#include #include #include #include #include #include #include #include "database/single_node/graph_db_accessor.hpp" #include "query/context.hpp" #include "query/frontend/ast/ast.hpp" #include "query/frontend/opencypher/parser.hpp" #include "query/interpret/awesome_memgraph_functions.hpp" #include "query/interpret/eval.hpp" #include "query/interpret/frame.hpp" #include "query/path.hpp" #include "storage/common/types/types.hpp" #include "utils/string.hpp" #include "query_common.hpp" using namespace query; using query::test_common::ToList; using testing::ElementsAre; using testing::UnorderedElementsAre; namespace { class ExpressionEvaluatorTest : public ::testing::Test { protected: database::GraphDb db; std::unique_ptr dba{db.Access()}; AstStorage storage; EvaluationContext ctx; SymbolTable symbol_table; Frame frame{128}; ExpressionEvaluator eval{&frame, symbol_table, ctx, dba.get(), GraphView::OLD}; Identifier *CreateIdentifierWithValue(std::string name, const TypedValue &value) { auto id = storage.Create(name, true); auto symbol = symbol_table.CreateSymbol(name, true); id->MapTo(symbol); frame[symbol] = value; return id; } template auto Eval(TExpression *expr) { ctx.properties = NamesToProperties(storage.properties_, dba.get()); ctx.labels = NamesToLabels(storage.labels_, dba.get()); return expr->Accept(eval); } }; TEST_F(ExpressionEvaluatorTest, OrOperator) { auto *op = storage.Create(storage.Create(true), storage.Create(false)); auto val1 = Eval(op); ASSERT_EQ(val1.ValueBool(), true); op = storage.Create(storage.Create(true), storage.Create(true)); auto val2 = Eval(op); ASSERT_EQ(val2.ValueBool(), true); } TEST_F(ExpressionEvaluatorTest, XorOperator) { auto *op = storage.Create(storage.Create(true), storage.Create(false)); auto val1 = Eval(op); ASSERT_EQ(val1.ValueBool(), true); op = storage.Create(storage.Create(true), storage.Create(true)); auto val2 = Eval(op); ASSERT_EQ(val2.ValueBool(), false); } TEST_F(ExpressionEvaluatorTest, AndOperator) { auto *op = storage.Create(storage.Create(true), storage.Create(true)); auto val1 = Eval(op); ASSERT_EQ(val1.ValueBool(), true); op = storage.Create(storage.Create(false), storage.Create(true)); auto val2 = Eval(op); ASSERT_EQ(val2.ValueBool(), false); } TEST_F(ExpressionEvaluatorTest, AndOperatorShortCircuit) { { auto *op = storage.Create(storage.Create(false), storage.Create(5)); auto value = Eval(op); EXPECT_EQ(value.ValueBool(), false); } { auto *op = storage.Create(storage.Create(5), storage.Create(false)); // We are evaluating left to right, so we don't short circuit here and // raise due to `5`. This differs from neo4j, where they evaluate both // sides and return `false` without checking for type of the first // expression. EXPECT_THROW(Eval(op), QueryRuntimeException); } } TEST_F(ExpressionEvaluatorTest, AndOperatorNull) { { // Null doesn't short circuit auto *op = storage.Create( storage.Create(PropertyValue::Null), storage.Create(5)); EXPECT_THROW(Eval(op), QueryRuntimeException); } { auto *op = storage.Create( storage.Create(PropertyValue::Null), storage.Create(true)); auto value = Eval(op); EXPECT_TRUE(value.IsNull()); } { auto *op = storage.Create( storage.Create(PropertyValue::Null), storage.Create(false)); auto value = Eval(op); ASSERT_TRUE(value.IsBool()); EXPECT_EQ(value.ValueBool(), false); } } TEST_F(ExpressionEvaluatorTest, AdditionOperator) { auto *op = storage.Create( storage.Create(2), storage.Create(3)); auto value = Eval(op); ASSERT_EQ(value.ValueInt(), 5); } TEST_F(ExpressionEvaluatorTest, SubtractionOperator) { auto *op = storage.Create( storage.Create(2), storage.Create(3)); auto value = Eval(op); ASSERT_EQ(value.ValueInt(), -1); } TEST_F(ExpressionEvaluatorTest, MultiplicationOperator) { auto *op = storage.Create( storage.Create(2), storage.Create(3)); auto value = Eval(op); ASSERT_EQ(value.ValueInt(), 6); } TEST_F(ExpressionEvaluatorTest, DivisionOperator) { auto *op = storage.Create(storage.Create(50), storage.Create(10)); auto value = Eval(op); ASSERT_EQ(value.ValueInt(), 5); } TEST_F(ExpressionEvaluatorTest, ModOperator) { auto *op = storage.Create(storage.Create(65), storage.Create(10)); auto value = Eval(op); ASSERT_EQ(value.ValueInt(), 5); } TEST_F(ExpressionEvaluatorTest, EqualOperator) { auto *op = storage.Create(storage.Create(10), storage.Create(15)); auto val1 = Eval(op); ASSERT_EQ(val1.ValueBool(), false); op = storage.Create(storage.Create(15), storage.Create(15)); auto val2 = Eval(op); ASSERT_EQ(val2.ValueBool(), true); op = storage.Create(storage.Create(20), storage.Create(15)); auto val3 = Eval(op); ASSERT_EQ(val3.ValueBool(), false); } TEST_F(ExpressionEvaluatorTest, NotEqualOperator) { auto *op = storage.Create(storage.Create(10), storage.Create(15)); auto val1 = Eval(op); ASSERT_EQ(val1.ValueBool(), true); op = storage.Create(storage.Create(15), storage.Create(15)); auto val2 = Eval(op); ASSERT_EQ(val2.ValueBool(), false); op = storage.Create(storage.Create(20), storage.Create(15)); auto val3 = Eval(op); ASSERT_EQ(val3.ValueBool(), true); } TEST_F(ExpressionEvaluatorTest, LessOperator) { auto *op = storage.Create(storage.Create(10), storage.Create(15)); auto val1 = Eval(op); ASSERT_EQ(val1.ValueBool(), true); op = storage.Create(storage.Create(15), storage.Create(15)); auto val2 = Eval(op); ASSERT_EQ(val2.ValueBool(), false); op = storage.Create(storage.Create(20), storage.Create(15)); auto val3 = Eval(op); ASSERT_EQ(val3.ValueBool(), false); } TEST_F(ExpressionEvaluatorTest, GreaterOperator) { auto *op = storage.Create(storage.Create(10), storage.Create(15)); auto val1 = Eval(op); ASSERT_EQ(val1.ValueBool(), false); op = storage.Create(storage.Create(15), storage.Create(15)); auto val2 = Eval(op); ASSERT_EQ(val2.ValueBool(), false); op = storage.Create(storage.Create(20), storage.Create(15)); auto val3 = Eval(op); ASSERT_EQ(val3.ValueBool(), true); } TEST_F(ExpressionEvaluatorTest, LessEqualOperator) { auto *op = storage.Create(storage.Create(10), storage.Create(15)); auto val1 = Eval(op); ASSERT_EQ(val1.ValueBool(), true); op = storage.Create(storage.Create(15), storage.Create(15)); auto val2 = Eval(op); ASSERT_EQ(val2.ValueBool(), true); op = storage.Create(storage.Create(20), storage.Create(15)); auto val3 = Eval(op); ASSERT_EQ(val3.ValueBool(), false); } TEST_F(ExpressionEvaluatorTest, GreaterEqualOperator) { auto *op = storage.Create( storage.Create(10), storage.Create(15)); auto val1 = Eval(op); ASSERT_EQ(val1.ValueBool(), false); op = storage.Create( storage.Create(15), storage.Create(15)); auto val2 = Eval(op); ASSERT_EQ(val2.ValueBool(), true); op = storage.Create( storage.Create(20), storage.Create(15)); auto val3 = Eval(op); ASSERT_EQ(val3.ValueBool(), true); } TEST_F(ExpressionEvaluatorTest, InListOperator) { auto *list_literal = storage.Create(std::vector{ storage.Create(1), storage.Create(2), storage.Create("a")}); { // Element exists in list. auto *op = storage.Create( storage.Create(2), list_literal); auto value = Eval(op); EXPECT_EQ(value.ValueBool(), true); } { // Element doesn't exist in list. auto *op = storage.Create( storage.Create("x"), list_literal); auto value = Eval(op); EXPECT_EQ(value.ValueBool(), false); } { auto *list_literal = storage.Create(std::vector{ storage.Create(PropertyValue::Null), storage.Create(2), storage.Create("a")}); // Element doesn't exist in list with null element. auto *op = storage.Create( storage.Create("x"), list_literal); auto value = Eval(op); EXPECT_TRUE(value.IsNull()); } { // Null list. auto *op = storage.Create( storage.Create("x"), storage.Create(PropertyValue::Null)); auto value = Eval(op); EXPECT_TRUE(value.IsNull()); } { // Null literal. auto *op = storage.Create( storage.Create(PropertyValue::Null), list_literal); auto value = Eval(op); EXPECT_TRUE(value.IsNull()); } { // Null literal, empty list. auto *op = storage.Create( storage.Create(PropertyValue::Null), storage.Create(std::vector())); auto value = Eval(op); EXPECT_FALSE(value.ValueBool()); } } TEST_F(ExpressionEvaluatorTest, ListIndexing) { auto *list_literal = storage.Create(std::vector{ storage.Create(1), storage.Create(2), storage.Create(3), storage.Create(4)}); { // Legal indexing. auto *op = storage.Create( list_literal, storage.Create(2)); auto value = Eval(op); EXPECT_EQ(value.ValueInt(), 3); } { // Out of bounds indexing. auto *op = storage.Create( list_literal, storage.Create(4)); auto value = Eval(op); EXPECT_TRUE(value.IsNull()); } { // Out of bounds indexing with negative bound. auto *op = storage.Create( list_literal, storage.Create(-100)); auto value = Eval(op); EXPECT_TRUE(value.IsNull()); } { // Legal indexing with negative index. auto *op = storage.Create( list_literal, storage.Create(-2)); auto value = Eval(op); EXPECT_EQ(value.ValueInt(), 3); } { // Indexing with one operator being null. auto *op = storage.Create( storage.Create(PropertyValue::Null), storage.Create(-2)); auto value = Eval(op); EXPECT_TRUE(value.IsNull()); } { // Indexing with incompatible type. auto *op = storage.Create( list_literal, storage.Create("bla")); EXPECT_THROW(Eval(op), QueryRuntimeException); } } TEST_F(ExpressionEvaluatorTest, MapIndexing) { auto *map_literal = storage.Create(std::unordered_map{ {storage.GetPropertyIx("a"), storage.Create(1)}, {storage.GetPropertyIx("b"), storage.Create(2)}, {storage.GetPropertyIx("c"), storage.Create(3)}}); { // Legal indexing. auto *op = storage.Create( map_literal, storage.Create("b")); auto value = Eval(op); EXPECT_EQ(value.ValueInt(), 2); } { // Legal indexing, non-existing key. auto *op = storage.Create( map_literal, storage.Create("z")); auto value = Eval(op); EXPECT_TRUE(value.IsNull()); } { // Wrong key type. auto *op = storage.Create( map_literal, storage.Create(42)); EXPECT_THROW(Eval(op), QueryRuntimeException); } { // Indexing with Null. auto *op = storage.Create( map_literal, storage.Create(PropertyValue::Null)); auto value = Eval(op); EXPECT_TRUE(value.IsNull()); } } TEST_F(ExpressionEvaluatorTest, VertexAndEdgeIndexing) { auto edge_type = dba->EdgeType("edge_type"); auto prop = dba->Property("prop"); auto v1 = dba->InsertVertex(); auto e11 = dba->InsertEdge(v1, v1, edge_type); v1.PropsSet(prop, 42); e11.PropsSet(prop, 43); auto *vertex_id = CreateIdentifierWithValue("v1", v1); auto *edge_id = CreateIdentifierWithValue("e11", e11); { // Legal indexing. auto *op1 = storage.Create( vertex_id, storage.Create("prop")); auto value1 = Eval(op1); EXPECT_EQ(value1.ValueInt(), 42); auto *op2 = storage.Create( edge_id, storage.Create("prop")); auto value2 = Eval(op2); EXPECT_EQ(value2.ValueInt(), 43); } { // Legal indexing, non-existing key. auto *op1 = storage.Create( vertex_id, storage.Create("blah")); auto value1 = Eval(op1); EXPECT_TRUE(value1.IsNull()); auto *op2 = storage.Create( edge_id, storage.Create("blah")); auto value2 = Eval(op2); EXPECT_TRUE(value2.IsNull()); } { // Wrong key type. auto *op1 = storage.Create( vertex_id, storage.Create(1)); EXPECT_THROW(Eval(op1), QueryRuntimeException); auto *op2 = storage.Create( edge_id, storage.Create(1)); EXPECT_THROW(Eval(op2), QueryRuntimeException); } { // Indexing with Null. auto *op1 = storage.Create( vertex_id, storage.Create(PropertyValue::Null)); auto value1 = Eval(op1); EXPECT_TRUE(value1.IsNull()); auto *op2 = storage.Create( edge_id, storage.Create(PropertyValue::Null)); auto value2 = Eval(op2); EXPECT_TRUE(value2.IsNull()); } } TEST_F(ExpressionEvaluatorTest, ListSlicingOperator) { auto *list_literal = storage.Create(std::vector{ storage.Create(1), storage.Create(2), storage.Create(3), storage.Create(4)}); auto extract_ints = [](TypedValue list) { std::vector int_list; for (auto x : list.ValueList()) { int_list.push_back(x.ValueInt()); } return int_list; }; { // Legal slicing with both bounds defined. auto *op = storage.Create( list_literal, storage.Create(2), storage.Create(4)); auto value = Eval(op); EXPECT_THAT(extract_ints(value), ElementsAre(3, 4)); } { // Legal slicing with negative bound. auto *op = storage.Create( list_literal, storage.Create(2), storage.Create(-1)); auto value = Eval(op); EXPECT_THAT(extract_ints(value), ElementsAre(3)); } { // Lower bound larger than upper bound. auto *op = storage.Create( list_literal, storage.Create(2), storage.Create(-4)); auto value = Eval(op); EXPECT_THAT(extract_ints(value), ElementsAre()); } { // Bounds ouf or range. auto *op = storage.Create( list_literal, storage.Create(-100), storage.Create(10)); auto value = Eval(op); EXPECT_THAT(extract_ints(value), ElementsAre(1, 2, 3, 4)); } { // Lower bound undefined. auto *op = storage.Create( list_literal, nullptr, storage.Create(3)); auto value = Eval(op); EXPECT_THAT(extract_ints(value), ElementsAre(1, 2, 3)); } { // Upper bound undefined. auto *op = storage.Create( list_literal, storage.Create(-2), nullptr); auto value = Eval(op); EXPECT_THAT(extract_ints(value), ElementsAre(3, 4)); } { // Bound of illegal type and null value bound. auto *op = storage.Create( list_literal, storage.Create(PropertyValue::Null), storage.Create("mirko")); EXPECT_THROW(Eval(op), QueryRuntimeException); } { // List of illegal type. auto *op = storage.Create( storage.Create("a"), storage.Create(-2), nullptr); EXPECT_THROW(Eval(op), QueryRuntimeException); } { // Null value list with undefined upper bound. auto *op = storage.Create( storage.Create(PropertyValue::Null), storage.Create(-2), nullptr); auto value = Eval(op); EXPECT_TRUE(value.IsNull()); ; } { // Null value index. auto *op = storage.Create( list_literal, storage.Create(-2), storage.Create(PropertyValue::Null)); auto value = Eval(op); EXPECT_TRUE(value.IsNull()); ; } } TEST_F(ExpressionEvaluatorTest, IfOperator) { auto *then_expression = storage.Create(10); auto *else_expression = storage.Create(20); { auto *condition_true = storage.Create(storage.Create(2), storage.Create(2)); auto *op = storage.Create(condition_true, then_expression, else_expression); auto value = Eval(op); ASSERT_EQ(value.ValueInt(), 10); } { auto *condition_false = storage.Create(storage.Create(2), storage.Create(3)); auto *op = storage.Create(condition_false, then_expression, else_expression); auto value = Eval(op); ASSERT_EQ(value.ValueInt(), 20); } { auto *condition_exception = storage.Create(storage.Create(2), storage.Create(3)); auto *op = storage.Create(condition_exception, then_expression, else_expression); ASSERT_THROW(Eval(op), QueryRuntimeException); } } TEST_F(ExpressionEvaluatorTest, NotOperator) { auto *op = storage.Create(storage.Create(false)); auto value = Eval(op); ASSERT_EQ(value.ValueBool(), true); } TEST_F(ExpressionEvaluatorTest, UnaryPlusOperator) { auto *op = storage.Create(storage.Create(5)); auto value = Eval(op); ASSERT_EQ(value.ValueInt(), 5); } TEST_F(ExpressionEvaluatorTest, UnaryMinusOperator) { auto *op = storage.Create(storage.Create(5)); auto value = Eval(op); ASSERT_EQ(value.ValueInt(), -5); } TEST_F(ExpressionEvaluatorTest, IsNullOperator) { auto *op = storage.Create(storage.Create(1)); auto val1 = Eval(op); ASSERT_EQ(val1.ValueBool(), false); op = storage.Create( storage.Create(PropertyValue::Null)); auto val2 = Eval(op); ASSERT_EQ(val2.ValueBool(), true); } TEST_F(ExpressionEvaluatorTest, LabelsTest) { auto v1 = dba->InsertVertex(); v1.add_label(dba->Label("ANIMAL")); v1.add_label(dba->Label("DOG")); v1.add_label(dba->Label("NICE_DOG")); auto *identifier = storage.Create("n"); auto node_symbol = symbol_table.CreateSymbol("n", true); identifier->MapTo(node_symbol); frame[node_symbol] = v1; { auto *op = storage.Create( identifier, std::vector{storage.GetLabelIx("DOG"), storage.GetLabelIx("ANIMAL")}); auto value = Eval(op); EXPECT_EQ(value.ValueBool(), true); } { auto *op = storage.Create( identifier, std::vector{storage.GetLabelIx("DOG"), storage.GetLabelIx("BAD_DOG"), storage.GetLabelIx("ANIMAL")}); auto value = Eval(op); EXPECT_EQ(value.ValueBool(), false); } { frame[node_symbol] = TypedValue::Null; auto *op = storage.Create( identifier, std::vector{storage.GetLabelIx("DOG"), storage.GetLabelIx("BAD_DOG"), storage.GetLabelIx("ANIMAL")}); auto value = Eval(op); EXPECT_TRUE(value.IsNull()); } } TEST_F(ExpressionEvaluatorTest, Aggregation) { auto aggr = storage.Create(storage.Create(42), nullptr, Aggregation::Op::COUNT); auto aggr_sym = symbol_table.CreateSymbol("aggr", true); aggr->MapTo(aggr_sym); frame[aggr_sym] = TypedValue(1); auto value = Eval(aggr); EXPECT_EQ(value.ValueInt(), 1); } TEST_F(ExpressionEvaluatorTest, ListLiteral) { auto *list_literal = storage.Create( std::vector{storage.Create(1), storage.Create("bla"), storage.Create(true)}); TypedValue result = Eval(list_literal); ASSERT_TRUE(result.IsList()); auto &result_elems = result.ValueList(); ASSERT_EQ(3, result_elems.size()); EXPECT_TRUE(result_elems[0].IsInt()); ; EXPECT_TRUE(result_elems[1].IsString()); ; EXPECT_TRUE(result_elems[2].IsBool()); ; } TEST_F(ExpressionEvaluatorTest, ParameterLookup) { ctx.parameters.Add(0, 42); auto *param_lookup = storage.Create(0); auto value = Eval(param_lookup); ASSERT_TRUE(value.IsInt()); EXPECT_EQ(value.ValueInt(), 42); } TEST_F(ExpressionEvaluatorTest, All) { AstStorage storage; auto *ident_x = IDENT("x"); auto *all = ALL("x", LIST(LITERAL(1), LITERAL(2)), WHERE(EQ(ident_x, LITERAL(1)))); const auto x_sym = symbol_table.CreateSymbol("x", true); all->identifier_->MapTo(x_sym); ident_x->MapTo(x_sym); auto value = Eval(all); ASSERT_TRUE(value.IsBool()); EXPECT_FALSE(value.ValueBool()); } TEST_F(ExpressionEvaluatorTest, FunctionAllNullList) { AstStorage storage; auto *all = ALL("x", LITERAL(PropertyValue::Null), WHERE(LITERAL(true))); const auto x_sym = symbol_table.CreateSymbol("x", true); all->identifier_->MapTo(x_sym); auto value = Eval(all); EXPECT_TRUE(value.IsNull()); } TEST_F(ExpressionEvaluatorTest, FunctionAllWhereWrongType) { AstStorage storage; auto *all = ALL("x", LIST(LITERAL(1)), WHERE(LITERAL(2))); const auto x_sym = symbol_table.CreateSymbol("x", true); all->identifier_->MapTo(x_sym); EXPECT_THROW(Eval(all), QueryRuntimeException); } TEST_F(ExpressionEvaluatorTest, FunctionSingle) { AstStorage storage; auto *ident_x = IDENT("x"); auto *single = SINGLE("x", LIST(LITERAL(1), LITERAL(2)), WHERE(EQ(ident_x, LITERAL(1)))); const auto x_sym = symbol_table.CreateSymbol("x", true); single->identifier_->MapTo(x_sym); ident_x->MapTo(x_sym); auto value = Eval(single); ASSERT_TRUE(value.IsBool()); EXPECT_TRUE(value.ValueBool()); } TEST_F(ExpressionEvaluatorTest, FunctionSingle2) { AstStorage storage; auto *ident_x = IDENT("x"); auto *single = SINGLE("x", LIST(LITERAL(1), LITERAL(2)), WHERE(GREATER(ident_x, LITERAL(0)))); const auto x_sym = symbol_table.CreateSymbol("x", true); single->identifier_->MapTo(x_sym); ident_x->MapTo(x_sym); auto value = Eval(single); ASSERT_TRUE(value.IsBool()); EXPECT_FALSE(value.ValueBool()); } TEST_F(ExpressionEvaluatorTest, FunctionSingleNullList) { AstStorage storage; auto *single = SINGLE("x", LITERAL(PropertyValue::Null), WHERE(LITERAL(true))); const auto x_sym = symbol_table.CreateSymbol("x", true); single->identifier_->MapTo(x_sym); auto value = Eval(single); EXPECT_TRUE(value.IsNull()); } TEST_F(ExpressionEvaluatorTest, FunctionReduce) { AstStorage storage; auto *ident_sum = IDENT("sum"); auto *ident_x = IDENT("x"); auto *reduce = REDUCE("sum", LITERAL(0), "x", LIST(LITERAL(1), LITERAL(2)), ADD(ident_sum, ident_x)); const auto sum_sym = symbol_table.CreateSymbol("sum", true); reduce->accumulator_->MapTo(sum_sym); ident_sum->MapTo(sum_sym); const auto x_sym = symbol_table.CreateSymbol("x", true); reduce->identifier_->MapTo(x_sym); ident_x->MapTo(x_sym); auto value = Eval(reduce); ASSERT_TRUE(value.IsInt()); EXPECT_EQ(value.ValueInt(), 3); } TEST_F(ExpressionEvaluatorTest, FunctionExtract) { AstStorage storage; auto *ident_x = IDENT("x"); auto *extract = EXTRACT("x", LIST(LITERAL(1), LITERAL(2), LITERAL(PropertyValue::Null)), ADD(ident_x, LITERAL(1))); const auto x_sym = symbol_table.CreateSymbol("x", true); extract->identifier_->MapTo(x_sym); ident_x->MapTo(x_sym); auto value = Eval(extract); EXPECT_TRUE(value.IsList()); ; auto result = value.ValueList(); EXPECT_EQ(result[0].ValueInt(), 2); EXPECT_EQ(result[1].ValueInt(), 3); EXPECT_TRUE(result[2].IsNull()); } TEST_F(ExpressionEvaluatorTest, FunctionExtractNull) { AstStorage storage; auto *ident_x = IDENT("x"); auto *extract = EXTRACT("x", LITERAL(PropertyValue::Null), ADD(ident_x, LITERAL(1))); const auto x_sym = symbol_table.CreateSymbol("x", true); extract->identifier_->MapTo(x_sym); ident_x->MapTo(x_sym); auto value = Eval(extract); EXPECT_TRUE(value.IsNull()); } TEST_F(ExpressionEvaluatorTest, FunctionExtractExceptions) { AstStorage storage; auto *ident_x = IDENT("x"); auto *extract = EXTRACT("x", LITERAL("bla"), ADD(ident_x, LITERAL(1))); const auto x_sym = symbol_table.CreateSymbol("x", true); extract->identifier_->MapTo(x_sym); ident_x->MapTo(x_sym); EXPECT_THROW(Eval(extract), QueryRuntimeException); } TEST_F(ExpressionEvaluatorTest, Coalesce) { // coalesce() EXPECT_THROW(Eval(COALESCE()), QueryRuntimeException); // coalesce(null, null) EXPECT_TRUE( Eval(COALESCE(LITERAL(TypedValue::Null), LITERAL(TypedValue::Null))) .IsNull()); // coalesce(null, 2, 3) EXPECT_EQ(Eval(COALESCE(LITERAL(TypedValue::Null), LITERAL(2), LITERAL(3))) .ValueInt(), 2); // coalesce(null, 2, assert(false), 3) EXPECT_EQ(Eval(COALESCE(LITERAL(TypedValue::Null), LITERAL(2), FN("ASSERT", LITERAL(false)), LITERAL(3))) .ValueInt(), 2); // (null, assert(false)) EXPECT_THROW( Eval(COALESCE(LITERAL(TypedValue::Null), FN("ASSERT", LITERAL(false)))), QueryRuntimeException); // coalesce([null, null]) EXPECT_FALSE(Eval(COALESCE(LITERAL(TypedValue(std::vector{ TypedValue::Null, TypedValue::Null})))) .IsNull()); } class ExpressionEvaluatorPropertyLookup : public ExpressionEvaluatorTest { protected: std::pair prop_age = std::make_pair("age", dba->Property("age")); std::pair prop_height = std::make_pair("height", dba->Property("height")); Identifier *identifier = storage.Create("element"); Symbol symbol = symbol_table.CreateSymbol("element", true); void SetUp() { identifier->MapTo(symbol); } auto Value(std::pair property) { auto *op = storage.Create( identifier, storage.GetPropertyIx(property.first)); return Eval(op); } }; TEST_F(ExpressionEvaluatorPropertyLookup, Vertex) { auto v1 = dba->InsertVertex(); v1.PropsSet(prop_age.second, 10); frame[symbol] = v1; EXPECT_EQ(Value(prop_age).ValueInt(), 10); EXPECT_TRUE(Value(prop_height).IsNull()); } TEST_F(ExpressionEvaluatorPropertyLookup, Edge) { auto v1 = dba->InsertVertex(); auto v2 = dba->InsertVertex(); auto e12 = dba->InsertEdge(v1, v2, dba->EdgeType("edge_type")); e12.PropsSet(prop_age.second, 10); frame[symbol] = e12; EXPECT_EQ(Value(prop_age).ValueInt(), 10); EXPECT_TRUE(Value(prop_height).IsNull()); } TEST_F(ExpressionEvaluatorPropertyLookup, Null) { frame[symbol] = TypedValue::Null; EXPECT_TRUE(Value(prop_age).IsNull()); } TEST_F(ExpressionEvaluatorPropertyLookup, MapLiteral) { frame[symbol] = std::map{{prop_age.first, 10}}; EXPECT_EQ(Value(prop_age).ValueInt(), 10); EXPECT_TRUE(Value(prop_height).IsNull()); } class FunctionTest : public ExpressionEvaluatorTest { protected: std::vector ExpressionsFromTypedValues( const std::vector &tvs) { std::vector expressions; expressions.reserve(tvs.size()); for (size_t i = 0; i < tvs.size(); ++i) { auto *ident = storage.Create("arg_" + std::to_string(i), true); auto sym = symbol_table.CreateSymbol("arg_" + std::to_string(i), true); ident->MapTo(sym); frame[sym] = tvs[i]; expressions.push_back(ident); } return expressions; } TypedValue EvaluateFunctionWithExprs( const std::string &function_name, const std::vector &expressions) { auto *op = storage.Create(function_name, expressions); return Eval(op); } TypedValue EvaluateFunction(const std::string &function_name, const std::vector &args) { return EvaluateFunctionWithExprs(function_name, ExpressionsFromTypedValues(args)); } }; TEST_F(FunctionTest, EndNode) { ASSERT_THROW(EvaluateFunction("ENDNODE", {}), QueryRuntimeException); ASSERT_TRUE(EvaluateFunction("ENDNODE", {TypedValue::Null}).IsNull()); auto v1 = dba->InsertVertex(); v1.add_label(dba->Label("label1")); auto v2 = dba->InsertVertex(); v2.add_label(dba->Label("label2")); auto e = dba->InsertEdge(v1, v2, dba->EdgeType("t")); ASSERT_TRUE(EvaluateFunction("ENDNODE", {e}) .ValueVertex() .has_label(dba->Label("label2"))); ASSERT_THROW(EvaluateFunction("ENDNODE", {2}), QueryRuntimeException); } TEST_F(FunctionTest, Head) { ASSERT_THROW(EvaluateFunction("HEAD", {}), QueryRuntimeException); ASSERT_TRUE(EvaluateFunction("HEAD", {TypedValue::Null}).IsNull()); std::vector arguments; arguments.push_back(std::vector{3, 4, 5}); ASSERT_EQ(EvaluateFunction("HEAD", arguments).ValueInt(), 3); arguments[0].ValueList().clear(); ASSERT_TRUE(EvaluateFunction("HEAD", arguments).IsNull()); ASSERT_THROW(EvaluateFunction("HEAD", {2}), QueryRuntimeException); } TEST_F(FunctionTest, Properties) { ASSERT_THROW(EvaluateFunction("PROPERTIES", {}), QueryRuntimeException); ASSERT_TRUE(EvaluateFunction("PROPERTIES", {TypedValue::Null}).IsNull()); auto v1 = dba->InsertVertex(); v1.PropsSet(dba->Property("height"), 5); v1.PropsSet(dba->Property("age"), 10); auto v2 = dba->InsertVertex(); auto e = dba->InsertEdge(v1, v2, dba->EdgeType("type1")); e.PropsSet(dba->Property("height"), 3); e.PropsSet(dba->Property("age"), 15); auto prop_values_to_int = [](TypedValue t) { std::unordered_map properties; for (auto property : t.Value>()) { properties[property.first] = property.second.ValueInt(); } return properties; }; ASSERT_THAT(prop_values_to_int(EvaluateFunction("PROPERTIES", {v1})), UnorderedElementsAre(testing::Pair("height", 5), testing::Pair("age", 10))); ASSERT_THAT(prop_values_to_int(EvaluateFunction("PROPERTIES", {e})), UnorderedElementsAre(testing::Pair("height", 3), testing::Pair("age", 15))); ASSERT_THROW(EvaluateFunction("PROPERTIES", {2}), QueryRuntimeException); } TEST_F(FunctionTest, Last) { ASSERT_THROW(EvaluateFunction("LAST", {}), QueryRuntimeException); ASSERT_TRUE(EvaluateFunction("LAST", {TypedValue::Null}).IsNull()); std::vector arguments; arguments.push_back(std::vector{3, 4, 5}); ASSERT_EQ(EvaluateFunction("LAST", arguments).ValueInt(), 5); arguments[0].ValueList().clear(); ASSERT_TRUE(EvaluateFunction("LAST", arguments).IsNull()); ASSERT_THROW(EvaluateFunction("LAST", {5}), QueryRuntimeException); } TEST_F(FunctionTest, Size) { ASSERT_THROW(EvaluateFunction("SIZE", {}), QueryRuntimeException); ASSERT_TRUE(EvaluateFunction("SIZE", {TypedValue::Null}).IsNull()); std::vector arguments; arguments.push_back(std::vector{3, 4, 5}); ASSERT_EQ(EvaluateFunction("SIZE", arguments).ValueInt(), 3); ASSERT_EQ(EvaluateFunction("SIZE", {"john"}).ValueInt(), 4); ASSERT_EQ(EvaluateFunction("SIZE", {std::map{ {"a", 5}, {"b", true}, {"c", "123"}}}) .ValueInt(), 3); ASSERT_THROW(EvaluateFunction("SIZE", {5}), QueryRuntimeException); auto v0 = dba->InsertVertex(); query::Path path(v0); EXPECT_EQ(EvaluateFunction("SIZE", {path}).ValueInt(), 0); auto v1 = dba->InsertVertex(); path.Expand(dba->InsertEdge(v0, v1, dba->EdgeType("type"))); path.Expand(v1); EXPECT_EQ(EvaluateFunction("SIZE", {path}).ValueInt(), 1); } TEST_F(FunctionTest, StartNode) { ASSERT_THROW(EvaluateFunction("STARTNODE", {}), QueryRuntimeException); ASSERT_TRUE(EvaluateFunction("STARTNODE", {TypedValue::Null}).IsNull()); auto v1 = dba->InsertVertex(); v1.add_label(dba->Label("label1")); auto v2 = dba->InsertVertex(); v2.add_label(dba->Label("label2")); auto e = dba->InsertEdge(v1, v2, dba->EdgeType("t")); ASSERT_TRUE(EvaluateFunction("STARTNODE", {e}) .ValueVertex() .has_label(dba->Label("label1"))); ASSERT_THROW(EvaluateFunction("STARTNODE", {2}), QueryRuntimeException); } TEST_F(FunctionTest, Degree) { ASSERT_THROW(EvaluateFunction("DEGREE", {}), QueryRuntimeException); ASSERT_TRUE(EvaluateFunction("DEGREE", {TypedValue::Null}).IsNull()); auto v1 = dba->InsertVertex(); auto v2 = dba->InsertVertex(); auto v3 = dba->InsertVertex(); auto e12 = dba->InsertEdge(v1, v2, dba->EdgeType("t")); dba->InsertEdge(v3, v2, dba->EdgeType("t")); ASSERT_EQ(EvaluateFunction("DEGREE", {v1}).ValueInt(), 1); ASSERT_EQ(EvaluateFunction("DEGREE", {v2}).ValueInt(), 2); ASSERT_EQ(EvaluateFunction("DEGREE", {v3}).ValueInt(), 1); ASSERT_THROW(EvaluateFunction("DEGREE", {2}), QueryRuntimeException); ASSERT_THROW(EvaluateFunction("DEGREE", {e12}), QueryRuntimeException); } TEST_F(FunctionTest, InDegree) { ASSERT_THROW(EvaluateFunction("INDEGREE", {}), QueryRuntimeException); ASSERT_TRUE(EvaluateFunction("INDEGREE", {TypedValue::Null}).IsNull()); auto v1 = dba->InsertVertex(); auto v2 = dba->InsertVertex(); auto v3 = dba->InsertVertex(); auto e12 = dba->InsertEdge(v1, v2, dba->EdgeType("t")); dba->InsertEdge(v3, v2, dba->EdgeType("t")); ASSERT_EQ(EvaluateFunction("INDEGREE", {v1}).ValueInt(), 0); ASSERT_EQ(EvaluateFunction("INDEGREE", {v2}).ValueInt(), 2); ASSERT_EQ(EvaluateFunction("INDEGREE", {v3}).ValueInt(), 0); ASSERT_THROW(EvaluateFunction("INDEGREE", {2}), QueryRuntimeException); ASSERT_THROW(EvaluateFunction("INDEGREE", {e12}), QueryRuntimeException); } TEST_F(FunctionTest, OutDegree) { ASSERT_THROW(EvaluateFunction("OUTDEGREE", {}), QueryRuntimeException); ASSERT_TRUE(EvaluateFunction("OUTDEGREE", {TypedValue::Null}).IsNull()); auto v1 = dba->InsertVertex(); auto v2 = dba->InsertVertex(); auto v3 = dba->InsertVertex(); auto e12 = dba->InsertEdge(v1, v2, dba->EdgeType("t")); dba->InsertEdge(v3, v2, dba->EdgeType("t")); ASSERT_EQ(EvaluateFunction("OUTDEGREE", {v1}).ValueInt(), 1); ASSERT_EQ(EvaluateFunction("OUTDEGREE", {v2}).ValueInt(), 0); ASSERT_EQ(EvaluateFunction("OUTDEGREE", {v3}).ValueInt(), 1); ASSERT_THROW(EvaluateFunction("OUTDEGREE", {2}), QueryRuntimeException); ASSERT_THROW(EvaluateFunction("OUTDEGREE", {e12}), QueryRuntimeException); } TEST_F(FunctionTest, ToBoolean) { ASSERT_THROW(EvaluateFunction("TOBOOLEAN", {}), QueryRuntimeException); ASSERT_TRUE(EvaluateFunction("TOBOOLEAN", {TypedValue::Null}).IsNull()); ASSERT_EQ(EvaluateFunction("TOBOOLEAN", {123}).ValueBool(), true); ASSERT_EQ(EvaluateFunction("TOBOOLEAN", {-213}).ValueBool(), true); ASSERT_EQ(EvaluateFunction("TOBOOLEAN", {0}).ValueBool(), false); ASSERT_EQ(EvaluateFunction("TOBOOLEAN", {" trUE \n\t"}).ValueBool(), true); ASSERT_EQ(EvaluateFunction("TOBOOLEAN", {"\n\tFalsE"}).ValueBool(), false); ASSERT_TRUE(EvaluateFunction("TOBOOLEAN", {"\n\tFALSEA "}).IsNull()); ASSERT_EQ(EvaluateFunction("TOBOOLEAN", {true}).ValueBool(), true); ASSERT_EQ(EvaluateFunction("TOBOOLEAN", {false}).ValueBool(), false); } TEST_F(FunctionTest, ToFloat) { ASSERT_THROW(EvaluateFunction("TOFLOAT", {}), QueryRuntimeException); ASSERT_TRUE(EvaluateFunction("TOFLOAT", {TypedValue::Null}).IsNull()); ASSERT_EQ(EvaluateFunction("TOFLOAT", {" -3.5 \n\t"}).ValueDouble(), -3.5); ASSERT_EQ(EvaluateFunction("TOFLOAT", {"\n\t0.5e-1"}).ValueDouble(), 0.05); ASSERT_TRUE(EvaluateFunction("TOFLOAT", {"\n\t3.4e-3X "}).IsNull()); ASSERT_EQ(EvaluateFunction("TOFLOAT", {-3.5}).ValueDouble(), -3.5); ASSERT_EQ(EvaluateFunction("TOFLOAT", {-3}).ValueDouble(), -3.0); ASSERT_THROW(EvaluateFunction("TOFLOAT", {true}), QueryRuntimeException); } TEST_F(FunctionTest, ToInteger) { ASSERT_THROW(EvaluateFunction("TOINTEGER", {}), QueryRuntimeException); ASSERT_TRUE(EvaluateFunction("TOINTEGER", {TypedValue::Null}).IsNull()); ASSERT_EQ(EvaluateFunction("TOINTEGER", {false}).ValueInt(), 0); ASSERT_EQ(EvaluateFunction("TOINTEGER", {true}).ValueInt(), 1); ASSERT_EQ(EvaluateFunction("TOINTEGER", {"\n\t3"}).ValueInt(), 3); ASSERT_EQ(EvaluateFunction("TOINTEGER", {" -3.5 \n\t"}).ValueInt(), -3); ASSERT_TRUE(EvaluateFunction("TOINTEGER", {"\n\t3X "}).IsNull()); ASSERT_EQ(EvaluateFunction("TOINTEGER", {-3.5}).ValueInt(), -3); ASSERT_EQ(EvaluateFunction("TOINTEGER", {3.5}).ValueInt(), 3); } TEST_F(FunctionTest, Type) { ASSERT_THROW(EvaluateFunction("TYPE", {}), QueryRuntimeException); ASSERT_TRUE(EvaluateFunction("TYPE", {TypedValue::Null}).IsNull()); auto v1 = dba->InsertVertex(); v1.add_label(dba->Label("label1")); auto v2 = dba->InsertVertex(); v2.add_label(dba->Label("label2")); auto e = dba->InsertEdge(v1, v2, dba->EdgeType("type1")); ASSERT_EQ(EvaluateFunction("TYPE", {e}).ValueString(), "type1"); ASSERT_THROW(EvaluateFunction("TYPE", {2}), QueryRuntimeException); } TEST_F(FunctionTest, Labels) { ASSERT_THROW(EvaluateFunction("LABELS", {}), QueryRuntimeException); ASSERT_TRUE(EvaluateFunction("LABELS", {TypedValue::Null}).IsNull()); auto v = dba->InsertVertex(); v.add_label(dba->Label("label1")); v.add_label(dba->Label("label2")); std::vector labels; auto _labels = EvaluateFunction("LABELS", {v}).ValueList(); for (auto label : _labels) { labels.push_back(label.ValueString()); } ASSERT_THAT(labels, UnorderedElementsAre("label1", "label2")); ASSERT_THROW(EvaluateFunction("LABELS", {2}), QueryRuntimeException); } TEST_F(FunctionTest, NodesRelationships) { EXPECT_THROW(EvaluateFunction("NODES", {}), QueryRuntimeException); EXPECT_THROW(EvaluateFunction("RELATIONSHIPS", {}), QueryRuntimeException); EXPECT_TRUE(EvaluateFunction("NODES", {TypedValue::Null}).IsNull()); EXPECT_TRUE(EvaluateFunction("RELATIONSHIPS", {TypedValue::Null}).IsNull()); { auto v1 = dba->InsertVertex(); auto v2 = dba->InsertVertex(); auto v3 = dba->InsertVertex(); auto e1 = dba->InsertEdge(v1, v2, dba->EdgeType("Type")); auto e2 = dba->InsertEdge(v2, v3, dba->EdgeType("Type")); query::Path path(v1, e1, v2, e2, v3); auto _nodes = EvaluateFunction("NODES", {path}).ValueList(); std::vector nodes; for (const auto &node : _nodes) { nodes.push_back(node.ValueVertex()); } EXPECT_THAT(nodes, ElementsAre(v1, v2, v3)); auto _edges = EvaluateFunction("RELATIONSHIPS", {path}).ValueList(); std::vector edges; for (const auto &edge : _edges) { edges.push_back(edge.ValueEdge()); } EXPECT_THAT(edges, ElementsAre(e1, e2)); } EXPECT_THROW(EvaluateFunction("NODES", {2}), QueryRuntimeException); EXPECT_THROW(EvaluateFunction("RELATIONSHIPS", {2}), QueryRuntimeException); } TEST_F(FunctionTest, Range) { EXPECT_THROW(EvaluateFunction("RANGE", {}), QueryRuntimeException); EXPECT_TRUE(EvaluateFunction("RANGE", {1, 2, TypedValue::Null}).IsNull()); EXPECT_THROW(EvaluateFunction("RANGE", {1, TypedValue::Null, 1.3}), QueryRuntimeException); EXPECT_THROW(EvaluateFunction("RANGE", {1, 2, 0}), QueryRuntimeException); EXPECT_THAT(ToList(EvaluateFunction("RANGE", {1, 3})), ElementsAre(1, 2, 3)); EXPECT_THAT(ToList(EvaluateFunction("RANGE", {-1, 5, 2})), ElementsAre(-1, 1, 3, 5)); EXPECT_THAT(ToList(EvaluateFunction("RANGE", {2, 10, 3})), ElementsAre(2, 5, 8)); EXPECT_THAT(ToList(EvaluateFunction("RANGE", {2, 2, 2})), ElementsAre(2)); EXPECT_THAT(ToList(EvaluateFunction("RANGE", {3, 0, 5})), ElementsAre()); EXPECT_THAT(ToList(EvaluateFunction("RANGE", {5, 1, -2})), ElementsAre(5, 3, 1)); EXPECT_THAT(ToList(EvaluateFunction("RANGE", {6, 1, -2})), ElementsAre(6, 4, 2)); EXPECT_THAT(ToList(EvaluateFunction("RANGE", {2, 2, -3})), ElementsAre(2)); EXPECT_THAT(ToList(EvaluateFunction("RANGE", {-2, 4, -1})), ElementsAre()); } TEST_F(FunctionTest, Keys) { ASSERT_THROW(EvaluateFunction("KEYS", {}), QueryRuntimeException); ASSERT_TRUE(EvaluateFunction("KEYS", {TypedValue::Null}).IsNull()); auto v1 = dba->InsertVertex(); v1.PropsSet(dba->Property("height"), 5); v1.PropsSet(dba->Property("age"), 10); auto v2 = dba->InsertVertex(); auto e = dba->InsertEdge(v1, v2, dba->EdgeType("type1")); e.PropsSet(dba->Property("width"), 3); e.PropsSet(dba->Property("age"), 15); auto prop_keys_to_string = [](TypedValue t) { std::vector keys; for (auto property : t.ValueList()) { keys.push_back(property.ValueString()); } return keys; }; ASSERT_THAT(prop_keys_to_string(EvaluateFunction("KEYS", {v1})), UnorderedElementsAre("height", "age")); ASSERT_THAT(prop_keys_to_string(EvaluateFunction("KEYS", {e})), UnorderedElementsAre("width", "age")); ASSERT_THROW(EvaluateFunction("KEYS", {2}), QueryRuntimeException); } TEST_F(FunctionTest, Tail) { ASSERT_THROW(EvaluateFunction("TAIL", {}), QueryRuntimeException); ASSERT_TRUE(EvaluateFunction("TAIL", {TypedValue::Null}).IsNull()); std::vector arguments; arguments.push_back(std::vector{}); ASSERT_EQ(EvaluateFunction("TAIL", arguments).ValueList().size(), 0U); arguments[0] = std::vector{3, 4, true, "john"}; auto list = EvaluateFunction("TAIL", arguments).ValueList(); ASSERT_EQ(list.size(), 3U); ASSERT_EQ(list[0].ValueInt(), 4); ASSERT_EQ(list[1].ValueBool(), true); ASSERT_EQ(list[2].ValueString(), "john"); ASSERT_THROW(EvaluateFunction("TAIL", {2}), QueryRuntimeException); } TEST_F(FunctionTest, UniformSample) { ASSERT_THROW(EvaluateFunction("UNIFORMSAMPLE", {}), QueryRuntimeException); ASSERT_TRUE( EvaluateFunction("UNIFORMSAMPLE", {TypedValue::Null, TypedValue::Null}) .IsNull()); ASSERT_TRUE( EvaluateFunction("UNIFORMSAMPLE", {TypedValue::Null, 1}).IsNull()); ASSERT_THROW(EvaluateFunction("UNIFORMSAMPLE", {std::vector{}, TypedValue::Null}), QueryRuntimeException); ASSERT_TRUE(EvaluateFunction("UNIFORMSAMPLE", {std::vector{}, 1}) .IsNull()); ASSERT_THROW( EvaluateFunction("UNIFORMSAMPLE", {std::vector{1, 2, 3}, -1}), QueryRuntimeException); ASSERT_EQ( EvaluateFunction("UNIFORMSAMPLE", {std::vector{1, 2, 3}, 0}) .ValueList() .size(), 0); ASSERT_EQ( EvaluateFunction("UNIFORMSAMPLE", {std::vector{1, 2, 3}, 2}) .ValueList() .size(), 2); ASSERT_EQ( EvaluateFunction("UNIFORMSAMPLE", {std::vector{1, 2, 3}, 3}) .ValueList() .size(), 3); ASSERT_EQ( EvaluateFunction("UNIFORMSAMPLE", {std::vector{1, 2, 3}, 5}) .ValueList() .size(), 5); } TEST_F(FunctionTest, Abs) { ASSERT_THROW(EvaluateFunction("ABS", {}), QueryRuntimeException); ASSERT_TRUE(EvaluateFunction("ABS", {TypedValue::Null}).IsNull()); ASSERT_EQ(EvaluateFunction("ABS", {-2}).ValueInt(), 2); ASSERT_EQ(EvaluateFunction("ABS", {-2.5}).ValueDouble(), 2.5); ASSERT_THROW(EvaluateFunction("ABS", {true}), QueryRuntimeException); } // Test if log works. If it does then all functions wrapped with // WRAP_CMATH_FLOAT_FUNCTION macro should work and are not gonna be tested for // correctnes.. TEST_F(FunctionTest, Log) { ASSERT_THROW(EvaluateFunction("LOG", {}), QueryRuntimeException); ASSERT_TRUE(EvaluateFunction("LOG", {TypedValue::Null}).IsNull()); ASSERT_DOUBLE_EQ(EvaluateFunction("LOG", {2}).ValueDouble(), log(2)); ASSERT_DOUBLE_EQ(EvaluateFunction("LOG", {1.5}).ValueDouble(), log(1.5)); // Not portable, but should work on most platforms. ASSERT_TRUE(std::isnan(EvaluateFunction("LOG", {-1.5}).ValueDouble())); ASSERT_THROW(EvaluateFunction("LOG", {true}), QueryRuntimeException); } // Function Round wraps round from cmath and will work if FunctionTest.Log test // passes. This test is used to show behavior of round since it differs from // neo4j's round. TEST_F(FunctionTest, Round) { ASSERT_THROW(EvaluateFunction("ROUND", {}), QueryRuntimeException); ASSERT_TRUE(EvaluateFunction("ROUND", {TypedValue::Null}).IsNull()); ASSERT_EQ(EvaluateFunction("ROUND", {-2}).ValueDouble(), -2); ASSERT_EQ(EvaluateFunction("ROUND", {-2.4}).ValueDouble(), -2); ASSERT_EQ(EvaluateFunction("ROUND", {-2.5}).ValueDouble(), -3); ASSERT_EQ(EvaluateFunction("ROUND", {-2.6}).ValueDouble(), -3); ASSERT_EQ(EvaluateFunction("ROUND", {2.4}).ValueDouble(), 2); ASSERT_EQ(EvaluateFunction("ROUND", {2.5}).ValueDouble(), 3); ASSERT_EQ(EvaluateFunction("ROUND", {2.6}).ValueDouble(), 3); ASSERT_THROW(EvaluateFunction("ROUND", {true}), QueryRuntimeException); } // Check if wrapped functions are callable (check if everything was spelled // correctly...). Wrapper correctnes is checked in FunctionTest.Log function // test. TEST_F(FunctionTest, WrappedMathFunctions) { for (auto function_name : {"FLOOR", "CEIL", "ROUND", "EXP", "LOG", "LOG10", "SQRT", "ACOS", "ASIN", "ATAN", "COS", "SIN", "TAN"}) { EvaluateFunction(function_name, {0.5}); } } TEST_F(FunctionTest, Atan2) { ASSERT_THROW(EvaluateFunction("ATAN2", {}), QueryRuntimeException); ASSERT_TRUE(EvaluateFunction("ATAN2", {TypedValue::Null, 1}).IsNull()); ASSERT_TRUE(EvaluateFunction("ATAN2", {1, TypedValue::Null}).IsNull()); ASSERT_DOUBLE_EQ(EvaluateFunction("ATAN2", {2, -1.0}).ValueDouble(), atan2(2, -1)); ASSERT_THROW(EvaluateFunction("ATAN2", {3.0, true}), QueryRuntimeException); } TEST_F(FunctionTest, Sign) { ASSERT_THROW(EvaluateFunction("SIGN", {}), QueryRuntimeException); ASSERT_TRUE(EvaluateFunction("SIGN", {TypedValue::Null}).IsNull()); ASSERT_EQ(EvaluateFunction("SIGN", {-2}).ValueInt(), -1); ASSERT_EQ(EvaluateFunction("SIGN", {-0.2}).ValueInt(), -1); ASSERT_EQ(EvaluateFunction("SIGN", {0.0}).ValueInt(), 0); ASSERT_EQ(EvaluateFunction("SIGN", {2.5}).ValueInt(), 1); ASSERT_THROW(EvaluateFunction("SIGN", {true}), QueryRuntimeException); } TEST_F(FunctionTest, E) { ASSERT_THROW(EvaluateFunction("E", {1}), QueryRuntimeException); ASSERT_DOUBLE_EQ(EvaluateFunction("E", {}).ValueDouble(), M_E); } TEST_F(FunctionTest, Pi) { ASSERT_THROW(EvaluateFunction("PI", {1}), QueryRuntimeException); ASSERT_DOUBLE_EQ(EvaluateFunction("PI", {}).ValueDouble(), M_PI); } TEST_F(FunctionTest, Rand) { ASSERT_THROW(EvaluateFunction("RAND", {1}), QueryRuntimeException); ASSERT_GE(EvaluateFunction("RAND", {}).ValueDouble(), 0.0); ASSERT_LT(EvaluateFunction("RAND", {}).ValueDouble(), 1.0); } TEST_F(FunctionTest, StartsWith) { EXPECT_THROW(EvaluateFunction(kStartsWith, {}), QueryRuntimeException); EXPECT_TRUE(EvaluateFunction(kStartsWith, {"a", TypedValue::Null}).IsNull()); EXPECT_THROW(EvaluateFunction(kStartsWith, {TypedValue::Null, 1.3}), QueryRuntimeException); EXPECT_TRUE(EvaluateFunction(kStartsWith, {"abc", "abc"}).ValueBool()); EXPECT_TRUE(EvaluateFunction(kStartsWith, {"abcdef", "abc"}).ValueBool()); EXPECT_FALSE(EvaluateFunction(kStartsWith, {"abcdef", "aBc"}).ValueBool()); EXPECT_FALSE(EvaluateFunction(kStartsWith, {"abc", "abcd"}).ValueBool()); } TEST_F(FunctionTest, EndsWith) { EXPECT_THROW(EvaluateFunction(kEndsWith, {}), QueryRuntimeException); EXPECT_TRUE(EvaluateFunction(kEndsWith, {"a", TypedValue::Null}).IsNull()); EXPECT_THROW(EvaluateFunction(kEndsWith, {TypedValue::Null, 1.3}), QueryRuntimeException); EXPECT_TRUE(EvaluateFunction(kEndsWith, {"abc", "abc"}).ValueBool()); EXPECT_TRUE(EvaluateFunction(kEndsWith, {"abcdef", "def"}).ValueBool()); EXPECT_FALSE(EvaluateFunction(kEndsWith, {"abcdef", "dEf"}).ValueBool()); EXPECT_FALSE(EvaluateFunction(kEndsWith, {"bcd", "abcd"}).ValueBool()); } TEST_F(FunctionTest, Contains) { EXPECT_THROW(EvaluateFunction(kContains, {}), QueryRuntimeException); EXPECT_TRUE(EvaluateFunction(kContains, {"a", TypedValue::Null}).IsNull()); EXPECT_THROW(EvaluateFunction(kContains, {TypedValue::Null, 1.3}), QueryRuntimeException); EXPECT_TRUE(EvaluateFunction(kContains, {"abc", "abc"}).ValueBool()); EXPECT_TRUE(EvaluateFunction(kContains, {"abcde", "bcd"}).ValueBool()); EXPECT_FALSE(EvaluateFunction(kContains, {"cde", "abcdef"}).ValueBool()); EXPECT_FALSE(EvaluateFunction(kContains, {"abcdef", "dEf"}).ValueBool()); } TEST_F(FunctionTest, Assert) { // Invalid calls. ASSERT_THROW(EvaluateFunction("ASSERT", {}), QueryRuntimeException); ASSERT_THROW(EvaluateFunction("ASSERT", {false, false}), QueryRuntimeException); ASSERT_THROW(EvaluateFunction("ASSERT", {"string", false}), QueryRuntimeException); ASSERT_THROW(EvaluateFunction("ASSERT", {false, "reason", true}), QueryRuntimeException); // Valid calls, assertion fails. ASSERT_THROW(EvaluateFunction("ASSERT", {false}), QueryRuntimeException); ASSERT_THROW(EvaluateFunction("ASSERT", {false, "message"}), QueryRuntimeException); try { EvaluateFunction("ASSERT", {false, "bbgba"}); } catch (QueryRuntimeException &e) { ASSERT_TRUE(std::string(e.what()).find("bbgba") != std::string::npos); } // Valid calls, assertion passes. ASSERT_TRUE(EvaluateFunction("ASSERT", {true}).ValueBool()); ASSERT_TRUE(EvaluateFunction("ASSERT", {true, "message"}).ValueBool()); } TEST_F(FunctionTest, Counter) { EXPECT_THROW(EvaluateFunction("COUNTER", {}), QueryRuntimeException); EXPECT_THROW(EvaluateFunction("COUNTER", {"a", "b"}), QueryRuntimeException); EXPECT_EQ(EvaluateFunction("COUNTER", {"c1"}).ValueInt(), 0); EXPECT_EQ(EvaluateFunction("COUNTER", {"c1"}).ValueInt(), 1); EXPECT_EQ(EvaluateFunction("COUNTER", {"c2"}).ValueInt(), 0); EXPECT_EQ(EvaluateFunction("COUNTER", {"c1"}).ValueInt(), 2); EXPECT_EQ(EvaluateFunction("COUNTER", {"c2"}).ValueInt(), 1); } TEST_F(FunctionTest, CounterSet) { EXPECT_THROW(EvaluateFunction("COUNTERSET", {}), QueryRuntimeException); EXPECT_THROW(EvaluateFunction("COUNTERSET", {"a"}), QueryRuntimeException); EXPECT_THROW(EvaluateFunction("COUNTERSET", {"a", "b"}), QueryRuntimeException); EXPECT_THROW(EvaluateFunction("COUNTERSET", {"a", 11, 12}), QueryRuntimeException); EXPECT_EQ(EvaluateFunction("COUNTER", {"c1"}).ValueInt(), 0); EvaluateFunction("COUNTERSET", {"c1", 12}); EXPECT_EQ(EvaluateFunction("COUNTER", {"c1"}).ValueInt(), 12); EvaluateFunction("COUNTERSET", {"c2", 42}); EXPECT_EQ(EvaluateFunction("COUNTER", {"c2"}).ValueInt(), 42); EXPECT_EQ(EvaluateFunction("COUNTER", {"c1"}).ValueInt(), 13); EXPECT_EQ(EvaluateFunction("COUNTER", {"c2"}).ValueInt(), 43); } TEST_F(FunctionTest, IndexInfo) { EXPECT_THROW(EvaluateFunction("INDEXINFO", {1}), QueryRuntimeException); EXPECT_EQ(EvaluateFunction("INDEXINFO", {}).ValueList().size(), 0); dba->InsertVertex().add_label(dba->Label("l1")); { auto info = ToList(EvaluateFunction("INDEXINFO", {})); EXPECT_EQ(info.size(), 1); EXPECT_EQ(info[0], ":l1"); } { dba->BuildIndex(dba->Label("l1"), dba->Property("prop"), false); auto info = ToList(EvaluateFunction("INDEXINFO", {})); EXPECT_EQ(info.size(), 2); EXPECT_THAT(info, testing::UnorderedElementsAre(":l1", ":l1(prop)")); } { dba->BuildIndex(dba->Label("l1"), dba->Property("prop1"), true); auto info = ToList(EvaluateFunction("INDEXINFO", {})); EXPECT_EQ(info.size(), 3); EXPECT_THAT(info, testing::UnorderedElementsAre(":l1", ":l1(prop)", ":l1(prop1) unique")); } } TEST_F(FunctionTest, Id) { auto va = dba->InsertVertex(); auto ea = dba->InsertEdge(va, va, dba->EdgeType("edge")); auto vb = dba->InsertVertex(); EXPECT_EQ(EvaluateFunction("ID", {va}).ValueInt(), 0); EXPECT_EQ(EvaluateFunction("ID", {ea}).ValueInt(), 0); EXPECT_EQ(EvaluateFunction("ID", {vb}).ValueInt(), 1); EXPECT_THROW(EvaluateFunction("ID", {}), QueryRuntimeException); EXPECT_THROW(EvaluateFunction("ID", {0}), QueryRuntimeException); EXPECT_THROW(EvaluateFunction("ID", {va, ea}), QueryRuntimeException); } /* TODO: FIXME TEST_F(FunctionTest, WorkerIdException) { auto va = dba->InsertVertex(); EXPECT_THROW(EvaluateFunction("WORKERID", {}), QueryRuntimeException); EXPECT_THROW(EvaluateFunction("WORKERID", {va, va}), QueryRuntimeException); } */ /* TODO: FIXME TEST_F(FunctionTest, WorkerIdSingleNode) { auto va = dba->InsertVertex(); EXPECT_EQ(EvaluateFunction("WORKERID", {va}).ValueInt(), 0); } */ TEST_F(FunctionTest, ToStringNull) { EXPECT_TRUE(EvaluateFunction("TOSTRING", {TypedValue::Null}).IsNull()); } TEST_F(FunctionTest, ToStringString) { EXPECT_EQ(EvaluateFunction("TOSTRING", {""}).ValueString(), ""); EXPECT_EQ(EvaluateFunction("TOSTRING", {"this is a string"}).ValueString(), "this is a string"); } TEST_F(FunctionTest, ToStringInteger) { EXPECT_EQ(EvaluateFunction("TOSTRING", {-23321312}).ValueString(), "-23321312"); EXPECT_EQ(EvaluateFunction("TOSTRING", {0}).ValueString(), "0"); EXPECT_EQ(EvaluateFunction("TOSTRING", {42}).ValueString(), "42"); } TEST_F(FunctionTest, ToStringDouble) { EXPECT_EQ(EvaluateFunction("TOSTRING", {-42.42}).ValueString(), "-42.420000"); EXPECT_EQ(EvaluateFunction("TOSTRING", {0.0}).ValueString(), "0.000000"); EXPECT_EQ(EvaluateFunction("TOSTRING", {238910.2313217}).ValueString(), "238910.231322"); } TEST_F(FunctionTest, ToStringBool) { EXPECT_EQ(EvaluateFunction("TOSTRING", {true}).ValueString(), "true"); EXPECT_EQ(EvaluateFunction("TOSTRING", {false}).ValueString(), "false"); } TEST_F(FunctionTest, ToStringExceptions) { EXPECT_THROW(EvaluateFunction("TOSTRING", {1, 2, 3}), QueryRuntimeException); std::vector l{1, 2, 3}; EXPECT_THROW(EvaluateFunction("TOSTRING", l), QueryRuntimeException); } TEST_F(FunctionTest, Timestamp) { ctx.timestamp = 42; EXPECT_EQ(EvaluateFunction("TIMESTAMP", {}).ValueInt(), 42); } TEST_F(FunctionTest, TimestampExceptions) { ctx.timestamp = 42; EXPECT_THROW(EvaluateFunction("TIMESTAMP", {1}).ValueInt(), QueryRuntimeException); } TEST_F(FunctionTest, Left) { EXPECT_THROW(EvaluateFunction("LEFT", {}), QueryRuntimeException); EXPECT_TRUE( EvaluateFunction("LEFT", {TypedValue::Null, TypedValue::Null}).IsNull()); EXPECT_TRUE(EvaluateFunction("LEFT", {TypedValue::Null, 10}).IsNull()); EXPECT_THROW(EvaluateFunction("LEFT", {TypedValue::Null, -10}), QueryRuntimeException); EXPECT_EQ(EvaluateFunction("LEFT", {"memgraph", 0}).ValueString(), ""); EXPECT_EQ(EvaluateFunction("LEFT", {"memgraph", 3}).ValueString(), "mem"); EXPECT_EQ(EvaluateFunction("LEFT", {"memgraph", 1000}).ValueString(), "memgraph"); EXPECT_THROW(EvaluateFunction("LEFT", {"memgraph", -10}), QueryRuntimeException); EXPECT_THROW(EvaluateFunction("LEFT", {"memgraph", "graph"}), QueryRuntimeException); EXPECT_THROW(EvaluateFunction("LEFT", {132, 10}), QueryRuntimeException); } TEST_F(FunctionTest, Right) { EXPECT_THROW(EvaluateFunction("RIGHT", {}), QueryRuntimeException); EXPECT_TRUE( EvaluateFunction("RIGHT", {TypedValue::Null, TypedValue::Null}).IsNull()); EXPECT_TRUE(EvaluateFunction("RIGHT", {TypedValue::Null, 10}).IsNull()); EXPECT_THROW(EvaluateFunction("RIGHT", {TypedValue::Null, -10}), QueryRuntimeException); EXPECT_EQ(EvaluateFunction("RIGHT", {"memgraph", 0}).ValueString(), ""); EXPECT_EQ(EvaluateFunction("RIGHT", {"memgraph", 3}).ValueString(), "aph"); EXPECT_EQ(EvaluateFunction("RIGHT", {"memgraph", 1000}).ValueString(), "memgraph"); EXPECT_THROW(EvaluateFunction("RIGHT", {"memgraph", -10}), QueryRuntimeException); EXPECT_THROW(EvaluateFunction("RIGHT", {"memgraph", "graph"}), QueryRuntimeException); EXPECT_THROW(EvaluateFunction("RIGHT", {132, 10}), QueryRuntimeException); } TEST_F(FunctionTest, Trimming) { EXPECT_TRUE(EvaluateFunction("LTRIM", {TypedValue::Null}).IsNull()); EXPECT_TRUE(EvaluateFunction("RTRIM", {TypedValue::Null}).IsNull()); EXPECT_TRUE(EvaluateFunction("TRIM", {TypedValue::Null}).IsNull()); EXPECT_EQ(EvaluateFunction("LTRIM", {" abc "}).ValueString(), "abc "); EXPECT_EQ(EvaluateFunction("RTRIM", {" abc "}).ValueString(), " abc"); EXPECT_EQ(EvaluateFunction("TRIM", {"abc"}).ValueString(), "abc"); EXPECT_THROW(EvaluateFunction("LTRIM", {"x", "y"}), QueryRuntimeException); EXPECT_THROW(EvaluateFunction("RTRIM", {"x", "y"}), QueryRuntimeException); EXPECT_THROW(EvaluateFunction("TRIM", {"x", "y"}), QueryRuntimeException); } TEST_F(FunctionTest, Reverse) { EXPECT_TRUE(EvaluateFunction("REVERSE", {TypedValue::Null}).IsNull()); EXPECT_EQ(EvaluateFunction("REVERSE", {"abc"}).ValueString(), "cba"); EXPECT_THROW(EvaluateFunction("REVERSE", {"x", "y"}), QueryRuntimeException); } TEST_F(FunctionTest, Replace) { EXPECT_THROW(EvaluateFunction("REPLACE", {}), QueryRuntimeException); EXPECT_TRUE( EvaluateFunction("REPLACE", {TypedValue::Null, "l", "w"}).IsNull()); EXPECT_TRUE( EvaluateFunction("REPLACE", {"hello", TypedValue::Null, "w"}).IsNull()); EXPECT_TRUE( EvaluateFunction("REPLACE", {"hello", "l", TypedValue::Null}).IsNull()); EXPECT_EQ(EvaluateFunction("REPLACE", {"hello", "l", "w"}).ValueString(), "hewwo"); EXPECT_THROW(EvaluateFunction("REPLACE", {1, "l", "w"}), QueryRuntimeException); EXPECT_THROW(EvaluateFunction("REPLACE", {"hello", 1, "w"}), QueryRuntimeException); EXPECT_THROW(EvaluateFunction("REPLACE", {"hello", "l", 1}), QueryRuntimeException); } TEST_F(FunctionTest, Split) { EXPECT_THROW(EvaluateFunction("SPLIT", {}), QueryRuntimeException); EXPECT_THROW(EvaluateFunction("SPLIT", {"one,two", 1}), QueryRuntimeException); EXPECT_THROW(EvaluateFunction("SPLIT", {1, "one,two"}), QueryRuntimeException); EXPECT_TRUE( EvaluateFunction("SPLIT", {TypedValue::Null, TypedValue::Null}).IsNull()); EXPECT_TRUE( EvaluateFunction("SPLIT", {"one,two", TypedValue::Null}).IsNull()); EXPECT_TRUE(EvaluateFunction("SPLIT", {TypedValue::Null, ","}).IsNull()); auto result = EvaluateFunction("SPLIT", {"one,two", ","}); EXPECT_TRUE(result.IsList()); EXPECT_EQ(result.ValueList()[0].ValueString(), "one"); EXPECT_EQ(result.ValueList()[1].ValueString(), "two"); } TEST_F(FunctionTest, Substring) { EXPECT_THROW(EvaluateFunction("SUBSTRING", {}), QueryRuntimeException); EXPECT_TRUE( EvaluateFunction("SUBSTRING", {TypedValue::Null, 0, 10}).IsNull()); EXPECT_THROW( EvaluateFunction("SUBSTRING", {TypedValue::Null, TypedValue::Null}), QueryRuntimeException); EXPECT_THROW(EvaluateFunction("SUBSTRING", {TypedValue::Null, -10}), QueryRuntimeException); EXPECT_THROW( EvaluateFunction("SUBSTRING", {TypedValue::Null, 0, TypedValue::Null}), QueryRuntimeException); EXPECT_THROW(EvaluateFunction("SUBSTRING", {TypedValue::Null, 0, -10}), QueryRuntimeException); EXPECT_EQ(EvaluateFunction("SUBSTRING", {"hello", 2}).ValueString(), "llo"); EXPECT_EQ(EvaluateFunction("SUBSTRING", {"hello", 10}).ValueString(), ""); EXPECT_EQ(EvaluateFunction("SUBSTRING", {"hello", 2, 0}).ValueString(), ""); EXPECT_EQ(EvaluateFunction("SUBSTRING", {"hello", 1, 3}).ValueString(), "ell"); EXPECT_EQ(EvaluateFunction("SUBSTRING", {"hello", 1, 4}).ValueString(), "ello"); EXPECT_EQ(EvaluateFunction("SUBSTRING", {"hello", 1, 10}).ValueString(), "ello"); } TEST_F(FunctionTest, ToLower) { EXPECT_THROW(EvaluateFunction("TOLOWER", {}), QueryRuntimeException); EXPECT_TRUE(EvaluateFunction("TOLOWER", {TypedValue::Null}).IsNull()); EXPECT_EQ(EvaluateFunction("TOLOWER", {"Ab__C"}).ValueString(), "ab__c"); } TEST_F(FunctionTest, ToUpper) { EXPECT_THROW(EvaluateFunction("TOUPPER", {}), QueryRuntimeException); EXPECT_TRUE(EvaluateFunction("TOUPPER", {TypedValue::Null}).IsNull()); EXPECT_EQ(EvaluateFunction("TOUPPER", {"Ab__C"}).ValueString(), "AB__C"); } } // namespace