2); auto node_symbol = symbol_table.at(*node->identifier_); auto ident_symbol = symbol_table.at(*ident); EXPECT_EQ(node_symbol.type(), Symbol::Type::Vertex); EXPECT_EQ(node_symbol, ident_symbol); } TEST_F(TestSymbolGenerator, CreateDeleteUnbound) { // Test CREATE (n) DELETE missing auto query = QUERY(SINGLE_QUERY(CREATE(PATTERN(NODE("n"))), DELETE(IDENT("missing")))); EXPECT_THROW(query->Accept(symbol_generator), UnboundVariableError); } TEST_F(TestSymbolGenerator, MatchWithReturn) { // Test MATCH (old) WITH old AS n RETURN n AS n auto node = NODE("old"); auto old_ident = IDENT("old"); auto with_as_n = AS("n"); auto n_ident = IDENT("n"); auto ret_as_n = AS("n"); auto query = QUERY(SINGLE_QUERY(MATCH(PATTERN(node)), WITH(old_ident, with_as_n), RETURN(n_ident, ret_as_n))); query->Accept(symbol_generator); // symbols for pattern, `old`, `n` and named_expr in return EXPECT_EQ(symbol_table.max_position(), 4); auto node_symbol = symbol_table.at(*node->identifier_); auto old = symbol_table.at(*old_ident); EXPECT_EQ(node_symbol, old); auto with_n = symbol_table.at(*with_as_n); EXPECT_NE(old, with_n); auto n = symbol_table.at(*n_ident); EXPECT_EQ(n, with_n); auto ret_n = symbol_table.at(*ret_as_n); EXPECT_NE(n, ret_n); } TEST_F(TestSymbolGenerator, MatchWithReturnUnbound) { // Test MATCH (old) WITH old AS n RETURN old auto query = QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("old"))), WITH("old", AS("n")), RETURN("old"))); EXPECT_THROW(query->Accept(symbol_generator), UnboundVariableError); } TEST_F(TestSymbolGenerator, MatchWithWhere) { // Test MATCH (old) WITH old AS n WHERE n.prop < 42 auto prop = dba.Property("prop"); auto node = NODE("old"); auto old_ident = IDENT("old"); auto with_as_n = AS("n"); auto n_prop = PROPERTY_LOOKUP("n", prop); auto query = QUERY(SINGLE_QUERY(MATCH(PATTERN(node)), WITH(old_ident, with_as_n), WHERE(LESS(n_prop, LITERAL(42))))); query->Accept(symbol_generator); // symbols for pattern, `old` and `n` EXPECT_EQ(symbol_table.max_position(), 3); auto node_symbol = symbol_table.at(*node->identifier_); auto old = symbol_table.at(*old_ident); EXPECT_EQ(node_symbol, old); auto with_n = symbol_table.at(*with_as_n); EXPECT_NE(old, with_n); auto n = symbol_table.at(*n_prop->expression_); EXPECT_EQ(n, with_n); } TEST_F(TestSymbolGenerator, MatchWithWhereUnbound) { // Test MATCH (old) WITH COUNT(old) AS c WHERE old.prop < 42 auto prop = dba.Property("prop"); auto query = QUERY(SINGLE_QUERY( MATCH(PATTERN(NODE("old"))), WITH(COUNT(IDENT("old")), AS("c")), WHERE(LESS(PROPERTY_LOOKUP("old", prop), LITERAL(42))))); EXPECT_THROW(query->Accept(symbol_generator), UnboundVariableError); } TEST_F(TestSymbolGenerator, CreateMultiExpand) { // Test CREATE (n) -[r :r]-> (m), (n) - [p :p]-> (l) auto r_type = dba.EdgeType("r"); auto p_type = dba.EdgeType("p"); auto node_n1 = NODE("n"); auto edge_r = EDGE("r", EdgeAtom::Direction::OUT, {r_type}); auto node_m = NODE("m"); auto node_n2 = NODE("n"); auto edge_p = EDGE("p", EdgeAtom::Direction::OUT, {p_type}); auto node_l = NODE("l"); auto query = QUERY(SINGLE_QUERY(CREATE(PATTERN(node_n1, edge_r, node_m), PATTERN(node_n2, edge_p, node_l)))); query->Accept(symbol_generator); // symbols for pattern * 2, `n`, `r`, `m`, `p`, `l` EXPECT_EQ(symbol_table.max_position(), 7); auto n1 = symbol_table.at(*node_n1->identifier_); auto n2 = symbol_table.at(*node_n2->identifier_); EXPECT_EQ(n1, n2); EXPECT_EQ(n1.type(), Symbol::Type::Vertex); auto m = symbol_table.at(*node_m->identifier_); EXPECT_EQ(m.type(), Symbol::Type::Vertex); EXPECT_NE(m, n1); auto l = symbol_table.at(*node_l->identifier_); EXPECT_EQ(l.type(), Symbol::Type::Vertex); EXPECT_NE(l, n1); EXPECT_NE(l, m); auto r = symbol_table.at(*edge_r->identifier_); auto p = symbol_table.at(*edge_p->identifier_); EXPECT_EQ(r.type(), Symbol::Type::Edge); EXPECT_EQ(p.type(), Symbol::Type::Edge); EXPECT_NE(r, p); } TEST_F(TestSymbolGenerator, MatchCreateExpandLabel) { // Test MATCH (n) CREATE (m) -[r :r]-> (n:label) auto r_type = dba.EdgeType("r"); auto label = dba.Label("label"); auto query = QUERY(SINGLE_QUERY( MATCH(PATTERN(NODE("n"))), CREATE(PATTERN(NODE("m"), EDGE("r", EdgeAtom::Direction::OUT, {r_type}), NODE("n", label))))); EXPECT_THROW(query->Accept(symbol_generator), SemanticException); } TEST_F(TestSymbolGenerator, CreateExpandProperty) { // Test CREATE (n) -[r :r]-> (n {prop: 42}) auto r_type = dba.EdgeType("r"); auto n_prop = NODE("n"); n_prop->properties_[PROPERTY_PAIR("prop")] = LITERAL(42); auto query = QUERY(SINGLE_QUERY(CREATE(PATTERN( NODE("n"), EDGE("r", EdgeAtom::Direction::OUT, {r_type}), n_prop)))); EXPECT_THROW(query->Accept(symbol_generator), SemanticException); } TEST_F(TestSymbolGenerator, MatchReturnSum) { // Test MATCH (n) RETURN SUM(n.prop) + 42 AS result auto prop = dba.Property("prop"); auto node = NODE("n"); auto sum = SUM(PROPERTY_LOOKUP("n", prop)); auto as_result = AS("result"); auto query = QUERY(SINGLE_QUERY(MATCH(PATTERN(node)), RETURN(ADD(sum, LITERAL(42)), as_result))); query->Accept(symbol_generator); // 3 symbols for: pattern, 'n', 'sum' and 'result'. EXPECT_EQ(symbol_table.max_position(), 4); auto node_symbol = symbol_table.at(*node->identifier_); auto sum_symbol = symbol_table.at(*sum); EXPECT_NE(node_symbol, sum_symbol); auto result_symbol = symbol_table.at(*as_result); EXPECT_NE(result_symbol, node_symbol); EXPECT_NE(result_symbol, sum_symbol); } TEST_F(TestSymbolGenerator, NestedAggregation) { // Test MATCH (n) RETURN SUM(42 + SUM(n.prop)) AS s auto prop = dba.Property("prop"); auto query = QUERY(SINGLE_QUERY( MATCH(PATTERN(NODE("n"))), RETURN(SUM(ADD(LITERAL(42), SUM(PROPERTY_LOOKUP("n", prop)))), AS("s")))); EXPECT_THROW(query->Accept(symbol_generator), SemanticException); } TEST_F(TestSymbolGenerator, WrongAggregationContext) { // Test MATCH (n) WITH n.prop AS prop WHERE SUM(prop) < 42 auto prop = dba.Property("prop"); auto query = QUERY(SINGLE_QUERY( MATCH(PATTERN(NODE("n"))), WITH(PROPERTY_LOOKUP("n", prop), AS("prop")), WHERE(LESS(SUM(IDENT("prop")), LITERAL(42))))); EXPECT_THROW(query->Accept(symbol_generator), SemanticException); } TEST_F(TestSymbolGenerator, MatchPropCreateNodeProp) { // Test MATCH (n) CREATE (m {prop: n.prop}) auto prop = PROPERTY_PAIR("prop"); auto node_n = NODE("n"); auto node_m = NODE("m"); auto n_prop = PROPERTY_LOOKUP("n", prop.second); node_m->properties_[prop] = n_prop; auto query = QUERY(SINGLE_QUERY(MATCH(PATTERN(node_n)), CREATE(PATTERN(node_m)))); query->Accept(symbol_generator); // symbols: pattern * 2, `node_n`, `node_m` EXPECT_EQ(symbol_table.max_position(), 4); auto n = symbol_table.at(*node_n->identifier_); EXPECT_EQ(n, symbol_table.at(*n_prop->expression_)); auto m = symbol_table.at(*node_m->identifier_); EXPECT_NE(n, m); } TEST_F(TestSymbolGenerator, CreateNodeEdge) { // Test CREATE (n), (n) -[r :r]-> (n) auto r_type = dba.EdgeType("r"); auto node_1 = NODE("n"); auto node_2 = NODE("n"); auto edge = EDGE("r", EdgeAtom::Direction::OUT, {r_type}); auto node_3 = NODE("n"); auto query = QUERY( SINGLE_QUERY(CREATE(PATTERN(node_1), PATTERN(node_2, edge, node_3)))); query->Accept(symbol_generator); // symbols: pattern * 2, `n`, `r` EXPECT_EQ(symbol_table.max_position(), 4); auto n = symbol_table.at(*node_1->identifier_); EXPECT_EQ(n, symbol_table.at(*node_2->identifier_)); EXPECT_EQ(n, symbol_table.at(*node_3->identifier_)); EXPECT_NE(n, symbol_table.at(*edge->identifier_)); } TEST_F(TestSymbolGenerator, MatchWithCreate) { // Test MATCH (n) WITH n AS m CREATE (m) -[r :r]-> (m) auto r_type = dba.EdgeType("r"); auto node_1 = NODE("n"); auto node_2 = NODE("m"); auto edge = EDGE("r", EdgeAtom::Direction::OUT, {r_type}); auto node_3 = NODE("m"); auto query = QUERY(SINGLE_QUERY(MATCH(PATTERN(node_1)), WITH("n", AS("m")), CREATE(PATTERN(node_2, edge, node_3)))); query->Accept(symbol_generator); // symbols: pattern * 2, `n`, `m`, `r` EXPECT_EQ(symbol_table.max_position(), 5); auto n = symbol_table.at(*node_1->identifier_); EXPECT_EQ(n.type(), Symbol::Type::Vertex); auto m = symbol_table.at(*node_2->identifier_); EXPECT_NE(n, m); // Currently we don't infer expression types, so we lost true type of 'm'. EXPECT_EQ(m.type(), Symbol::Type::Any); EXPECT_EQ(m, symbol_table.at(*node_3->identifier_)); } TEST_F(TestSymbolGenerator, SameResultsWith) { // Test MATCH (n) WITH n AS m, n AS m auto query = QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("n"))), WITH("n", AS("m"), "n", AS("m")))); EXPECT_THROW(query->Accept(symbol_generator), SemanticException); } TEST_F(TestSymbolGenerator, SameResults) { // Test MATCH (n) RETURN n, n auto query = QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("n"))), RETURN("n", "n"))); EXPECT_THROW(query->Accept(symbol_generator), SemanticException); } TEST_F(TestSymbolGenerator, SkipUsingIdentifier) { // Test MATCH (old) WITH old AS new SKIP old auto query = QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("old"))), WITH("old", AS("new"), SKIP(IDENT("old"))))); EXPECT_THROW(query->Accept(symbol_generator), SemanticException); } TEST_F(TestSymbolGenerator, SkipUsingIdentifierAlias) { // Test MATCH (old) WITH old AS new SKIP new auto query = QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("old"))), WITH("old", AS("new"), SKIP(IDENT("new"))))); EXPECT_THROW(query->Accept(symbol_generator), SemanticException); } TEST_F(TestSymbolGenerator, LimitUsingIdentifier) { // Test MATCH (n) RETURN n AS n LIMIT n auto query = QUERY( SINGLE_QUERY(MATCH(PATTERN(NODE("n"))), RETURN("n", LIMIT(IDENT("n"))))); EXPECT_THROW(query->Accept(symbol_generator), SemanticException); } TEST_F(TestSymbolGenerator, OrderByAggregation) { // Test MATCH (old) RETURN old AS new ORDER BY COUNT(1) auto query = QUERY( SINGLE_QUERY(MATCH(PATTERN(NODE("old"))), RETURN("old", AS("new"), ORDER_BY(COUNT(LITERAL(1)))))); EXPECT_THROW(query->Accept(symbol_generator), SemanticException); } TEST_F(TestSymbolGenerator, OrderByUnboundVariable) { // Test MATCH (old) RETURN COUNT(old) AS new ORDER BY old auto query = QUERY(SINGLE_QUERY( MATCH(PATTERN(NODE("old"))), RETURN(COUNT(IDENT("old")), AS("new"), ORDER_BY(IDENT("old"))))); EXPECT_THROW(query->Accept(symbol_generator), UnboundVariableError); } TEST_F(TestSymbolGenerator, AggregationOrderBy) { // Test MATCH (old) RETURN COUNT(old) AS new ORDER BY new auto node = NODE("old"); auto ident_old = IDENT("old"); auto as_new = AS("new"); auto ident_new = IDENT("new"); auto query = QUERY(SINGLE_QUERY(MATCH(PATTERN(node)), RETURN(COUNT(ident_old), as_new, ORDER_BY(ident_new)))); query->Accept(symbol_generator); // Symbols for pattern, `old`, `count(old)` and `new` EXPECT_EQ(symbol_table.max_position(), 4); auto old = symbol_table.at(*node->identifier_); EXPECT_EQ(old, symbol_table.at(*ident_old)); auto new_sym = symbol_table.at(*as_new); EXPECT_NE(old, new_sym); EXPECT_EQ(new_sym, symbol_table.at(*ident_new)); } TEST_F(TestSymbolGenerator, OrderByOldVariable) { // Test MATCH (old) RETURN old AS new ORDER BY old auto node = NODE("old"); auto ident_old = IDENT("old"); auto as_new = AS("new"); auto by_old = IDENT("old"); auto query = QUERY(SINGLE_QUERY(MATCH(PATTERN(node)), RETURN(ident_old, as_new, ORDER_BY(by_old)))); query->Accept(symbol_generator); // Symbols for pattern, `old` and `new` EXPECT_EQ(symbol_table.max_position(), 3); auto old = symbol_table.at(*node->identifier_); EXPECT_EQ(old, symbol_table.at(*ident_old)); EXPECT_EQ(old, symbol_table.at(*by_old)); auto new_sym = symbol_table.at(*as_new); EXPECT_NE(old, new_sym); } TEST_F(TestSymbolGenerator, MergeVariableError) { // Test MATCH (n) MERGE (n) auto query = QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("n"))), MERGE(PATTERN(NODE("n"))))); EXPECT_THROW(query->Accept(symbol_generator), RedeclareVariableError); } TEST_F(TestSymbolGenerator, MergeVariableErrorEdge) { // Test MATCH (n) -[r]- (m) MERGE (a) -[r :rel]- (b) auto rel = dba.EdgeType("rel"); auto query = QUERY(SINGLE_QUERY( MATCH(PATTERN(NODE("n"), EDGE("r"), NODE("m"))), MERGE(PATTERN(NODE("a"), EDGE("r", EdgeAtom::Direction::BOTH, {rel}), NODE("b"))))); EXPECT_THROW(query->Accept(symbol_generator), RedeclareVariableError); } TEST_F(TestSymbolGenerator, MergeEdgeWithoutType) { // Test MERGE (a) -[r]- (b) auto query = QUERY(SINGLE_QUERY(MERGE(PATTERN(NODE("a"), EDGE("r"), NODE("b"))))); // Edge must have a type, since it doesn't we raise. EXPECT_THROW(query->Accept(symbol_generator), SemanticException); } TEST_F(TestSymbolGenerator, MergeOnMatchOnCreate) { // Test MATCH (n) MERGE (n) -[r :rel]- (m) ON MATCH SET n.prop = 42 // ON CREATE SET m.prop = 42 RETURN r AS r auto rel = dba.EdgeType("rel"); auto prop = dba.Property("prop"); auto match_n = NODE("n"); auto merge_n = NODE("n"); auto edge_r = EDGE("r", EdgeAtom::Direction::BOTH, {rel}); auto node_m = NODE("m"); auto n_prop = PROPERTY_LOOKUP("n", prop); auto m_prop = PROPERTY_LOOKUP("m", prop); auto ident_r = IDENT("r"); auto as_r = AS("r"); auto query = QUERY(SINGLE_QUERY(MATCH(PATTERN(match_n)), MERGE(PATTERN(merge_n, edge_r, node_m), ON_MATCH(SET(n_prop, LITERAL(42))), ON_CREATE(SET(m_prop, LITERAL(42)))), RETURN(ident_r, as_r))); query->Accept(symbol_generator); // Symbols for: pattern * 2, `n`, `r`, `m` and `AS r`. EXPECT_EQ(symbol_table.max_position(), 6); auto n = symbol_table.at(*match_n->identifier_); EXPECT_EQ(n, symbol_table.at(*merge_n->identifier_)); EXPECT_EQ(n, symbol_table.at(*n_prop->expression_)); auto r = symbol_table.at(*edge_r->identifier_); EXPECT_NE(r, n); EXPECT_EQ(r, symbol_table.at(*ident_r)); EXPECT_NE(r, symbol_table.at(*as_r)); auto m = symbol_table.at(*node_m->identifier_); EXPECT_NE(m, n); EXPECT_NE(m, r); EXPECT_NE(m, symbol_table.at(*as_r)); EXPECT_EQ(m, symbol_table.at(*m_prop->expression_)); } TEST_F(TestSymbolGenerator, WithUnwindRedeclareReturn) { // Test WITH [1, 2] AS list UNWIND list AS list RETURN list auto query = QUERY(SINGLE_QUERY(WITH(LIST(LITERAL(1), LITERAL(2)), AS("list")), UNWIND(IDENT("list"), AS("list")), RETURN("list"))); EXPECT_THROW(query->Accept(symbol_generator), RedeclareVariableError); } TEST_F(TestSymbolGenerator, WithUnwindReturn) { // WITH [1, 2] AS list UNWIND list AS elem RETURN list AS list, elem AS elem auto with_as_list = AS("list"); auto unwind = UNWIND(IDENT("list"), AS("elem")); auto ret_list = IDENT("list"); auto ret_as_list = AS("list"); auto ret_elem = IDENT("elem"); auto ret_as_elem = AS("elem"); auto query = QUERY( SINGLE_QUERY(WITH(LIST(LITERAL(1), LITERAL(2)), with_as_list), unwind, RETURN(ret_list, ret_as_list, ret_elem, ret_as_elem))); query->Accept(symbol_generator); // Symbols for: `list`, `elem`, `AS list`, `AS elem` EXPECT_EQ(symbol_table.max_position(), 4); const auto &list = symbol_table.at(*with_as_list); EXPECT_EQ(list, symbol_table.at(*unwind->named_expression_->expression_)); const auto &elem = symbol_table.at(*unwind->named_expression_); EXPECT_NE(list, elem); EXPECT_EQ(list, symbol_table.at(*ret_list)); EXPECT_NE(list, symbol_table.at(*ret_as_list)); EXPECT_EQ(elem, symbol_table.at(*ret_elem)); EXPECT_NE(elem, symbol_table.at(*ret_as_elem)); } TEST_F(TestSymbolGenerator, MatchCrossReferenceVariable) { // MATCH (n {prop: m.prop}), (m {prop: n.prop}) RETURN n auto prop = PROPERTY_PAIR("prop"); auto node_n = NODE("n"); auto m_prop = PROPERTY_LOOKUP("m", prop.second); node_n->properties_[prop] = m_prop; auto node_m = NODE("m"); auto n_prop = PROPERTY_LOOKUP("n", prop.second); node_m->properties_[prop] = n_prop; auto ident_n = IDENT("n"); auto as_n = AS("n"); auto query = QUERY(SINGLE_QUERY(MATCH(PATTERN(node_n), PATTERN(node_m)), RETURN(ident_n, as_n))); query->Accept(symbol_generator); // Symbols for pattern * 2, `n`, `m` and `AS n` EXPECT_EQ(symbol_table.max_position(), 5); auto n = symbol_table.at(*node_n->identifier_); EXPECT_EQ(n, symbol_table.at(*n_prop->expression_)); EXPECT_EQ(n, symbol_table.at(*ident_n)); EXPECT_NE(n, symbol_table.at(*as_n)); auto m = symbol_table.at(*node_m->identifier_); EXPECT_EQ(m, symbol_table.at(*m_prop->expression_)); EXPECT_NE(n, m); EXPECT_NE(m, symbol_table.at(*as_n)); } TEST_F(TestSymbolGenerator, MatchWithAsteriskReturnAsterisk) { // MATCH (n) -[e]- (m) WITH * RETURN *, n.prop auto prop = dba.Property("prop"); auto n_prop = PROPERTY_LOOKUP("n", prop); auto ret = RETURN(n_prop, AS("n.prop")); ret->body_.all_identifiers = true; auto node_n = NODE("n"); auto edge = EDGE("e"); auto node_m = NODE("m"); auto with = storage.Create(); with->body_.all_identifiers = true; auto query = QUERY(SINGLE_QUERY(MATCH(PATTERN(node_n, edge, node_m)), with, ret)); query->Accept(symbol_generator); // Symbols for pattern, `n`, `e`, `m`, `AS n.prop`. EXPECT_EQ(symbol_table.max_position(), 5); auto n = symbol_table.at(*node_n->identifier_); EXPECT_EQ(n, symbol_table.at(*n_prop->expression_)); } TEST_F(TestSymbolGenerator, MatchReturnAsteriskSameResult) { // MATCH (n) RETURN *, n auto ret = RETURN("n"); ret->body_.all_identifiers = true; auto query = QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("n"))), ret)); EXPECT_THROW(query->Accept(symbol_generator), SemanticException); } TEST_F(TestSymbolGenerator, MatchReturnAsteriskNoUserVariables) { // MATCH () RETURN * auto ret = storage.Create(); ret->body_.all_identifiers = true; auto ident_n = storage.Create("anon", false); auto node = storage.Create(ident_n); auto query = QUERY(SINGLE_QUERY(MATCH(PATTERN(node)), ret)); EXPECT_THROW(query->Accept(symbol_generator), SemanticException); } TEST_F(TestSymbolGenerator, MatchMergeExpandLabel) { // Test MATCH (n) MERGE (m) -[r :r]-> (n:label) auto r_type = dba.EdgeType("r"); auto label = dba.Label("label"); auto query = QUERY(SINGLE_QUERY( MATCH(PATTERN(NODE("n"))), MERGE(PATTERN(NODE("m"), EDGE("r", EdgeAtom::Direction::OUT, {r_type}), NODE("n", label))))); EXPECT_THROW(query->Accept(symbol_generator), SemanticException); } TEST_F(TestSymbolGenerator, MatchEdgeWithIdentifierInProperty) { // Test MATCH (n) -[r {prop: n.prop}]- (m) RETURN r auto prop = PROPERTY_PAIR("prop"); auto edge = EDGE("r"); auto n_prop = PROPERTY_LOOKUP("n", prop.second); edge->properties_[prop] = n_prop; auto node_n = NODE("n"); auto query = QUERY(SINGLE_QUERY(MATCH(PATTERN(node_n, edge, NODE("m"))), RETURN("r"))); query->Accept(symbol_generator); // Symbols for pattern, `n`, `r`, `m` and implicit in RETURN `r AS r` EXPECT_EQ(symbol_table.max_position(), 5); auto n = symbol_table.at(*node_n->identifier_); EXPECT_EQ(n, symbol_table.at(*n_prop->expression_)); } TEST_F(TestSymbolGenerator, MatchVariablePathUsingIdentifier) { // Test MATCH (n) -[r *..l.prop]- (m), (l) RETURN r auto prop = dba.Property("prop"); auto edge = EDGE_VARIABLE("r"); auto l_prop = PROPERTY_LOOKUP("l", prop); edge->upper_bound_ = l_prop; auto node_l = NODE("l"); auto query = QUERY( SINGLE_QUERY(MATCH(PATTERN(NODE("n"), edge, NODE("m")), PATTERN(node_l)), RETURN("r"))); query->Accept(symbol_generator); // Symbols for pattern * 2, `n`, `r`, inner_node, inner_edge, `m`, `l` and // implicit in RETURN `r AS r` EXPECT_EQ(symbol_table.max_position(), 9); auto l = symbol_table.at(*node_l->identifier_); EXPECT_EQ(l, symbol_table.at(*l_prop->expression_)); auto r = symbol_table.at(*edge->identifier_); EXPECT_EQ(r.type(), Symbol::Type::EdgeList); } TEST_F(TestSymbolGenerator, MatchVariablePathUsingUnboundIdentifier) { // Test MATCH (n) -[r *..l.prop]- (m) MATCH (l) RETURN r auto prop = dba.Property("prop"); auto edge = EDGE_VARIABLE("r"); auto l_prop = PROPERTY_LOOKUP("l", prop); edge->upper_bound_ = l_prop; auto node_l = NODE("l"); auto query = QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("n"), edge, NODE("m"))), MATCH(PATTERN(node_l)), RETURN("r"))); EXPECT_THROW(query->Accept(symbol_generator), SemanticException); } TEST_F(TestSymbolGenerator, CreateVariablePath) { // Test CREATE (n) -[r *]-> (m) raises a SemanticException, since variable // paths cannot be created. auto edge = EDGE_VARIABLE("r", EdgeAtom::Direction::OUT); auto query = QUERY(SINGLE_QUERY(CREATE(PATTERN(NODE("n"), edge, NODE("m"))))); EXPECT_THROW(query->Accept(symbol_generator), SemanticException); } TEST_F(TestSymbolGenerator, MergeVariablePath) { // Test MERGE (n) -[r *]-> (m) raises a SemanticException, since variable // paths cannot be created. auto edge = EDGE_VARIABLE("r", EdgeAtom::Direction::OUT); auto query = QUERY(SINGLE_QUERY(MERGE(PATTERN(NODE("n"), edge, NODE("m"))))); EXPECT_THROW(query->Accept(symbol_generator), SemanticException); } TEST_F(TestSymbolGenerator, RedeclareVariablePath) { // Test MATCH (n) -[n*]-> (m) RETURN n raises RedeclareVariableError. // This is just a temporary solution, before we add the support for using // variable paths with already declared symbols. In the future, this test // should be changed to check for type errors. auto edge = EDGE_VARIABLE("n", EdgeAtom::Direction::OUT); auto query = QUERY( SINGLE_QUERY(MATCH(PATTERN(NODE("n"), edge, NODE("m"))), RETURN("n"))); EXPECT_THROW(query->Accept(symbol_generator), RedeclareVariableError); } TEST_F(TestSymbolGenerator, VariablePathSameIdentifier) { // Test MATCH (n) -[r *r.prop..]-> (m) RETURN r raises UnboundVariableError. // `r` cannot be used inside the range expression, since it is bound by the // variable expansion itself. auto prop = dba.Property("prop"); auto edge = EDGE_VARIABLE("r", EdgeAtom::Direction::OUT); edge->lower_bound_ = PROPERTY_LOOKUP("r", prop); auto query = QUERY( SINGLE_QUERY(MATCH(PATTERN(NODE("n"), edge, NODE("m"))), RETURN("r"))); EXPECT_THROW(query->Accept(symbol_generator), UnboundVariableError); } TEST_F(TestSymbolGenerator, MatchPropertySameIdentifier) { // Test MATCH (n {prop: n.prop}) RETURN n // Using `n.prop` needs to work, because filters are run after the value for // matched symbol is obtained. auto prop = PROPERTY_PAIR("prop"); auto node_n = NODE("n"); auto n_prop = PROPERTY_LOOKUP("n", prop.second); node_n->properties_[prop] = n_prop; auto query = QUERY(SINGLE_QUERY(MATCH(PATTERN(node_n)), RETURN("n"))); query->Accept(symbol_generator); auto n = symbol_table.at(*node_n->identifier_); EXPECT_EQ(n, symbol_table.at(*n_prop->expression_)); } TEST_F(TestSymbolGenerator, WithReturnAll) { // Test WITH 42 AS x RETURN all(x IN [x] WHERE x = 2) AS x, x AS y auto *with_as_x = AS("x"); auto *list_x = IDENT("x"); auto *where_x = IDENT("x"); auto *all = ALL("x", LIST(list_x), WHERE(EQ(where_x, LITERAL(2)))); auto *ret_as_x = AS("x"); auto *ret_x = IDENT("x"); auto query = QUERY(SINGLE_QUERY(WITH(LITERAL(42), with_as_x), RETURN(all, ret_as_x, ret_x, AS("y")))); query->Accept(symbol_generator); // Symbols for `WITH .. AS x`, `ALL(x ...)`, `ALL(...) AS x` and `AS y`. EXPECT_EQ(symbol_table.max_position(), 4); // Check `WITH .. AS x` is the same as `[x]` and `RETURN ... x AS y` EXPECT_EQ(symbol_table.at(*with_as_x), symbol_table.at(*list_x)); EXPECT_EQ(symbol_table.at(*with_as_x), symbol_table.at(*ret_x)); EXPECT_NE(symbol_table.at(*with_as_x), symbol_table.at(*all->identifier_)); EXPECT_NE(symbol_table.at(*with_as_x), symbol_table.at(*ret_as_x)); // Check `ALL(x ...)` is only equal to `WHERE x = 2` EXPECT_EQ(symbol_table.at(*all->identifier_), symbol_table.at(*where_x)); EXPECT_NE(symbol_table.at(*all->identifier_), symbol_table.at(*ret_as_x)); } TEST_F(TestSymbolGenerator, WithReturnSingle) { // Test WITH 42 AS x RETURN single(x IN [x] WHERE x = 2) AS x, x AS y auto *with_as_x = AS("x"); auto *list_x = IDENT("x"); auto *where_x = IDENT("x"); auto *single = SINGLE("x", LIST(list_x), WHERE(EQ(where_x, LITERAL(2)))); auto *ret_as_x = AS("x"); auto *ret_x = IDENT("x"); auto query = QUERY(SINGLE_QUERY(WITH(LITERAL(42), with_as_x), RETURN(single, ret_as_x, ret_x, AS("y")))); query->Accept(symbol_generator); // Symbols for `WITH .. AS x`, `SINGLE(x ...)`, `SINGLE(...) AS x` and `AS y`. EXPECT_EQ(symbol_table.max_position(), 4); // Check `WITH .. AS x` is the same as `[x]` and `RETURN ... x AS y` EXPECT_EQ(symbol_table.at(*with_as_x), symbol_table.at(*list_x)); EXPECT_EQ(symbol_table.at(*with_as_x), symbol_table.at(*ret_x)); EXPECT_NE(symbol_table.at(*with_as_x), symbol_table.at(*single->identifier_)); EXPECT_NE(symbol_table.at(*with_as_x), symbol_table.at(*ret_as_x)); // Check `SINGLE(x ...)` is only equal to `WHERE x = 2` EXPECT_EQ(symbol_table.at(*single->identifier_), symbol_table.at(*where_x)); EXPECT_NE(symbol_table.at(*single->identifier_), symbol_table.at(*ret_as_x)); } TEST_F(TestSymbolGenerator, WithReturnReduce) { // Test WITH 42 AS x RETURN reduce(y = 0, x IN [x] y + x) AS x, x AS y auto *with_as_x = AS("x"); auto *list_x = IDENT("x"); auto *expr_x = IDENT("x"); auto *expr_y = IDENT("y"); auto *reduce = REDUCE("y", LITERAL(0), "x", LIST(list_x), ADD(expr_y, expr_x)); auto *ret_as_x = AS("x"); auto *ret_x = IDENT("x"); auto *ret_as_y = AS("y"); auto query = QUERY(SINGLE_QUERY(WITH(LITERAL(42), with_as_x), RETURN(reduce, ret_as_x, ret_x, ret_as_y))); query->Accept(symbol_generator); // Symbols for `WITH .. AS x`, `REDUCE(y, x ...)`, `REDUCE(...) AS x` and `AS // y`. EXPECT_EQ(symbol_table.max_position(), 5); // Check `WITH .. AS x` is the same as `[x]` and `RETURN ... x AS y` EXPECT_EQ(symbol_table.at(*with_as_x), symbol_table.at(*list_x)); EXPECT_EQ(symbol_table.at(*with_as_x), symbol_table.at(*ret_x)); EXPECT_NE(symbol_table.at(*with_as_x), symbol_table.at(*reduce->identifier_)); EXPECT_NE(symbol_table.at(*with_as_x), symbol_table.at(*ret_as_x)); // Check `REDUCE(y, x ...)` is only equal to `y + x` EXPECT_EQ(symbol_table.at(*reduce->identifier_), symbol_table.at(*expr_x)); EXPECT_NE(symbol_table.at(*reduce->identifier_), symbol_table.at(*ret_as_x)); EXPECT_EQ(symbol_table.at(*reduce->accumulator_), symbol_table.at(*expr_y)); EXPECT_NE(symbol_table.at(*reduce->accumulator_), symbol_table.at(*ret_as_y)); } TEST_F(TestSymbolGenerator, MatchBfsReturn) { // Test MATCH (n) -[r *bfs..n.prop] (r, n | r.prop)]-> (m) RETURN r AS r auto prop = dba.Property("prop"); auto *node_n = NODE("n"); auto *r_prop = PROPERTY_LOOKUP("r", prop); auto *n_prop = PROPERTY_LOOKUP("n", prop); auto *bfs = storage.Create( IDENT("r"), EdgeAtom::Type::BREADTH_FIRST, EdgeAtom::Direction::OUT, std::vector{}); bfs->filter_lambda_.inner_edge = IDENT("r"); bfs->filter_lambda_.inner_node = IDENT("n"); bfs->filter_lambda_.expression = r_prop; bfs->upper_bound_ = n_prop; auto *ret_r = IDENT("r"); auto *query = QUERY(SINGLE_QUERY(MATCH(PATTERN(node_n, bfs, NODE("m"))), RETURN(ret_r, AS("r")))); query->Accept(symbol_generator); // Symbols for pattern, `n`, `[r]`, `r|`, `n|`, `m` and `AS r`. EXPECT_EQ(symbol_table.max_position(), 7); EXPECT_EQ(symbol_table.at(*ret_r), symbol_table.at(*bfs->identifier_)); EXPECT_NE(symbol_table.at(*ret_r), symbol_table.at(*bfs->filter_lambda_.inner_edge)); EXPECT_TRUE(symbol_table.at(*bfs->filter_lambda_.inner_edge).user_declared()); EXPECT_EQ(symbol_table.at(*bfs->filter_lambda_.inner_edge), symbol_table.at(*r_prop->expression_)); EXPECT_NE(symbol_table.at(*node_n->identifier_), symbol_table.at(*bfs->filter_lambda_.inner_node)); EXPECT_TRUE(symbol_table.at(*bfs->filter_lambda_.inner_node).user_declared()); EXPECT_EQ(symbol_table.at(*node_n->identifier_), symbol_table.at(*n_prop->expression_)); } TEST_F(TestSymbolGenerator, MatchBfsUsesEdgeSymbolError) { // Test MATCH (n) -[r *bfs..10 (e, n | r)]-> (m) RETURN r auto *bfs = storage.Create( IDENT("r"), EdgeAtom::Type::BREADTH_FIRST, EdgeAtom::Direction::OUT); bfs->filter_lambda_.inner_edge = IDENT("e"); bfs->filter_lambda_.inner_node = IDENT("n"); bfs->filter_lambda_.expression = IDENT("r"); bfs->upper_bound_ = LITERAL(10); auto *query = QUERY( SINGLE_QUERY(MATCH(PATTERN(NODE("n"), bfs, NODE("m"))), RETURN("r"))); EXPECT_THROW(query->Accept(symbol_generator), UnboundVariableError); } TEST_F(TestSymbolGenerator, MatchBfsUsesPreviousOuterSymbol) { // Test MATCH (a) -[r *bfs..10 (e, n | a)]-> (m) RETURN r auto *node_a = NODE("a"); auto *bfs = storage.Create( IDENT("r"), EdgeAtom::Type::BREADTH_FIRST, EdgeAtom::Direction::OUT); bfs->filter_lambda_.inner_edge = IDENT("e"); bfs->filter_lambda_.inner_node = IDENT("n"); bfs->filter_lambda_.expression = IDENT("a"); bfs->upper_bound_ = LITERAL(10); auto *query = QUERY(SINGLE_QUERY(MATCH(PATTERN(node_a, bfs, NODE("m"))), RETURN("r"))); query->Accept(symbol_generator); EXPECT_EQ(symbol_table.at(*node_a->identifier_), symbol_table.at(*bfs->filter_lambda_.expression)); } TEST_F(TestSymbolGenerator, MatchBfsUsesLaterSymbolError) { // Test MATCH (n) -[r *bfs..10 (e, n | m)]-> (m) RETURN r auto *bfs = storage.Create( IDENT("r"), EdgeAtom::Type::BREADTH_FIRST, EdgeAtom::Direction::OUT); bfs->filter_lambda_.inner_edge = IDENT("e"); bfs->filter_lambda_.inner_node = IDENT("n"); bfs->filter_lambda_.expression = IDENT("m"); bfs->upper_bound_ = LITERAL(10); auto *query = QUERY( SINGLE_QUERY(MATCH(PATTERN(NODE("n"), bfs, NODE("m"))), RETURN("r"))); EXPECT_THROW(query->Accept(symbol_generator), UnboundVariableError); } TEST_F(TestSymbolGenerator, MatchVariableLambdaSymbols) { // MATCH ()-[*]-() RETURN 42 AS res auto ident_n = storage.Create("anon_n", false); auto node = storage.Create(ident_n); auto edge = storage.Create( storage.Create("anon_r", false), EdgeAtom::Type::DEPTH_FIRST, EdgeAtom::Direction::BOTH); edge->filter_lambda_.inner_edge = storage.Create("anon_inner_e", false); edge->filter_lambda_.inner_node = storage.Create("anon_inner_n", false); auto end_node = storage.Create(storage.Create("anon_end", false)); auto query = QUERY(SINGLE_QUERY(MATCH(PATTERN(node, edge, end_node)), RETURN(LITERAL(42), AS("res")))); query->Accept(symbol_generator); // Symbols for `anon_n`, `anon_r`, `anon_inner_e`, `anon_inner_n`, `anon_end` // `AS res` and the auto-generated path name symbol. EXPECT_EQ(symbol_table.max_position(), 7); // All symbols except `AS res` are anonymously generated. for (const auto &id_and_symbol : symbol_table.table()) { const auto &symbol = id_and_symbol.second; if (symbol.name() == "res") { EXPECT_TRUE(symbol.user_declared()); } else { EXPECT_FALSE(id_and_symbol.second.user_declared()); } } } TEST_F(TestSymbolGenerator, MatchWShortestReturn) { // Test MATCH (n) -[r *wShortest (r, n | r.weight) (r, n | r.filter)]-> (m) // RETURN r AS r auto weight = dba.Property("weight"); auto filter = dba.Property("filter"); auto *node_n = NODE("n"); auto *r_weight = PROPERTY_LOOKUP("r", weight); auto *r_filter = PROPERTY_LOOKUP("r", filter); auto *shortest = storage.Create( IDENT("r"), EdgeAtom::Type::WEIGHTED_SHORTEST_PATH, EdgeAtom::Direction::OUT, std::vector{}); { shortest->weight_lambda_.inner_edge = IDENT("r"); shortest->weight_lambda_.inner_node = IDENT("n"); shortest->weight_lambda_.expression = r_weight; shortest->total_weight_ = IDENT("total_weight"); } { shortest->filter_lambda_.inner_edge = IDENT("r"); shortest->filter_lambda_.inner_node = IDENT("n"); shortest->filter_lambda_.expression = r_filter; } auto *ret_r = IDENT("r"); auto *query = QUERY(SINGLE_QUERY(MATCH(PATTERN(node_n, shortest, NODE("m"))), RETURN(ret_r, AS("r")))); query->Accept(symbol_generator); // Symbols for pattern, `n`, `[r]`, `total_weight`, (`r|`, `n|`)x2, `m` and // `AS r`. EXPECT_EQ(symbol_table.max_position(), 10); EXPECT_EQ(symbol_table.at(*ret_r), symbol_table.at(*shortest->identifier_)); EXPECT_NE(symbol_table.at(*ret_r), symbol_table.at(*shortest->weight_lambda_.inner_edge)); EXPECT_NE(symbol_table.at(*ret_r), symbol_table.at(*shortest->filter_lambda_.inner_edge)); EXPECT_TRUE( symbol_table.at(*shortest->filter_lambda_.inner_edge).user_declared()); EXPECT_EQ(symbol_table.at(*shortest->weight_lambda_.inner_edge), symbol_table.at(*r_weight->expression_)); EXPECT_NE(symbol_table.at(*shortest->weight_lambda_.inner_edge), symbol_table.at(*shortest->filter_lambda_.inner_edge)); EXPECT_NE(symbol_table.at(*shortest->weight_lambda_.inner_node), symbol_table.at(*shortest->filter_lambda_.inner_node)); EXPECT_EQ(symbol_table.at(*shortest->filter_lambda_.inner_edge), symbol_table.at(*r_filter->expression_)); EXPECT_TRUE( symbol_table.at(*shortest->filter_lambda_.inner_node).user_declared()); } TEST_F(TestSymbolGenerator, MatchUnionSymbols) { // RETURN 5 as X UNION RETURN 6 AS x auto query = QUERY(SINGLE_QUERY(RETURN(LITERAL(5), AS("X"))), UNION(SINGLE_QUERY(RETURN(LITERAL(6), AS("X"))))); query->Accept(symbol_generator); EXPECT_EQ(symbol_table.max_position(), 3); } TEST_F(TestSymbolGenerator, MatchUnionMultipleSymbols) { // RETURN 5 as X, 6 AS Y UNION RETURN 5 AS Y, 6 AS x auto query = QUERY( SINGLE_QUERY(RETURN(LITERAL(5), AS("X"), LITERAL(6), AS("Y"))), UNION(SINGLE_QUERY(RETURN(LITERAL(5), AS("Y"), LITERAL(6), AS("X"))))); query->Accept(symbol_generator); EXPECT_EQ(symbol_table.max_position(), 6); } TEST_F(TestSymbolGenerator, MatchUnionAllSymbols) { // RETURN 5 as X UNION ALL RETURN 6 AS x auto query = QUERY(SINGLE_QUERY(RETURN(LITERAL(5), AS("X"))), UNION_ALL(SINGLE_QUERY(RETURN(LITERAL(6), AS("X"))))); query->Accept(symbol_generator); EXPECT_EQ(symbol_table.max_position(), 3); } TEST_F(TestSymbolGenerator, MatchUnionAllMultipleSymbols) { // RETURN 5 as X, 6 AS Y UNION ALL RETURN 5 AS Y, 6 AS x auto query = QUERY( SINGLE_QUERY(RETURN(LITERAL(5), AS("X"), LITERAL(6), AS("Y"))), UNION_ALL( SINGLE_QUERY(RETURN(LITERAL(5), AS("Y"), LITERAL(6), AS("X"))))); query->Accept(symbol_generator); EXPECT_EQ(symbol_table.max_position(), 6); } TEST_F(TestSymbolGenerator, MatchUnionReturnAllSymbols) { // WITH 1 as X, 2 AS Y RETURN * UNION RETURN 3 AS X, 4 AS Y auto ret = storage.Create(); ret->body_.all_identifiers = true; auto query = QUERY( SINGLE_QUERY(WITH(LITERAL(1), AS("X"), LITERAL(2), AS("Y")), ret), UNION(SINGLE_QUERY(RETURN(LITERAL(3), AS("X"), LITERAL(4), AS("Y"))))); query->Accept(symbol_generator); EXPECT_EQ(symbol_table.max_position(), 6); } TEST_F(TestSymbolGenerator, MatchUnionReturnSymbols) { // WITH 1 as X, 2 AS Y RETURN Y, X UNION RETURN 3 AS X, 4 AS Y auto query = QUERY( SINGLE_QUERY(WITH(LITERAL(1), AS("X"), LITERAL(2), AS("Y")), RETURN("Y", "X")), UNION(SINGLE_QUERY(RETURN(LITERAL(3), AS("X"), LITERAL(4), AS("Y"))))); query->Accept(symbol_generator); EXPECT_EQ(symbol_table.max_position(), 8); } TEST_F(TestSymbolGenerator, MatchUnionParameterNameThrowSemanticExpcetion) { // WITH 1 as X, 2 AS Y RETURN * UNION RETURN 3 AS Z, 4 AS Y auto ret = storage.Create(); ret->body_.all_identifiers = true; auto query = QUERY( SINGLE_QUERY(WITH(LITERAL(1), AS("X"), LITERAL(2), AS("Y")), ret), UNION(SINGLE_QUERY(RETURN(LITERAL(3), AS("Z"), LITERAL(4), AS("Y"))))); EXPECT_THROW(query->Accept(symbol_generator), SemanticException); } TEST_F(TestSymbolGenerator, MatchUnionParameterNumberThrowSemanticExpcetion) { // WITH 1 as X, 2 AS Y RETURN * UNION RETURN 4 AS Y auto ret = storage.Create(); ret->body_.all_identifiers = true; auto query = QUERY(SINGLE_QUERY(WITH(LITERAL(1), AS("X"), LITERAL(2), AS("Y")), ret), UNION(SINGLE_QUERY(RETURN(LITERAL(4), AS("Y"))))); EXPECT_THROW(query->Accept(symbol_generator), SemanticException); } TEST_F(TestSymbolGenerator, MatchUnion) { // WITH 5 AS X, 3 AS Y RETURN * UNION WITH 9 AS Y, 4 AS X RETURN Y, X auto ret = storage.Create(); ret->body_.all_identifiers = true; auto query = QUERY(SINGLE_QUERY(WITH(LITERAL(5), AS("X"), LITERAL(3), AS("Y")), ret), UNION(SINGLE_QUERY(WITH(LITERAL(9), AS("Y"), LITERAL(4), AS("X")), RETURN("Y", "X")))); query->Accept(symbol_generator); EXPECT_EQ(symbol_table.max_position(), 8); } TEST(TestSymbolTable, Serialization) { SymbolTable original_table; SymbolGenerator symbol_generator{original_table}; AstStorage storage; auto ident_a = IDENT("a"); auto sym_a = original_table.CreateSymbol("a", true, Symbol::Type::Vertex, 0); original_table[*ident_a] = sym_a; auto ident_b = IDENT("b"); auto sym_b = original_table.CreateSymbol("b", false, Symbol::Type::Edge, 1); original_table[*ident_b] = sym_b; std::stringstream stream; { boost::archive::binary_oarchive out_archive(stream); out_archive << original_table; } SymbolTable serialized_table; boost::archive::binary_iarchive in_archive(stream); in_archive >> serialized_table; EXPECT_EQ(serialized_table.max_position(), original_table.max_position()); EXPECT_EQ(serialized_table.table(), original_table.table()); }