#!/usr/bin/env python3 # -*- coding: utf-8 -*- ''' Latency Barchart (Based on LDBC JSON output). ''' import json import os import numpy as np import matplotlib.pyplot as plt from matplotlib.cbook import get_sample_data from argparse import ArgumentParser SCRIPT_DIR = os.path.dirname(os.path.realpath(__file__)) COLORS = { 'memgraph': '#ff7300', 'neo4j': '#008cc2' } def parse_args(): argp = ArgumentParser(description=__doc__) argp.add_argument("--vendor-references", nargs="+", help="Short references that represent all the " "vendors that are going to be " "visualized on the plot.") argp.add_argument("--vendor-titles", nargs="+", help="Vender titles that are going to appear " "on the plot, e.g. legend titles.") argp.add_argument("--plot-title", default="{{Plot title placeholder}}", help="Plot title.") argp.add_argument("--logo-path", default=None, help="Path to the logo that is going to be presented" " instead of title.") argp.add_argument("--results-dir", default=os.path.join(SCRIPT_DIR, "../tests/public_benchmark" "/ldbc/results"), help="Path to the folder with result files in format " "{{vendor-reference}}-LDBC-results.json") return argp.parse_args() def autolabel(ax, rects): """ Attach a text label above each bar displaying its height """ for rect in rects: height = rect.get_height() # TODO: adjust more vendors ax.text(rect.get_x() + rect.get_width()/2., 1.00*height, '%d' % int(height), ha='center', va='bottom') def main(): # Read the arguments. args = parse_args() # Prepare the datastructure. vendors = {} for vendor_reference, vendor_title in zip(args.vendor_references, args.vendor_titles): vendors[vendor_reference] = {} vendors[vendor_reference]['title'] = vendor_title vendors[vendor_reference]['results_path'] = os.path.join( args.results_dir, "%s-LDBC-results.json" % vendor_reference) vendors[vendor_reference]['color'] = COLORS[vendor_reference] vendors[vendor_reference]['latencies'] = [] vendors[vendor_reference]['query_names'] = [] assert len(vendors) == 2, "The graph is tailored for only 2 vendors." # Collect the benchmark data. print("LDBC Latency Data") for vendor_reference, vendor_data in vendors.items(): print("Vendor: %s" % vendor_reference) with open(vendor_data['results_path']) as results_file: results_data = json.load(results_file) for query_data in results_data["all_metrics"]: mean_runtime = query_data["run_time"]["mean"] query_name = query_data['name'] print("%s -> %sms" % (query_name, str(mean_runtime))) vendor_data['latencies'].append(mean_runtime) vendor_data['query_names'].append(query_name) # Consistency check. all_query_names = [tuple(vd['query_names']) for vd in vendors.values()] assert len(set(all_query_names)) == 1, \ "Queries between different vendors are different!" query_names = all_query_names[0] # Plot. ind = np.arange(len(query_names)) # the x locations for the groups width = 0.40 # the width of the bars fig, ax = plt.subplots() # figure setup ax.set_ylabel('Mean Latency (ms)') # YAxis title ax.set_facecolor('#dcdcdc') # plot bg color (light gray) ax.set_xticks(ind + width / len(vendors)) # TODO: adjust (more vendors) def shorten_query_name(query_name): # IMPORTANT! Long query names on the XAxis don't look compelling. if query_name.lower().startswith('ldbc'): query_name = query_name[4:] if len(query_name) > 10: query_name = query_name[:10] + '\N{HORIZONTAL ELLIPSIS}' return query_name ax.set_xticklabels(map(shorten_query_name, query_names), rotation=30) # set only horizontal grid lines for line in ax.get_xgridlines(): line.set_linestyle(' ') for line in ax.get_ygridlines(): line.set_linestyle('--') ax.set_axisbelow(True) # put the grid below all other elements plt.grid(True) # show grid # Draw logo or plot title if args.logo_path is None: ax.set_title(args.plot_title) else: # TODO: improve the logo positioning im = plt.imread(get_sample_data(args.logo_path)) plt.gcf().subplots_adjust(top=0.85) newax = fig.add_axes([0.4, 0.75, 0.2, 0.25], anchor='N') newax.imshow(im) newax.axis('off') # Draw bars for index, vendor_data in enumerate(vendors.values()): rects = ax.bar(ind + index * width, vendor_data['latencies'], width, color=vendor_data['color']) vendor_data['rects'] = rects autolabel(ax, rects) rects = [vd['rects'][0] for vd in vendors.values()] titles = [vd['title'] for vd in vendors.values()] ax.legend(rects, titles) # Draw the legend. plt.show() if __name__ == '__main__': main()