// Copyright 2023 Memgraph Ltd. // // Use of this software is governed by the Business Source License // included in the file licenses/BSL.txt; by using this file, you agree to be bound by the terms of the Business Source // License, and you may not use this file except in compliance with the Business Source License. // // As of the Change Date specified in that file, in accordance with // the Business Source License, use of this software will be governed // by the Apache License, Version 2.0, included in the file // licenses/APL.txt. //===- small_vector.hpp - 'Normally small' vectors --------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the SmallVector class. // //===----------------------------------------------------------------------===// #pragma once #include #include #include #include #include #include #include #include #include #include "utils/likely.hpp" // TODO (dsantl) This is original definition of LLVM_NODISCARD: /// LLVM_NODISCARD - Warn if a type or return value is discarded. // #if __cplusplus > 201402L && __has_cpp_attribute(nodiscard) // #define LLVM_NODISCARD [[nodiscard]] // #elif !__cplusplus // // Workaround for llvm.org/PR23435, since clang 3.6 and below emit a spurious // // error when __has_cpp_attribute is given a scoped attribute in C mode. // #define LLVM_NODISCARD // #elif __has_cpp_attribute(clang::warn_unused_result) // #define LLVM_NODISCARD [[clang::warn_unused_result]] // #else // #define LLVM_NODISCARD // #endif #define LLVM_NODISCARD // LLVM External Functions namespace memgraph::utils { namespace detail { /// NextPowerOf2 - Returns the next power of two (in 64-bits) /// that is strictly greater than a. Returns zero on overflow. inline uint64_t NextPowerOf2(uint64_t a) { a |= (a >> 1); a |= (a >> 2); a |= (a >> 4); a |= (a >> 8); a |= (a >> 16); a |= (a >> 32); return a + 1; } } // namespace detail /// This is all the non-templated stuff common to all SmallVectors. class SmallVectorBase { protected: void *begin_x_, *end_x_, *capacity_x_; protected: SmallVectorBase(void *first_el, size_t size) : begin_x_(first_el), end_x_(first_el), capacity_x_((char *)first_el + size) {} /// This is an implementation of the Grow() method which only works /// on POD-like data types and is out of line to reduce code duplication. void GrowPod(void *first_el, size_t min_size_in_bytes, size_t t_size); public: /// This returns size()*sizeof(T). size_t size_in_bytes() const { return size_t((char *)end_x_ - (char *)begin_x_); } /// capacity_in_bytes - This returns capacity()*sizeof(T). size_t capacity_in_bytes() const { return size_t((char *)capacity_x_ - (char *)begin_x_); } LLVM_NODISCARD bool empty() const { return begin_x_ == end_x_; } }; template struct SmallVectorStorage; /// This is the part of SmallVectorTemplateBase which does not depend on whether /// the type T is a POD. The extra dummy template argument is used by ArrayRef /// to avoid unnecessarily requiring T to be complete. template class SmallVectorTemplateCommon : public SmallVectorBase { private: template friend struct SmallVectorStorage; // Allocate raw space for n elements of type T. If T has a ctor or dtor, we // don't want it to be automatically run, so we need to represent the space as // something else. Use an array of char of sufficient alignment. ////////////typedef utils::AlignedCharArrayUnion U; using U = typename std::aligned_union<1, T>::type; U first_el_; // Space after 'first_el' is clobbered, do not add any instance vars after it. protected: explicit SmallVectorTemplateCommon(size_t size) : SmallVectorBase(&first_el_, size) {} void GrowPod(size_t min_size_in_bytes, size_t t_size) { SmallVectorBase::GrowPod(&first_el_, min_size_in_bytes, t_size); } /// Return true if this is a smallvector which has not had dynamic /// memory allocated for it. bool IsSmall() const { return begin_x_ == static_cast(&first_el_); } /// Put this vector in a state of being small. void ResetToSmall() { begin_x_ = end_x_ = capacity_x_ = &first_el_; } void SetEnd(T *P) { this->end_x_ = P; } public: using size_type = size_t; using difference_type = ptrdiff_t; using value_type = T; using iterator = T *; using const_iterator = const T *; using const_reverse_iterator = std::reverse_iterator; using reverse_iterator = std::reverse_iterator; using reference = T &; using const_reference = const T &; using pointer = T *; using const_pointer = const T *; // forward iterator creation methods. inline iterator begin() { return (iterator)this->begin_x_; } inline const_iterator begin() const { return (const_iterator)this->begin_x_; } inline iterator end() { return (iterator)this->end_x_; } inline const_iterator end() const { return (const_iterator)this->end_x_; } protected: iterator CapacityPtr() { return (iterator)this->capacity_x_; } const_iterator CapacityPtr() const { return (const_iterator)this->capacity_x_; } public: // reverse iterator creation methods. reverse_iterator rbegin() { return reverse_iterator(end()); } const_reverse_iterator rbegin() const { return const_reverse_iterator(end()); } reverse_iterator rend() { return reverse_iterator(begin()); } const_reverse_iterator rend() const { return const_reverse_iterator(begin()); } inline size_type size() const { return end() - begin(); } size_type max_size() const { return size_type(-1) / sizeof(T); } /// Return the total number of elements in the currently allocated buffer. size_t capacity() const { return CapacityPtr() - begin(); } /// Return a pointer to the vector's buffer, even if empty(). pointer data() { return pointer(begin()); } /// Return a pointer to the vector's buffer, even if empty(). const_pointer data() const { return const_pointer(begin()); } inline reference operator[](size_type idx) { assert(idx < size()); return begin()[idx]; } inline const_reference operator[](size_type idx) const { assert(idx < size()); return begin()[idx]; } reference front() { assert(!empty()); return begin()[0]; } const_reference front() const { assert(!empty()); return begin()[0]; } reference back() { assert(!empty()); return end()[-1]; } const_reference back() const { assert(!empty()); return end()[-1]; } }; /// SmallVectorTemplateBase - This is where we put method /// implementations that are designed to work with non-POD-like T's. template class SmallVectorTemplateBase : public SmallVectorTemplateCommon { protected: explicit SmallVectorTemplateBase(size_t size) : SmallVectorTemplateCommon(size) {} static void DestroyRange(T *s, T *e) { while (s != e) { --e; e->~T(); } } /// Move the range [i, e) into the uninitialized memory starting with "dest", /// constructing elements as needed. template static void UninitializedMove(TIt1 i, TIt1 e, TIt2 dest) { std::uninitialized_copy(std::make_move_iterator(i), std::make_move_iterator(e), dest); } /// Copy the range [i, e) onto the uninitialized memory starting with "dest", /// constructing elements as needed. template static void UninitializedCopy(TIt1 i, TIt1 e, TIt2 dest) { std::uninitialized_copy(i, e, dest); } /// Grow the allocated memory (without initializing new elements), doubling /// the size of the allocated memory. Guarantees space for at least one more /// element, or min_size more elements if specified. void Grow(size_t min_size = 0); public: void push_back(const T &elt) { if (UNLIKELY(this->end_x_ >= this->capacity_x_)) this->Grow(); ::new ((void *)this->end()) T(elt); this->SetEnd(this->end() + 1); } void push_back(T &&elt) { if (UNLIKELY(this->end_x_ >= this->capacity_x_)) this->Grow(); ::new ((void *)this->end()) T(::std::move(elt)); this->SetEnd(this->end() + 1); } void pop_back() { this->SetEnd(this->end() - 1); this->end()->~T(); } }; // Define this out-of-line to dissuade the C++ compiler from inlining it. template void SmallVectorTemplateBase::Grow(size_t min_size) { size_t cur_capacity = this->capacity(); size_t cur_size = this->size(); // Always Grow, even from zero. size_t new_capacity = size_t(utils::detail::NextPowerOf2(cur_capacity + 2)); if (new_capacity < min_size) new_capacity = min_size; T *new_elts = static_cast(malloc(new_capacity * sizeof(T))); // Move the elements over. this->UninitializedMove(this->begin(), this->end(), new_elts); // Destroy the original elements. DestroyRange(this->begin(), this->end()); // If this wasn't grown from the inline copy, deallocate the old space. if (!this->IsSmall()) free(this->begin()); this->SetEnd(new_elts + cur_size); this->begin_x_ = new_elts; this->capacity_x_ = this->begin() + new_capacity; } /// SmallVectorTemplateBase - This is where we put method /// implementations that are designed to work with POD-like T's. template class SmallVectorTemplateBase : public SmallVectorTemplateCommon { protected: explicit SmallVectorTemplateBase(size_t size) : SmallVectorTemplateCommon(size) {} // No need to do a destroy loop for POD's. static void DestroyRange(T *, T *) {} /// Move the range [i, e) onto the uninitialized memory /// starting with "dest", constructing elements into it as needed. template static void UninitializedMove(TIt1 i, TIt1 e, TIt2 dest) { // Just do a copy. UninitializedCopy(i, e, dest); } /// Copy the range [i, e) onto the uninitialized memory /// starting with "dest", constructing elements into it as needed. template static void UninitializedCopy(TIt1 i, TIt1 e, TIt2 dest) { // Arbitrary iterator types; just use the basic implementation. std::uninitialized_copy(i, e, dest); } /// Copy the range [i, e) onto the uninitialized memory /// starting with "dest", constructing elements into it as needed. template requires std::is_same_v, T2> static void UninitializedCopy(T1 *i, T1 *e, T2 *dest) { // Use memcpy for PODs iterated by pointers (which includes SmallVector // iterators): std::uninitialized_copy optimizes to memmove, but we can // use memcpy here. Note that i and e are iterators and thus might be // invalid for memcpy if they are equal. if (i != e) memcpy(dest, i, (e - i) * sizeof(T)); } /// Double the size of the allocated memory, guaranteeing space for at /// least one more element or min_size if specified. void Grow(size_t min_size = 0) { this->GrowPod(min_size * sizeof(T), sizeof(T)); } public: void push_back(const T &elt) { if (UNLIKELY(this->end_x_ >= this->capacity_x_)) this->Grow(); memcpy(this->end(), &elt, sizeof(T)); this->SetEnd(this->end() + 1); } void pop_back() { this->SetEnd(this->end() - 1); } }; template inline constexpr bool is_pod = std::is_standard_layout_v &&std::is_trivial_v; /// This class consists of common code factored out of the SmallVector class to /// reduce code duplication based on the SmallVector 'n' template parameter. template class SmallVectorImpl : public SmallVectorTemplateBase> { using SuperClass = SmallVectorTemplateBase>; SmallVectorImpl(const SmallVectorImpl &) = delete; public: using iterator = typename SuperClass::iterator; using const_iterator = typename SuperClass::const_iterator; using size_type = typename SuperClass::size_type; protected: // Default ctor - Initialize to empty. explicit SmallVectorImpl(unsigned n) : SmallVectorTemplateBase>(n * sizeof(T)) {} public: ~SmallVectorImpl() { // Destroy the constructed elements in the vector. this->DestroyRange(this->begin(), this->end()); // If this wasn't grown from the inline copy, deallocate the old space. if (!this->IsSmall()) free(this->begin()); } void clear() { this->DestroyRange(this->begin(), this->end()); this->end_x_ = this->begin_x_; } void resize(size_type n) { if (n < this->size()) { this->DestroyRange(this->begin() + n, this->end()); this->SetEnd(this->begin() + n); } else if (n > this->size()) { if (this->capacity() < n) this->Grow(n); for (auto i = this->end(), e = this->begin() + n; i != e; ++i) new (&*i) T(); this->SetEnd(this->begin() + n); } } void resize(size_type n, const T &nv) { if (n < this->size()) { this->DestroyRange(this->begin() + n, this->end()); this->SetEnd(this->begin() + n); } else if (n > this->size()) { if (this->capacity() < n) this->Grow(n); std::uninitialized_fill(this->end(), this->begin() + n, nv); this->SetEnd(this->begin() + n); } } void reserve(size_type n) { if (this->capacity() < n) this->Grow(n); } LLVM_NODISCARD T pop_back_val() { T result = ::std::move(this->back()); this->pop_back(); return result; } void swap(SmallVectorImpl &rhs); /// Add the specified range to the end of the SmallVector. template void append(TInIter in_start, TInIter in_end) { size_type num_inputs = std::distance(in_start, in_end); // Grow allocated space if needed. if (num_inputs > size_type(this->CapacityPtr() - this->end())) this->Grow(this->size() + num_inputs); // Copy the new elements over. this->UninitializedCopy(in_start, in_end, this->end()); this->SetEnd(this->end() + num_inputs); } /// Add the specified range to the end of the SmallVector. void append(size_type num_inputs, const T &elt) { // Grow allocated space if needed. if (num_inputs > size_type(this->CapacityPtr() - this->end())) this->Grow(this->size() + num_inputs); // Copy the new elements over. std::uninitialized_fill_n(this->end(), num_inputs, elt); this->SetEnd(this->end() + num_inputs); } void append(std::initializer_list il) { append(il.begin(), il.end()); } void assign(size_type num_elts, const T &elt) { clear(); if (this->capacity() < num_elts) this->Grow(num_elts); this->SetEnd(this->begin() + num_elts); std::uninitialized_fill(this->begin(), this->end(), elt); } void assign(std::initializer_list il) { clear(); append(il); } iterator erase(const_iterator ci) { // Just cast away constness because this is a non-const member function. iterator i = const_cast(ci); assert(i >= this->begin() && "Iterator to erase is out of bounds."); assert(i < this->end() && "Erasing at past-the-end iterator."); iterator n = i; // Shift all elts down one. std::move(i + 1, this->end(), i); // Drop the last elt. this->pop_back(); return (n); } iterator erase(const_iterator cs, const_iterator ce) { // Just cast away constness because this is a non-const member function. iterator s = const_cast(cs); iterator e = const_cast(ce); assert(s >= this->begin() && "Range to erase is out of bounds."); assert(s <= e && "Trying to erase invalid range."); assert(e <= this->end() && "Trying to erase past the end."); iterator n = s; // Shift all elts down. iterator i = std::move(e, this->end(), s); // Drop the last elts. this->DestroyRange(i, this->end()); this->SetEnd(i); return (n); } iterator insert(iterator i, T &&elt) { if (i == this->end()) { // Important special case for empty vector. this->push_back(::std::move(elt)); return this->end() - 1; } assert(i >= this->begin() && "Insertion iterator is out of bounds."); assert(i <= this->end() && "Inserting past the end of the vector."); if (this->end_x_ >= this->capacity_x_) { size_t elt_no = i - this->begin(); this->Grow(); i = this->begin() + elt_no; } ::new ((void *)this->end()) T(::std::move(this->back())); // Push everything else over. std::move_backward(i, this->end() - 1, this->end()); this->SetEnd(this->end() + 1); // If we just moved the element we're inserting, be sure to update // the reference. T *elt_ptr = &elt; if (i <= elt_ptr && elt_ptr < this->end_x_) ++elt_ptr; *i = ::std::move(*elt_ptr); return i; } iterator insert(iterator i, const T &elt) { if (i == this->end()) { // Important special case for empty vector. this->push_back(elt); return this->end() - 1; } assert(i >= this->begin() && "Insertion iterator is out of bounds."); assert(i <= this->end() && "Inserting past the end of the vector."); if (this->end_x_ >= this->capacity_x_) { size_t elt_no = i - this->begin(); this->Grow(); i = this->begin() + elt_no; } ::new ((void *)this->end()) T(std::move(this->back())); // Push everything else over. std::move_backward(i, this->end() - 1, this->end()); this->SetEnd(this->end() + 1); // If we just moved the element we're inserting, be sure to update // the reference. const T *elt_ptr = &elt; if (i <= elt_ptr && elt_ptr < this->end_x_) ++elt_ptr; *i = *elt_ptr; return i; } iterator insert(iterator i, size_type num_to_insert, const T &elt) { // Convert iterator to elt# to avoid invalidating iterator when we reserve() size_t insert_elt = i - this->begin(); if (i == this->end()) { // Important special case for empty vector. append(num_to_insert, elt); return this->begin() + insert_elt; } assert(i >= this->begin() && "Insertion iterator is out of bounds."); assert(i <= this->end() && "Inserting past the end of the vector."); // Ensure there is enough space. reserve(this->size() + num_to_insert); // Uninvalidate the iterator. i = this->begin() + insert_elt; // If there are more elements between the insertion point and the end of the // range than there are being inserted, we can use a simple approach to // insertion. Since we already reserved space, we know that this won't // reallocate the vector. if (size_t(this->end() - i) >= num_to_insert) { T *old_end = this->end(); append(std::move_iterator(this->end() - num_to_insert), std::move_iterator(this->end())); // Copy the existing elements that get replaced. std::move_backward(i, old_end - num_to_insert, old_end); std::fill_n(i, num_to_insert, elt); return i; } // Otherwise, we're inserting more elements than exist already, and we're // not inserting at the end. // Move over the elements that we're about to overwrite. T *old_end = this->end(); this->SetEnd(this->end() + num_to_insert); size_t num_overwritten = old_end - i; this->UninitializedMove(i, old_end, this->end() - num_overwritten); // Replace the overwritten part. std::fill_n(i, num_overwritten, elt); // Insert the non-overwritten middle part. std::uninitialized_fill_n(old_end, num_to_insert - num_overwritten, elt); return i; } template iterator insert(iterator i, TIt from, TIt to) { // Convert iterator to elt# to avoid invalidating iterator when we reserve() size_t insert_elt = i - this->begin(); if (i == this->end()) { // Important special case for empty vector. append(from, to); return this->begin() + insert_elt; } assert(i >= this->begin() && "Insertion iterator is out of bounds."); assert(i <= this->end() && "Inserting past the end of the vector."); size_t num_to_insert = std::distance(from, to); // Ensure there is enough space. reserve(this->size() + num_to_insert); // Uninvalidate the iterator. i = this->begin() + insert_elt; // If there are more elements between the insertion point and the end of the // range than there are being inserted, we can use a simple approach to // insertion. Since we already reserved space, we know that this won't // reallocate the vector. if (size_t(this->end() - i) >= num_to_insert) { T *old_end = this->end(); append(std::move_iterator(this->end() - num_to_insert), std::move_iterator(this->end())); // Copy the existing elements that get replaced. std::move_backward(i, old_end - num_to_insert, old_end); std::copy(from, to, i); return i; } // Otherwise, we're inserting more elements than exist already, and we're // not inserting at the end. // Move over the elements that we're about to overwrite. T *old_end = this->end(); this->SetEnd(this->end() + num_to_insert); size_t num_overwritten = old_end - i; this->UninitializedMove(i, old_end, this->end() - num_overwritten); // Replace the overwritten part. for (T *j = i; num_overwritten > 0; --num_overwritten) { *j = *from; ++j; ++from; } // Insert the non-overwritten middle part. this->UninitializedCopy(from, to, old_end); return i; } void insert(iterator i, std::initializer_list il) { insert(i, il.begin(), il.end()); } template void emplace_back(TArgTypes &&...args) { if (UNLIKELY(this->end_x_ >= this->capacity_x_)) this->Grow(); ::new ((void *)this->end()) T(std::forward(args)...); this->SetEnd(this->end() + 1); } SmallVectorImpl &operator=(const SmallVectorImpl &rhs); SmallVectorImpl &operator=(SmallVectorImpl &&rhs); bool operator==(const SmallVectorImpl &rhs) const { if (this->size() != rhs.size()) return false; return std::equal(this->begin(), this->end(), rhs.begin()); } bool operator!=(const SmallVectorImpl &rhs) const { return !(*this == rhs); } bool operator<(const SmallVectorImpl &rhs) const { return std::lexicographical_compare(this->begin(), this->end(), rhs.begin(), rhs.end()); } /// Set the array size to \p n, which the current array must have enough /// capacity for. /// /// This does not construct or destroy any elements in the vector. /// /// Clients can use this in conjunction with capacity() to write past the end /// of the buffer when they know that more elements are available, and only /// update the size later. This avoids the cost of value initializing elements /// which will only be overwritten. void set_size(size_type n) { assert(n <= this->capacity()); this->SetEnd(this->begin() + n); } }; template void SmallVectorImpl::swap(SmallVectorImpl &rhs) { if (this == &rhs) return; // We can only avoid copying elements if neither vector is small. if (!this->IsSmall() && !rhs.IsSmall()) { std::swap(this->begin_x_, rhs.begin_x_); std::swap(this->end_x_, rhs.end_x_); std::swap(this->capacity_x_, rhs.capacity_x_); return; } if (rhs.size() > this->capacity()) this->Grow(rhs.size()); if (this->size() > rhs.capacity()) rhs.Grow(this->size()); // Swap the shared elements. size_t num_shared = this->size(); if (num_shared > rhs.size()) num_shared = rhs.size(); for (size_type i = 0; i != num_shared; ++i) std::swap((*this)[i], rhs[i]); // Copy over the extra elts. if (this->size() > rhs.size()) { size_t elt_diff = this->size() - rhs.size(); this->UninitializedCopy(this->begin() + num_shared, this->end(), rhs.end()); rhs.SetEnd(rhs.end() + elt_diff); this->DestroyRange(this->begin() + num_shared, this->end()); this->SetEnd(this->begin() + num_shared); } else if (rhs.size() > this->size()) { size_t elt_diff = rhs.size() - this->size(); this->UninitializedCopy(rhs.begin() + num_shared, rhs.end(), this->end()); this->SetEnd(this->end() + elt_diff); this->DestroyRange(rhs.begin() + num_shared, rhs.end()); rhs.SetEnd(rhs.begin() + num_shared); } } template SmallVectorImpl &SmallVectorImpl::operator=(const SmallVectorImpl &rhs) { // Avoid self-assignment. if (this == &rhs) return *this; // If we already have sufficient space, assign the common elements, then // destroy any excess. size_t rhh_size = rhs.size(); size_t cur_size = this->size(); if (cur_size >= rhh_size) { // Assign common elements. iterator new_end; if (rhh_size) new_end = std::copy(rhs.begin(), rhs.begin() + rhh_size, this->begin()); else new_end = this->begin(); // Destroy excess elements. this->DestroyRange(new_end, this->end()); // Trim. this->SetEnd(new_end); return *this; } // If we have to Grow to have enough elements, destroy the current elements. // This allows us to avoid copying them during the Grow. // FIXME: don't do this if they're efficiently moveable. if (this->capacity() < rhh_size) { // Destroy current elements. this->DestroyRange(this->begin(), this->end()); this->SetEnd(this->begin()); cur_size = 0; this->Grow(rhh_size); } else if (cur_size) { // Otherwise, use assignment for the already-constructed elements. std::copy(rhs.begin(), rhs.begin() + cur_size, this->begin()); } // Copy construct the new elements in place. this->UninitializedCopy(rhs.begin() + cur_size, rhs.end(), this->begin() + cur_size); // Set end. this->SetEnd(this->begin() + rhh_size); return *this; } template SmallVectorImpl &SmallVectorImpl::operator=(SmallVectorImpl &&rhs) { // Avoid self-assignment. if (this == &rhs) return *this; // If the rhs isn't small, clear this vector and then steal its buffer. if (!rhs.IsSmall()) { this->DestroyRange(this->begin(), this->end()); if (!this->IsSmall()) free(this->begin()); this->begin_x_ = rhs.begin_x_; this->end_x_ = rhs.end_x_; this->capacity_x_ = rhs.capacity_x_; rhs.ResetToSmall(); return *this; } // If we already have sufficient space, assign the common elements, then // destroy any excess. size_t rhh_size = rhs.size(); size_t cur_size = this->size(); if (cur_size >= rhh_size) { // Assign common elements. iterator new_end = this->begin(); if (rhh_size) new_end = std::move(rhs.begin(), rhs.end(), new_end); // Destroy excess elements and trim the bounds. this->DestroyRange(new_end, this->end()); this->SetEnd(new_end); // Clear the rhs. rhs.clear(); return *this; } // If we have to Grow to have enough elements, destroy the current elements. // This allows us to avoid copying them during the Grow. // FIXME: this may not actually make any sense if we can efficiently move // elements. if (this->capacity() < rhh_size) { // Destroy current elements. this->DestroyRange(this->begin(), this->end()); this->SetEnd(this->begin()); cur_size = 0; this->Grow(rhh_size); } else if (cur_size) { // Otherwise, use assignment for the already-constructed elements. std::move(rhs.begin(), rhs.begin() + cur_size, this->begin()); } // Move-construct the new elements in place. this->UninitializedMove(rhs.begin() + cur_size, rhs.end(), this->begin() + cur_size); // Set end. this->SetEnd(this->begin() + rhh_size); rhs.clear(); return *this; } /// Storage for the SmallVector elements which aren't contained in /// SmallVectorTemplateCommon. There are 'n-1' elements here. The remaining '1' /// element is in the base class. This is specialized for the n=1 and n=0 cases /// to avoid allocating unnecessary storage. template struct SmallVectorStorage { typename SmallVectorTemplateCommon::U InlineElts[N - 1]; }; template struct SmallVectorStorage {}; template struct SmallVectorStorage {}; /// This is a 'vector' (really, a variable-sized array), optimized /// for the case when the array is small. It contains some number of elements /// in-place, which allows it to avoid heap allocation when the actual number of /// elements is below that threshold. This allows normal "small" cases to be /// fast without losing generality for large inputs. /// /// Note that this does not attempt to be exception safe. /// template class SmallVector : public SmallVectorImpl { /// Inline space for elements which aren't stored in the base class. SmallVectorStorage Storage; public: SmallVector() : SmallVectorImpl(N) {} explicit SmallVector(size_t size, const T &value = T()) : SmallVectorImpl(N) { this->assign(size, value); } template SmallVector(TIt s, TIt e) : SmallVectorImpl(N) { this->append(s, e); } SmallVector(std::initializer_list il) : SmallVectorImpl(N) { this->assign(il); } SmallVector(const SmallVector &rhs) : SmallVectorImpl(N) { if (!rhs.empty()) SmallVectorImpl::operator=(rhs); } const SmallVector &operator=(const SmallVector &rhs) { SmallVectorImpl::operator=(rhs); return *this; } SmallVector(SmallVector &&rhs) : SmallVectorImpl(N) { if (!rhs.empty()) SmallVectorImpl::operator=(::std::move(rhs)); } const SmallVector &operator=(SmallVector &&rhs) { SmallVectorImpl::operator=(::std::move(rhs)); return *this; } explicit SmallVector(SmallVectorImpl &&rhs) : SmallVectorImpl(N) { if (!rhs.empty()) SmallVectorImpl::operator=(::std::move(rhs)); } const SmallVector &operator=(SmallVectorImpl &&rhs) { SmallVectorImpl::operator=(::std::move(rhs)); return *this; } const SmallVector &operator=(std::initializer_list il) { this->assign(il); return *this; } }; template static inline size_t capacity_in_bytes(const SmallVector &x) { return x.capacity_in_bytes(); } } // namespace memgraph::utils namespace std { /// Implement std::swap in terms of SmallVector swap. template inline void swap(memgraph::utils::SmallVectorImpl &lhs, memgraph::utils::SmallVectorImpl &rhs) { lhs.swap(rhs); } /// Implement std::swap in terms of SmallVector swap. template inline void swap(memgraph::utils::SmallVector &lhs, memgraph::utils::SmallVector &rhs) { lhs.swap(rhs); } } // namespace std namespace memgraph::utils { /// GrowPod - This is an implementation of the Grow() method which only works /// on POD-like datatypes and is out of line to reduce code duplication. inline void SmallVectorBase::GrowPod(void *first_el, size_t min_size_in_bytes, size_t t_size) { size_t cur_size_btyes = size_in_bytes(); size_t new_capacity_in_bytes = 2 * capacity_in_bytes() + t_size; // Always Grow. if (new_capacity_in_bytes < min_size_in_bytes) new_capacity_in_bytes = min_size_in_bytes; void *new_elts; if (begin_x_ == first_el) { new_elts = malloc(new_capacity_in_bytes); // Copy the elements over. No need to run dtors on PODs. memcpy(new_elts, this->begin_x_, cur_size_btyes); } else { // If this wasn't grown from the inline copy, Grow the allocated space. new_elts = realloc(this->begin_x_, new_capacity_in_bytes); } assert(new_elts && "Out of memory"); this->end_x_ = (char *)new_elts + cur_size_btyes; this->begin_x_ = new_elts; this->capacity_x_ = (char *)this->begin_x_ + new_capacity_in_bytes; } } // namespace memgraph::utils