#include #include #include #include #include #include #include #include #include "communication/bolt/client.hpp" #include "io/network/endpoint.hpp" #include "io/network/utils.hpp" #include "utils/flag_validation.hpp" #include "utils/thread.hpp" #include "utils/timer.hpp" using namespace std::literals::chrono_literals; DEFINE_string(address, "127.0.0.1", "Server address"); DEFINE_int32(port, 7687, "Server port"); DEFINE_int32(cluster_size, 3, "Size of the raft cluster."); DEFINE_string(username, "", "Username for the database"); DEFINE_string(password, "", "Password for the database"); DEFINE_bool(use_ssl, false, "Set to true to connect with SSL to the server."); DEFINE_double(duration, 10.0, "How long should the client perform reads (seconds)"); DEFINE_string(output_file, "", "Output file where the results should be."); DEFINE_int32(nodes, 1000, "Number of nodes in DB"); DEFINE_int32(edges, 5000, "Number of edges in DB"); std::experimental::optional GetLeaderEndpoint() { for (int retry = 0; retry < 10; ++retry) { for (int i = 0; i < FLAGS_cluster_size; ++i) { try { communication::ClientContext context(FLAGS_use_ssl); communication::bolt::Client client(&context); uint16_t port = FLAGS_port + i; io::network::Endpoint endpoint{FLAGS_address, port}; client.Connect(endpoint, FLAGS_username, FLAGS_password); client.Execute("MATCH (n) RETURN n", {}); client.Close(); // If we succeeded with the above query, we found the current leader. return std::experimental::make_optional(endpoint); } catch (const communication::bolt::ClientQueryException &) { // This one is not the leader, continue. continue; } catch (const communication::bolt::ClientFatalException &) { // This one seems to be down, continue. continue; } } LOG(INFO) << "Couldn't find Raft cluster leader, retrying..."; std::this_thread::sleep_for(1s); } return std::experimental::nullopt; } int main(int argc, char **argv) { gflags::ParseCommandLineFlags(&argc, &argv, true); google::SetUsageMessage("Memgraph HA read benchmark client"); google::InitGoogleLogging(argv[0]); std::atomic query_counter{0}; auto leader_endpoint = GetLeaderEndpoint(); if (!leader_endpoint) { LOG(ERROR) << "Couldn't find Raft cluster leader!"; return 1; } // populate the db (random graph with given number of nodes and edges) communication::ClientContext context(FLAGS_use_ssl); communication::bolt::Client client(&context); client.Connect(*leader_endpoint, FLAGS_username, FLAGS_password); for (int i = 0; i < FLAGS_nodes; ++i) { client.Execute("CREATE (:Node {id:" + std::to_string(i) + "})", {}); } auto seed = std::chrono::high_resolution_clock::now().time_since_epoch().count(); std::mt19937 rng(seed); std::uniform_int_distribution dist(0, FLAGS_nodes - 1); for (int i = 0; i < FLAGS_edges; ++i) { int a = dist(rng), b = dist(rng); client.Execute("MATCH (n {id:" + std::to_string(a) + "})," + " (m {id:" + std::to_string(b) + "})" + "CREATE (n)-[:Edge]->(m);", {}); } const int num_threads = std::thread::hardware_concurrency(); std::vector threads; std::vector thread_duration; threads.reserve(num_threads); thread_duration.resize(num_threads); for (int i = 0; i < num_threads; ++i) { threads.emplace_back([i, endpoint = *leader_endpoint, &query_counter, &local_duration = thread_duration[i]]() { utils::ThreadSetName(fmt::format("BenchWriter{}", i)); communication::ClientContext context(FLAGS_use_ssl); communication::bolt::Client client(&context); client.Connect(endpoint, FLAGS_username, FLAGS_password); auto seed = std::chrono::high_resolution_clock::now().time_since_epoch().count(); std::mt19937 rng(seed); std::uniform_int_distribution dist(0, FLAGS_nodes - 1); utils::Timer t; while (true) { local_duration = t.Elapsed().count(); if (local_duration >= FLAGS_duration) break; int id = dist(rng); try { client.Execute("MATCH (n {id:" + std::to_string(id) + "})-[e]->(m) RETURN e, m;", {}); query_counter.fetch_add(1); } catch (const communication::bolt::ClientQueryException &e) { LOG(WARNING) << e.what(); break; } catch (const communication::bolt::ClientFatalException &e) { LOG(WARNING) << e.what(); break; } } client.Close(); }); } for (auto &t : threads) { if (t.joinable()) t.join(); } double duration = 0; for (auto &d : thread_duration) duration += d; duration /= num_threads; double read_per_second = query_counter / duration; std::ofstream output(FLAGS_output_file); output << "duration " << duration << std::endl; output << "executed_reads " << query_counter << std::endl; output << "read_per_second " << read_per_second << std::endl; output.close(); return 0; }